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1. Introduction 
During the past few years the authors have been 

trying to find a methodology which produces a set 
of survey weights for which the estimates of 
number of schools, students and teachers agree for 
both a sample survey and its frame. The frame 
estimates are produced for the same time period as 
the survey collection. Of course, the "control" is 
only achieved for a specified set of cells. 

If there were only one estimate, say number of 
schools, then a simple raking procedure would do 
the job. However, we require the agreement of three 
independent estimates simultaneously. Raking does 
not converge for this problem. 

Scheuren and Kaufman (1996) found a solution 
using a generalized least squares methodology 
(GLS). Using a multivariate ratio adjustment first, 
weights less than 1 for the most part become 
minimal; and the implementation become 
manageable. The problem with our "solution" is 
that for cells not controlled for, the original weights 
quite often produce closer agreement than the GLS 
weights. In the 1996 paper, it was proposed that a 
mass imputation procedure (Kovar and Whitridge 
1995) might provide better results. 

Mass imputation is where the survey respondents 
are used as donors to impute back to the entire 
frame. If the survey respondent data were mass 
imputed to the frame for all data elements except 
the schools, students and teacher elements then the 
desired consistency would be achieved for all 
estimation cells. All weights would equal 1 and the 
survey estimates for schools, students and teachers 
would equal the frame total. 

The principal problem with this version of mass 
imputation is the difficulty in variance estimation 
for survey variables other than school, student and 
teachers. Since values are assigned to the entire 
frame, standard variance procedures produce a zero 
variance. A variance procedure that measures the 
imputation variance is required to compute the 
mass imputation variance estimates. 

Shao and Sitter (1996) proposed a methodology 
for measuring the imputation variance. It works for 
general estimates coming from any sample design 
and imputation methodology. The methodology 
calls for generating bootstrap samples of both 
respondents and nonrespondents. The original 

imputation procedure is applied to each bootstrap 
sample; and the distribution of bootstrap estimates 
is relied on for inference. 

This paper investigates the magnitude of the 
precision gains that we thought mass imputation 
promised. Additionally, a variance estimator for the 
mass imputation, motivated by the Shao and Sitter 
methodology, is developed. (One potential 
problem, for example, with the Shao and Sitter 
methodology is the assumption that probabilities of 
being a nonrespondent are equal within an 
imputation cell. With mass imputation, this need 
not necessarily be true.) 

The precision gains of mass imputation and its 
proposed variance estimator are tested through a 
simulation study. Frame variables are used, so that 
true values for all sample imputed estimates are 
known. The "respondents" or donors are 
determined using a single stage probability 
proportionate to size sample design, similar to the 
Schools and Staffing Survey. Given these 
respondents: 
(1) A mass imputation is performed and compared 
with the standard Horvitz-Thompson estimator. 
(2) Further, an estimate of the true mean square 
error (MSE) of the mass imputation estimate is 
compared to the Horvitz-Thompson variance. 
(3) Additionally, the proposed mass imputation 
variance is computed and compared to an estimate 
of its true variance. Since all sample estimates can 
be obtained exactly, estimates of the true variance 
are computed using the simple variance of the 
selected simulation sample estimates. 
(4) Finally, the case when nonrespondents are 
selected completely at random will be investigated 
by simulating a sample design following this 
assumption. 
2. NCES Applications for Mass Imputation 

The motivating application for mass imputation 
is the GLS problem described in the introduction. 
However, two other applications are possible. For 
example, NCES uses indirect estimation procedures 
to produce state private school enrollment figures. 
The estimation procedure applies an adjustment 
factor to each known private school. The 
adjustment reflects results from a survey that 
measures the number of schools missing from our 
lists. Since this is a mass imputation procedure, the 
results of this paper can be useful in the variance 
estimation of these state estimates. 

Another potential application of mass imputation 
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is in the Center's data warehousing project. Here, 
the object is to link past and current Center surveys 
across program areas. If sample surveys are mass 
imputed to their frame, then the linkage problem is 
reduced to linking the frames, eliminating the need 
to link all the sample surveys. Again, the variance 
estimator proposed here might be useful. 
3. Imputations 
3.1 Nearest Neighbor Imputation. -- The nearest 
neighbor imputations used in this paper are done 
within imputation cells, after the schools have been 
sorted by the number of students per school. The 
imputation cells are state/school level/urbanicity. 
There are three school levels - elementary, 
secondary and combined; also three levels of 
urbanicity- central city, urban fringe/large town 
and rural/small town. After the file is sorted, it is 
accessed sequentially using the nearest responding 
school as the donor for a nonresponding school. For 
a particular unit i ,  we represent the imputed value 

for variable yi by yi.. 

The imputation described above is used two ways 
with different file sortings before the imputations 
are determined. The first imputation sorts the file in 
ascending order within imputation cell. This will be 
referred to as ascending imputation. The second 
imputation is done by determining the imputations 
in ascending, as well as descending order. Each 
time an imputation is required, a random 50/50 
selection is used to determine which imputation is 
used in the estimate. 
3.2 Mass Imputation.-- In mass imputation the 
sample weights associated with a probability 
sample s are ignored. Instead, it is assumed that the 
entire frame is in the sample, but the only units that 
respond are the units in s.  Estimates are produced 
by assigning all units on the frame a weight of 1 
and using the units in s as the donors to impute all 
the other frame units. The nearest neighbor 
imputation, described above, was used in the mass 
imputation process. After the imputation, estimates 
were computed as though the entire frame 
responded. If the imputation process is "good," then 
there may be some efficiency gains, compared to 
the usual Horvitz-Thompson estimator. 
4. Sample Selection (Mass Imputation Donors) 

Two sample designs will be used. The main 
design studied employed the square root of the 
number of teachers in a school as a PPS measure of 
size; the second (subsidiary) design selected units 
with equal probability within an imputation cell. 
The first is used to test the mass imputation 
procedures under the SASS sample design, while 
the second is used for comparison to verify the 
importance of the missing completely at random 

assumption. 
4.1 The Schools and Staffing Sample Design. -- 
The Schools and Staffing Survey (SASS) is a 
stratified probability proportionate to size (PPS) 
sample of elementary, secondary and combined 
schools. The selection is done systematically using 
the square root of the number of teachers per school 
as the measure of size. State-by-school level cells 
define the stratification. Before systematic 
selection, schools are sorted to provide a good 
geographic distribution. Sample allocations are 
designed to provide reliable state estimates. In this 
simulation study, four small States were studied. 
The sample state sizes ranged from 72 to 196 
schools. The sampling rates ranged from 14 to 42 
percent of each state's school population. 

In order to eliminate the SASS design effects 
from systematic sampling and high sampling rates, 
the simulation split each state/school level stratum 
into a number of substrata (h )  so that exactly two 
schools are selected within each substratum with 
replacement. The original SASS sample sizes by 
state were, however, maintained. 
4.2 The Equal Probability Sample Design. -- The 
Shao - Sitter variance methodology assumes that 
nonrespondents are missing completely at random. 
To test the importance of this assumption in the 
SASS setting, the sample selection procedure 
described above was modified to select each school 
in a stratum with equal probability. Within each 
state, the sample sizes again remained the same, but 
the allocation and stratification boundaries were 
altered to achieve the desired equal selection 
probabilities. Again, two units will be selected 
within each stratum with replacement. 
5. Mass Imputation Bootstrap Variances 
To generate the bootstrap variance estimator for an 
estimate 0 ,  the following is done: 

(1) A bootstrap sample s* is generated by selecting 
2 units from s within each of the h stratum. The 
selection is done with equal probability and with 
replacement. 

(2) Then s" is sorted by the imputation cell and one 
bootstrap unit is randomly selected within each 

imputation cell and eliminated from s*. This is 
done in an attempt to produce a more unbiased 
variance estimate. The Shao - Sitter procedure does 
this by selecting n-1 units within each stratum. In 
the Shao and Sitter setting, this is appropriate since 
variability is introduced through the sampling 
mechanism. In the mass imputation setting, there is 
only an imputation variance. Therefore, the 
appropriate place to reduce the sample size seemed 
to be where the imputation process begins - the 
imputation cells. To verify that the imputation cell 
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is the appropriate place to reduce the bootstrap 
sample size by one, a simulation was done, 
reducing the sample size in the stratum controlling 
the donor selection. (See Table 4) 
(3) The bootstrap mass imputation is generated by 
doing the mass imputation procedure on the 
original frame using the units determined in step 2 
as donors. 
(4) Using the results from step 3, compute the 

bootstrap estimate 0* the same way 0 is 
calculated. 
(5) Repeat steps (1) to (4) Btimes, producing 

bootstrap estimates O j,  j equaling 1 to B.  

(6) The simple variance of the O j is our bootstrap 

variance estimate (V* (0)). 

6. Simulations 
There were 2,000 simulations performed for each 

sample design described above. Mass imputations 
and bootstrap variances are computed for each 
simulation. The estimate and analysis statistics used 
in the simulation are described below. 
6.1 Estimates. -- Four mass imputation estimates 
per state are computed: 

YM,, =~_~SkPu,;YM,2 = ~ S k P u 2 ;  
k e n  k e N  

Y M m  -" ESkPkm; and Y~ = ~_~SkPkh. 
k e n  k e n  

Sk is the known number of students in school k 

Pkel :student proportion in school k grades pre - 

kindergarten to 3 

Pke2 "student proportion in k grades 4 to 6 

p ~  :student proportion in k grades 7 to 9 

Pkh "student proportion in k grades 10 to 12 

It is assumed that S k is known for all k and that 

only the p ' s  require collection. Therefore, when k 

is not selected to be a responding unit, a nearest 
neighbor donor's p will be applied to SK • 

Additionally, four Horvitz-Thompson estimates 
are computed within each state: 

Yel = E w ,  S,P~,;Y,2 =EWkSkPke2~ 
ke s ke s 

Ym=EWkSkPkm; and Yh=EWkSi~Pkh. 
kes  kes  

where: w k is the inverse of the selection 

probability and s is the set of all selected schools. 
6.2 Simulated Variance and Bias Estimates. -- The 
two variance estimates computed within each 
sample and averaged across samples are: 

B 

V* (~o) - 1 / B ~  (~*j - ~*. )2 
j=l 

~." mass imputation estimates described above, 

~*j" a bootstrap estimate of ~., 

~*" the average of the bootstrap estimates ~*j. 

Estimates of the true variance of the mass 
imputation estimate ( ~. ) and the Horvitz- 

Thompson estimate ( ~ ) are provided below: 
n 

VT(~. ) = I / n~.., ( ) . ,  - y., ) 2 
s=l 

Yos and Yos are the value of ~. for the sth simulation 

and the average of the Y os, respectively. 
n 

VT(~) = 1 / n ~  (~, - ys)2 
s=l 

)3" Horvitz-Thompson estimate, 

~ "  s th Horvitz-Thompson estimate, 

~ "  average of the Horvitz-Thompson estimates. 

The bias of the mass imputation estimate ( ~° ) is 

estimated by: 
Bias( ~, )= ?,~ - y-~ 

7. Analysis Statistics from Simulations 
Four tables are provided at the end of this paper 

which provide summaries of our simulation results. 
Three key analytic statistics have been used" 
(1)To evaluate the imputation methodology, the 
relative bias of the estimated standard error (RBS) 
is computed. 

(2) The relative precision of the mass imputation 
estimate (RPS) is given by: 

RPS = ~/(V r ( ; ° ) +  Bias 2 ( ; ° ) ) / 4 V r  (~) 

(3) The relative bias of the mass imputation 
estimate (RB E) 
RBE = (y°, - y, ) I y, . 

7.1 Table I Overall Comparisons.--Table I 
displays how mass imputation might work in the 
SASS setting using ascending imputations. The 
answer to the question of whether this approach is 
satisfactory is "no." The precision of mass 
imputation relative to the Horvitz-Thompson 
clearly gives the Horvitz-Thompson estimator the 
advantage. The mass imputation estimator only 
once has a large efficiency gain over Horvitz- 
Thompson (18.4 percent). Seven times there was 
not much difference between the two estimation 
methods. In these cases, the gains ranged from - 
I 1.5 to +12.4 percent. On the other hand, there 
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were eight times when mass imputation had a big 
precision loss. In these latter cases, the lost was 
between -15.3 and -61.1 percent. Overall, mass 
imputations perform poorly for these estimates in 
the states tested. 
7.2 Table 1 Standard Error Comparisons.--Table 1 
also demonstrates with ascending imputations, 
through the relative bias of the standard error 
(RBS) values shown there, that our variance 
procedure underestimates the standard error. Most 
of the time the absolute bias is less than 10 percent. 
The reason for the underestimate may be the way 
the bootstrap sample sizes were reduced by one. 
Some theoretical work may be needed to provide an 
unbiased estimator. Another possible reason (See 
Table 2 below), is the inappropriateness of the 
completely missing at random assumption for the 
nonrespondents. 
7.3 Table 2 Standard Error Comparisons. -- The 
purpose of table 2 is to investigate (using ascending 
imputations) the robustness of the missing 
completely at random assumption of the variance 
procedure. Comparing the relative biases of the 
standard error in tables 1 and 2 shows that the 
standard errors are reasonably close to the true 
values, but still consistent underestimate. When the 
missing completely at random assumption is 
violated (table 1), there are more large 
underestimates than when the assumption is not 
violated. This indicates the missing completely at 
random assumption is not critical in this setting, but 
cannot be completely ignored. 
7.4 Other Points from Table 2. -- Table 2 also 
demonstrates another point. Since the selection and 
allocation are designed to produce an equal 
probability sample, one might expect the Horvitz- 
Thompson estimator to be inefficient estimating 
total numbers of students. That being the case, the 
mass imputation might compensate for the 
deficiencies in the sample design and be more 
efficient then the Horvitz-Thompson estimator. 
This does not appear to be true. The mass 
imputation does much worse than the Horvitz- 
Thompson estimator five times. In those cases, the 
loss of precision ranged from-21.2 to -43.1 percent. 
The mass imputation has large precision gains five 
times. The gains ranged from +19.4 to +33.4 
percent. However, it should be noted that mass 
imputation with the equal probability design 
performed better than the unequal probability 
design. Therefore, there is some truth to the 
assertion made at the beginning of this paragraph. 
7.5 Table 3 Ascending and Descending Imputation. 
-The purpose of table 3 is to determine whether 
mass imputation might work in the SASS setting 
when both ascending and descending imputations 

are used. The answer to this question is still "no." 
Twice the mass imputation was much better than 
Horvitz-Thompson. In these cases, the gains were 
+23.2 and +27.2 percent. Eleven times there was 
not much difference between the two estimation 
methods. In these cases, the gains ranged f rom-14 
to + 11.2 percent. Three times, mass imputation had 
a big precision loss between -17.1 to -21.9 percent. 

Still, as might be expected intuitively, using the 
ascending/descending imputation works much 
better than just ascending imputation. This is seen 
by comparing Tables 1 and 3. Using the ascending 
imputation, mass imputation is reasonably close or 
better than Horvitz-Thompson eight times, while 
the ascending/descending is reasonably close or 
better thirteen times. One reason for this is that the 
ascending/descending imputation is generally less 
biased. Since both imputation methodologies have 
small biases, this is not the main reason for the 
difference. 

The main reason for the difference is a smaller 
variance. Now there are two ways to reduce this 
variance: (1) reduce the variability of the donor 
enrollment counts or (2) reduce the variability of 
the weights. Since donor enrollment counts are the 
same for both imputation methodologies, the 
reduction in variance is coming entirely from 
reducing the variability of the weights. Since the 
ascending/descending mass imputation imputes 
values from both sides of the missing data at an 
expected 1 to 1 rate, the implicit weight for this 
processes will be (more or less) the moving average 
of the individual ascending and descending 
imputation weights. Since the units are sorted by 
size, the weights should be increasing as you go 
down the file. Therefore, the moving average of the 
weights should be less variable than the individual 
weights. 
7.6 Table 4 On Bootstrap Bias Issues. -- Table 4 
displays what happens when reducing the bootstrap 
sample sizes by one at the sampling stratum level, 
rather than at the imputation cell level as earlier. As 
can be seen in the relative bias of the standard error 
from table 4, the standard errors are overestimated 
by +24 to +48 percent. This shows that reducing the 
bootstrap sample size at the imputation cell level, 
although a slight underestimate, is better than doing 
it at the sample stratum level. Again, some work on 
the theory would seem to be needed here. 
8.0 Conclusions And Areas For Future Study 
8.1 Some Basic Conclusions. -- A lot was learned 
from the simulation work discussed here: 
(I) We remain convinced, for example, of appeal of 
being able to make greater use of the flame 
variables to improve estimation; however, we now 
have a much greater appreciation of the practical 
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difficulties in an actual implementation of such a 
procedure.: 
(2) Broadly speaking, for the states and variables 
used in the present analysis, the bias in the mass 
imputation estimator, no matter how conducted, is 
relatively small. This suggests that any of the 
nearest neighbor imputation variants employed here 
would be sufficient for a mass imputation process. 
(3) However, while at times the mass imputation 
estimator did outperform the Horvitz-Thompson 
estimator, it just never performed better overall. 
(4) Of the two methods of imputation employed, 
the ascending/descending method was clearly 
superior to just using the ascending method alone. 
(5) As our work on the robustness of the "missing 
at random" assumption demonstrated, the sample 
design and the imputation procedure cannot be 
treated independently. 
(6)The variance estimation procedure proposed in 
this paper seems to work reasonably well. Most of 
the time, it underestimates the variance slightly. 
Occasionally, though, the variance is greatly 
underestimated, especially when the selection 
probabilities within imputation cells are unequal. 
(7) The proposed variance procedure does not 
appear to be unbiased, although some ad hoc 
adjustments seem clearly better than others (e.g., 
adjusting at the imputation cell rather than stratum 
level). 
8.2 Some Next Steps and Second Thoughts. -- 
Without question we were disappointed with the 
performance of mass imputation. While not a 
failure, so far it has not delivered on our 
expectations. Some conjectures about why: 
(1) One possible reason is that, even though the 
imputation took school size into account, there 
were not enough large schools selected in the equal 
probability design to measure the large school's 
distribution appropriately. As noted already, users 
of mass imputation must take the sample design 
into account when determining an appropriate 
imputation. 
(2) Another possibility is that a better imputation 
procedure needs to be used. Fixing either of these 
possibilities requires designers very knowledgeable 
about the data being imputed. Clearly, just using a 
relatively efficient general imputation procedure, 
like nearest neighbor, does not guarantee good 
performance of the mass imputation estimator. 
(3) In doing the imputations, no control was 
introduced on the number of times a donor case was 
used. If done, this, all by itself, might have 
improved our results dramatically. We conjecture 
that the cases where extremely poor results were 
obtained would have been lessened. 
(4) Theoretical work on nearest neighbor 

imputation, given at these meetings, also is a place 
to look for ideas for improvements (Chen and Shao 
1997). In addition, theoretical work seems required 
to find an unbiased variance methodology. Even so, 
given the general difficulty of variance estimation 
for indirect estimates, the variance procedure 
described here may be applicable to the indirect 
estimation problem stated in section 2. We are less 
sure, by the way, about the application of mass 
imputation to NCES's data warehousing work. 
(5) If the ascending/descending mass imputation is 
used when the donors are selected with equal 
probability, then the mass imputation may well 
outperform Horvitz-Thompson. However, there 
was not the time to do this simulation for the 
present paper. 
(7) While we started off our work determined to 
better the GLS procedures studied earlier, no direct 
comparison was made here with a comparable GLS 
estimator. We conjecture that mass imputation at 
best may be not much better than a "wash' when 
imputing based on a single variable; but that as the 
dimensionality of the information used from the 
flame grows, mass imputation may yet show it 
value. 

Table 1 -- Relative Precision (RPS), Bias (RBS)of  
the Mass Imputation Standard Error and Relative 
Bias (RBE) of the Estimator using SASS Sample 
Design and Ascendin~ Imputations 

State Est. Standard Error Estimate 

Y Mel 

2 YMe2 

Mm 

YM, 

Y Mel 

9 YMe2 

Mm 

YM~ 

Y Mel 

10 3~M~2 

33 Mm 

YM~ 

Y Mel 

24 /gMe2 

/9 Mm 

13M, 

Relative Relative 
Precision Bias 

I 

100.2 -5.7 

89.7 -8.8 

Relative 
Bias 

0.1 

-0.2 

112.4 8.4 -2.0 

88.5 5.5 2.7 
m • 

136.2 -17.6 -3.3 

126.0 -18.0 -0.1 

137.3 -16.5 3.0 

81.4 -6.9 1.9 
n • 

132.2 -3.3 -3.3 

115.3 -3.8 3.8 

118.9 3.6 0.9 

99.4 11.6 -.04 
! | 

161.1 -9.7 -4.5 

108.0 -19.3 -0.5 
| 

156.1 -9.4 5.3 
i =_ 

104.4 -10.8 1.3 
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Table 2 -- Relative Precision (RPS), Bias (RBS) of 
the Mass Imputation Standard Error and Relative 
Bias (RBE) of the Estimator with Equal Probability 
Selection of Donors and Ascendin~ Imoutations 

- . 1  

State Est. Standard Error Estimate 
Relative Relative Relative 
Precision Bias Bias 

Mel 92.3 -10.6 0.1 

YMe2 72.9 -10.0 0.5 

Mm 110.7 -5.3 1.5 

YM~ 80.6 -2.2 -2.9 
• i • 

Mel 123.2 -11.7 -0.8 

YMe2 106.0 -16.6 0.0 

Mm 112.3 -12.6 ! -0.2 

YM~ 66.6 -2.9 1.6 

Mel 133.2 -0.1 - 1.5 

10 YMe2 98.5 0.4 2.1 

Mm 121.2 -2.9 2.0 

YM~ 96.6 12.4 -3.0 

Mel 143.1 -13.3 -2.4 

2 4  YMe2 80.4 -14.1! -0.3 

128.7 -13.2 3.1 
J 

68.6 -8.0 0.8 
Y Mm 

Table 3 -- Relative Precision (RPS), Bias (RBS)of  
the Mass Imputation Standard Error and Relative 
Bias (RBE) of the Estimator using SASS Sample 
Design and Ascendin~ and Descendin 

Est. Standard Error Estimate S t a t e  
Relative Relative • Relative ! 
Precision Bias ! Bias 

! • 1 

Me~ 92.6 -1.0 0.9 
__ _ 

2 YMe2 88.8 -6.0 -0.3 
__ _ 

Mm 103.2 14.7 -1.8 

YMs 72.8 21.9 0.3 
_ _ • 

Mel 109.9 -17.6 -1.4 

Me2 110.5 -18.3 0.2 

Mm 109.1 -15.0 1.0 

YMs 76.8 -1.9 1.1 

YMel 121.9 0.5 -0.1 

10 )3Me 2 108.2 1.9 0.5 

YMm 1 1 4 . 0  3.1 0.0 

YMs 94.4 15.4 -0.4 
• • • 

YMel 120.3 -13.7 -1.4 

24 Y Me2 92.1 -20.9 -0.2 

YMm 117.1 -13.4 1.7 

YM~ 93.9 -4.8 0.3 

Table 4 -- Relative Bias (RBS) of the Mass Imputation Standard Error, Adjusting the Bootstrap Sample 
Size at the Donor Selection Stratum Level using Ascending Imputations 

Relative Relative 
Bias Bias 

2 Y Mel 36.4 9 )3 Mel 24.3 10 Y Mel 

YMe2 30.6 YMe2 24.6 YMe2 

YMm 30.5 YMm 25.2 YMm 

30.5 46.0 
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