
Variance Estimation for Subpopulation Parameters from Samples of Spatial Environmental Populations 

Don L. Stevens, Jr., Thomas M. Kincaid, Dynamac Corporation 
Don L. Stevens, Jr, Dynamac Corporation, 200 SW 35th Street, Corvallis, Oregon 97333 

Key words: environmental sampling, 
estimation, continuous population sampling. 

domain 

Abstract: A Randomized Tessellation Stratified (RTS) 
design selects a point sample from a spatial population 
by randomly locating a grid over a region containing the 
population domain and randomly selecting one point in 
each grid cell, retaining only those points that fall within 
the domain. In this paper, we investigate variance 
estimation for the RTS design for samples from arbitrary 
subpopulations, utilizing the continuous population form 
of the Horvitz-Thompson (HT) theorem. In particular, 
we explore the geometry of the variance near boundaries 
of geographically defined subpopulations, propose an 
easily computable, nearly unbiased modification of the 
Yates-Grundy (YG) variance estimator, and present 
simulation results to illustrate the modification, and 
contrast it with the HT estimator. 

1. INTRODUCTION 
This paper was presented at JSM '97 in the session 

"Surveying the Environment in the 21st Century: 
Advancing Theory and Addressing Institutional 
Constraints". We speak to this theme in our 
Introduction, and argue that the Multiple Density RTS 
design is ideally suited for satisfying institutional 
constraints on large-scale environmental monitoring. In 
the subsequent sections, we attempt to advance some of 
the theory and understanding of environmental sampling. 

Many of the troublesome problems that beset the 
environment today, such as global warming, long-range 
transport of atmospheric pollutants, or habitat alteration, 
are not localized. Traditional environmental studies that 
focus on relatively small and well-delimited systems, 
such as the watershed of a second-order stream, may 
work well for understanding processes and quantifying 
rates, but cannot by themselves provide knowledge of 
status, condition, or change at regional or national 
scales. For example, an intensive study of the stream 
reaches in a watershed is of little use in estimating the 
number or proportion of stream-miles with healthy wild 
trout populations in the Pacific Northwest. 
Understanding and quantifying the extent of symptoms 
of widespread concerns requires broad-scale study 
efforts to address regional, continental, and global 
environmental issues. Thus, we see a need for 
environmental sampling and monitoring programs that 
span areas that range from a portion of a state to a 
continent or more. We believe the successful large- 

scale monitoring programs, i.e., the ones that are 
implemented and survive long enough to accomplish the 
program's goal and actually collect scientifically useful 
information, will share several characteristics. First, 
they will involve several federal, state, or local 
government agencies, industry, and a variety of special 
interest groups. In order to have political (and 
consequent financial) support, the programs will have 
to involve and accommodate all stakeholders. This 
leads to the second characteristic: the programs will 
have multiple objectives; will measure multiple resource 
types; and will measure multiple responses for each 
resource. Each interest group, agency, or industry will 
have its own agenda and needs, not always in 
concordance with one another. Finally, to ensure that 
the data collected does indeed satisfy program 
objectives, the programs will have a sound and rigorous 
statistical design that holds the various pieces together. 

We note that an almost certain consequence of the 
first two characteristics is that a simple design approach, 
e.g., simple random sampling (SRS),  will not suffice. 
There will be resources or sub-regions that demand 
special attention in the form of more intensive sampling, 
that is, more sample points per unit (length or area). 
The particular interest may stem from a scientific 
interest (the only place where a certain species occurs); 
stakeholder interest (a watershed supplying a town's 
drinking water); an environmental health issue (an area 
known to have toxic contamination); or a regulatory 
issue (permits for waste water discharge require 
sampling near the outfall). Whatever the source of the 
pressure, it is real, and the design must be able to 
accommodate it by allowing variable spatial density. 

Sometimes, those special interest areas will be 
recognized at the time of the initial design, and can be 
accommodated at that time, e.g., by stratification. 
Occasionally (or often, depending on one's optimism), 
those "special" sub-populations will not be recognized at 
the time the sample is originally selected. 
Subpopulation analysis may be sufficient; however, we 
may also need to take additional samples in that 
subpopulation. Thus, we need a sampling design that 
can accommodate varying sample intensity, provide a 
means to selectively augment the sample after the fact, 
and allow arbitrary, post-design, specification of 
subpopulations for analysis. 

We can foresee at least two distinct types of 
subpopulations being identified for post-design analysis. 
One we encounter frequently is a spatially defined 
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subpopulation, e.g., phosphorus concentration of streams 
in the Texas blackland prairie ecoregion. The other 
arises in the multi-response nature of monitoring 
program, e.g., the subpopulation of all y-values defined 
by xsXc, where x and y are both sample measurements, 
and Xc is some criterion set. For example, we may want 
to split out the subpopulation of canopy density for 
forests growing on soils with pH < 7. Both types of 
subpopulation identify a spatial region occupied by the 
subpopulation, the first explicitly, the second implicitly. 
If we want our design to allow analysis for any 
arbitrarily defined subpopulation, we optimize our 
chances of having an acceptable sample size by making 
the original sample have an "even" spatial distribution. 
Now, any sample with a constant inclusion probability 
density has the property that the expected sample size in 
a region is proportional to the size of the region. In 
addition, we need the sample size variance to be small. 

We will talk today about a design approach that we 
believe can be a positive aid in achieving successful 
large-scale, multi-objective, environmental sampling 
programs. We will describe the implementation of the 
design technique, and some of the practical aspects of 
the analysis of the resulting data. 

2. Design Background 
The general technique is described in detail in 

Stevens (1997), and we give only a short summary here. 
We cover the region with a randomly-located grid (we 
use a triangular grid) and locate one random point in 
each grid cell. This is the Randomized Tessellation 
Stratified (RTS) design (Bellhouse, 1977; Dalenius, 
H,~jek, and Zubrzycki, 1961; Olea, 1984), and the two 
randomizations (grid location and point within cell) 
guarantee a non-zero joint inclusion probability for 
every pair of distinct points. The basic RTS design 
achieves even spatial spread, but does not provide the 
flexibility to vary spatial density. We gain that feature 
by utilizing nested point grids to extend the RTS design 
to a design with multiple spatial densities, called a 
Multiple-Density RTS (MD-RTS) design. Briefly, the 
technique depends on the observation that points can be 
added to a square or triangular point grid so that (1) the 
resulting collection of points remains a square or 
triangular grid, respectively, and (2) the original points 
form a subset of the higher density point grid. For 
example, Figure 1 shows the triangular grid resulting 
from a 7-fold increase in point density, with the original 
points denoted with "o" and the added points with "x". 
Each original point has been replaced by a cluster of 7 
points, consisting of the original point plus 6 successor 
points. 

The natural tessellation of a grid is obtained by 
associating with each grid point the area closer to that 
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Figure 1. Triangular grid (-), 7-fold enhancement 
(×), with corresponding tessellations. 

point than to any other. For a triangular grid, the 
natural tessellation consists of hexagons centered on the 
grid points. This natural tessellation is not the only one, 
however. We can also create a tessellation for a 
particular grid by joining the natural tessellation 
polygons associated with the same point in an enhanced 
version of the grid. For example, if we join the seven 
hexagons of a point and its successors (the dashed lines 
in Figure 1) in a 7-fold enhancement of a triangular grid, 
we obtain a composite tessellation as shown by the solid 
lines in Figure 1. 

These observations give us a means to vary the 
spatial density of a sample. We illustrate the ideas 
involved with a single example here. Suppose we have 
two regions, R1 and R 2, and sample size requirements 
dictate a 7-fold increase in sample point density for R2. 
Pick a universe that contains the union of R1 and R 2, 
cover it with a triangular grid at a density suitable for 
R1, and then create a 7-fold enhancement, keeping track 
of the original grid points and their successors. Let $2 
be an RTS design at the enhanced density. Let S~ be a 
subsample selected by choosing one point at random 
from each group of seven associated with each original 
grid point. Sz is an RTS samples relative to the 
composite tessellation. We then take our sample from 
Ri to be Ri("~S i, and the total sample to be R IuR 2. 

3. Horvitz-Thompson Estimation for Continuous 
Populations 

We consider the case of a response z(s) defined on 
a region R that is a subset of a universe U, where our 

objective is to estimate the mean ~(R) = (z(s)dsll RI 
R 

the distribution function F(x)  = . .(l~s I zcs),x)(s)dsll RI, 

where IRI denotes the size (length, area, volume) of R 

• {1, x c A  
and IA(X) is defined as / ( x )  0, otherwise " 

87 

,- . -.. 



R may be defined and known at the time the sample 
is selected, but is often defined after the sample is 
drawn, and, in fact, we may need sample information to 
determine R. For example, suppose we sample bottom 
sediments in a large estuary, and want to analyze 
chemical concentration data for coarse-grained 
sediments separately from data on fine-grained 
sediments. We define R to be the subset of the estuary 
with coarse-grained sediments. We can unambiguously 
determine membership in R, but the boundaries of R are 
unknown when the sample was drawn, and in fact, may 
never be known completely. For a second example, R 
may be that portion of the estuary with depth less than 
20 m, where we use an existing bathymetric map to 
determine depth. In this case, the complete boundary of 
R is available to us before we draw the sample. 

A sampling design on U is specified by a joint 
distribution of n random variables, and a sample of a 
surface z(s) over R is chosen by selecting a sample S = 
{sl, s2 . . . . .  s, } of n locations from U with the 
distribution of S specified by a probability measure P, 
on U". Assume that f(sl, s: ..... sO, the joint probability 
density function (pdf) of the sample locations, f / s ) ,  the 
marginal pdf of si, and fo(s, t), the joint pdf of s~ and sj, 
i ~: j, all exist. For s ~ U, the inclusion density 

!I 

function is defined by ~(s) = ~ f  (s) , and the 
t = l  s 

joint inclusion density function for s, t E U is defined 
/I ii 

by r~(s, t) = E E f .  (s, t) • 
i = l j ~ i  ~1 

Horvitz and Thompson (1952) provided an 
estimator of the population total for variable-probability, 
without-replacement, finite-population sampling design, 
along with an expression for the variance of the 
estimated total and a related variance estimator. 
Alternative expressions for the variance and its estimator 
were provided by Yates and Grundy (1953) and Sen 
(1953). 

Cordy (1993) showed that a version of the Horvitz- 
Thompson theorem holds when sampling from U when 
the inclusion density and pairwise inclusion density 
function are defined as above. The continuous version 
of the Horvitz-Thompson theorem provides an estimator 
of the total (integral) of z over R and associated variance 
estimators in terms of the functions z(s), re(s), and 
rc(s,t). An estimator of the mean is obtained by 
dividing estimated total by the size of R. As in the 
finite population case, the ratio estimator of the mean 
(also known as the H;ijek estimator (H,Sjek, 1971; 
Thompson, 1992)), obtained by dividing by the 
estimated size of R, tends to be less variable and nearly 
unbiased. It is also well-suited to subpopulation 
estimation, as the size of R need not be known. The 

theorem is stated here for the continuous case; the finite 
population case is analogous. The continuous versions 
of both the Horvitz-Thompson variance (denoted HT) 
and the Yates-Grundy variance (denoted YG) are also 
given. 

THEOREM: (Continuous Horvitz-Thompson): Let sl, 
s2 ...... s, be a sample selected from a universe U 
according to a design with inclusion function re(s) and 
joint inclusion function re(s, t), as defined above, with 
re(s) > 0 almost everywhere on U. Let R c U, and let 
z(s) be a real-valued integrable function defined on R. 

An (approximately) unbiased estimator of I~(R) is 
r 

given by It = - -  ~ 1 ( s ) z ( s )  / I / ~ l  , with variance 
z 1=1 /1 ; ($  i )  

1 I A2(s) 
I/~l (1) 

+ . 

I t R  

or equivalently, 

%cE) = 
1 

01 
21/~1 v v  (2) 

AC%C,)] 2 
' g  (,$') 

where A(s) = z(s) - D. and 
z 

Corresponding 

÷EE 
s e R  s e R  t / 

j~i 

and 

estimators 

1 A2(s, ) 

I RI 2 ,~~ ~2(s. ) 

1 

I<,? 
I~1 = 

I 

of variance are 

t 
(3) 

(4) 

Both estimators of variance are approximately unbiased, 
provided re(s, t) > 0 almost everywhere in U. 
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4. The Geometry of Variance 
In Section 2, we made the claim that an RTS 

design has the property of ensuring an even spatial 
distribution of sample points, in the sense that the 
achieved number of sample points in any arbitrary 
subregion of the universe will be nearly proportional to 
the size of the subregion. Of course, for an SRS 
sample, the expected number of sample points in a 
subregion is exactly proportional to the size of the 
subregion. The same is true for an RTS design, but in 
addition, the variance of the number of sample points 
will be small relative to the SRS variance. The 
following theorem, easily proved from the definitions, 
provides us with the means to investigate the variance 
in sample number. 

Theorem 2: Let S = {sl, s:, .... s J  be a sample 
from a continuous universe U with joint density function 
flSl, S2 ..... s,,), marginal density functions f /s) ,  f 2(s) . . . . .  
f ,(s), and inclusion functions 7r(s) and 7r(s,t), and let 

tl  

R = U .  Let g = Y~.l_(s)  be the number of samples 
R . _  

that fall in R. Then ff = EIvi~ = f n ( s )  ds and 
R ./ 

R 

v ( .  ) - - 5(.- -1) 
RR 

We can contrast the behavior of an RTS and SRS 

designs by calculating V(ri~ for a variety of regions. 

For an SRS, of course, V(t~ depends only on the area 

of the region relative to the area of the universe. For an 
RTS design, the variance in achieved sample size does 
depend on the geometry of the subregion, mostly 
through the perimeter to area ratio. We illustrate this 
with a variety of subregions of the unit square, ranging 
from simple geometric shapes to regions with complex 
irregular boundaries. The irregular boundary case 
included convex regions, ones with concavities, ones 
with long, narrow extensions, disconnected regions, and 
ones with holes. Specifically, the following seven 
regions were used: (1) Regular - a circular region with 
area 0.5, (2) Frag-2 - a region composed of two 
disconnected equal-area circles with a total area 0.5, (3) 

Table 1. Sample size variance for the regions 
given in Figure 2. 

Region NSRS(["IR) VRTS(t~R) P/A 

Regular 25.00 4.02 5.02 
Frag-2 25.00 5.57 7.08 
Frag-4 25.00 7.93 10.02 
Frag-8 25.00 10.78 14.18 
Holes 23.99 8.79 13.68 
Irregular 24.46 5.15 7.93 
L & N 22.90 11.30 20.37 

Frag-4 - a region composed of four disconnected equal- 
area circles with a total area 0.5, (4) Frag-8 - a region 
composed of eight disconnected equal-area circles with 
a total area 0.5, (5) Holes - a circular region with area 
0.5 from which seven equal-area circles (holes) with a 
total area of 0.1 were removed, (6) Irregular - an 
irregularly-shaped polygon, and (7) L&N - an 
irregularly-shaped polygon with a long and narrow form. 
The seven regions are shown in Figure 2. 

We took U to be the unit square, and used a grid 
size in the RTS design corresponding to a sample 
density of 100 points in the unit square. The 
comparisons to the SRS are made on the basis of a total 

Area of R 
sample size of 100, so that Pi = 100 x 

Area of U 
for both the SRS and RTS. Table 1 gives V(ri R) for 

the SRS and RTS, along with the perimeter to area ratio, 
for each of the seven regions. We note that even for the 
extreme cases of L & N and Frag-8, the sample size 
variance for the RTS is less than half that for the SRS. 

We can gain some further insight into the impact of 
region boundaries by rewriting (2) as 

vj ) f{- f [,,u),,(o ,,u, o] A(=) =(s) =(t) 
R 

(5) 
A(s) 2 } 

+ -u) f [,,U),,(0-,,u,0ld, d, / ,  
U - R  

Regular  Frag - 2 Frag - 4 Frag - 8 Holes Irregular L & N 

@@ 
@@ 

~f.-::;:..~ !ii ".-:'~i::~-i::ii-:--~i:i:i:-::.~:-: ........................ 

Figure 2. The seven regions used in the regional geometry and variance simulation studies. 
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For the RTS design, the joint inclusion function is 

~ (s,t) = ~ (s)~ (t)( l _ I C ( s ) f ~ ( t )  , C i , where C(s) 

denotes the tessellation polygon centered on s. It 
follows that 

/ \ 

Cs)~(0 - ~Cs, 0 = ~ Cs)~(0 / [ CCs)flc(o I [ 
- i - - d i - -  " ) k 

and hence that the inner integral is also always non- 
negative. Thus, we can express the YG variance as 

where 

R 

(6) 

~ ( S )  U - R 

The function v(s) can be interpreted as the contribution 
to the variance that arises at the point s ~ R, so we can 
use v(s) to examine the impact of regional geometry on 
variance. We have done this for the "regular" region for 
a very simple surface. We chose a tilted plane for the 
surface, because we did not want to confound the effect 
of the regional boundary with local surface variation. 
Figure 3 is a perspective plot of v(s). Note that the 
interior of the region makes essentially no contribution 
to the variance; instead, all the variance arises from 
points near the boundary of R. 

A similar sort of boundary effect is observed when 
the boundary is not a regional boundary, but a boundary 
where the sampling density changes. We illustrate with 
an annular region R1 surrounding a circular region R 2 
where the sample density is 7 times the sample density 
in R1. In this case, of course, the v(s) function is a bit 
more complicated, but can again be interpreted as 

0. 4 }- ~ ~3. ~ 

0.? ~ 02- 

Figure 3. Perspective of v(s) for an RTS sample from a 
circular region on tilted plane. 

/ 
k 

0. 6 , 

/. o.¢ 

Figure 4. Perspective of v(s) for an MD-RTS sample 
from an annular region enclosing a circular region on 
a tilted plane. 

representing the contribution to the variance that arises 
from the point s. Figure 4 is a perspective plot of v(s), 
note the ridge that follows the boundary between R1 and 

R 2 • 

To summarize this section, the RTS design does 
achieve an even spatial distribution, so that it should be 
a good choice for a design where identification of 
important subpopulations is likely to occur post-design. 
However, there is a price to be paid: every population 
becomes a "post-design-specified" population, that is, we 
control the total number of points in the universe, which 
is unlikely to coincide with any population of intrinsic 
interest. Thus, even populations identified prior to 
design have random sample sizes. Furthermore, the 
region near a subpopulation boundary makes a 
substantial and disproportionate contribution to variance. 
Heuristically, the inflation of variance near boundary 
occurs because of local variation in sample density: 
average density over repeated samples is still constant, 
but the boundary induces variation on the scale of the 
tessellation polygon. Furthermore, the boundary effect 
manifests itself at the boundaries of designed density 
changes. 

5. Variance Estimators for Domains and Sub- 
Populations 

The design approach does result in well-dispersed 
sample points, and does permit great flexibility in 
varying sample point spatial density. Stevens (1997) 
showed that the joint inclusion functions are non-zero 
almost everywhere, so that, in theory, the HT and YG 
variance estimators are available and unbiased. 
However, in practice, the case is not so straight- 
forward. The inclusion probability formulae are 
somewhat complicated. The joint inclusion probability 
obtained by treating the sample as an independent 
random sample (IRS) is computationally convenient, 
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but tends to overestimate the variance. The HT variance 
estimator is unbiased, and is easily applied to 
subpopulations, but has an unfortunate tendency to yield 
negative estimates. The YG estimator is unbiased and 
is guaranteed to be positive for the RTS design, but is 
not easily applied to arbitrary subpopulations because it 
involves sums over the entire sample, and so cannot be 
computed from knowledge of only the sample points in 
R. However, we can rewrite the estimator as 

2 A(s) 
J 

w 

(7) 

Thus, we do not need the response outside of R, but 
only the location and inclusion probability functions for 
sample points outside R. 

To derive other variance estimators, rewrite (2) as 

(8) 

f[n(s)~(t)-n(s,t)~d, I/~! = 
R U - R  

The first term in (8) depends entirely on points in R, 
and will be denoted g , while the second, 

rGI R 

denoted V depends on points in R = U - R 
r G l ~  

From this perspective, (7) can be viewed as the sum of 

two estimators, say I;" of V and I2 of 
rGI ~ rGI R rGI 

V . . In the following, we develop an alternative 
gel 

estimator for V 
rGI ~ " 

First, note that 

V = f_ , where ra l ~ ~ (s) g ( s ) d s  I I1~! " 
! {  

g(s)= f [=(s)=(o - =(s, o]& depends only on the 
U - R  

design and R. Presumably, x(°) and x(-, °) are known (or 
knowable), so that if the boundary of R is also known, 
then g(s)can be computed for any point s e R. We can 
then estimate V by applying the HT theorem to rGI 

~ a o  ~ = ]E  ' ' ' 
ral  t J ~  ,t(s)3 / I/~ . The practical 

1 

difficulty in applying this observation is the computation 
of g(o) for each sample point st iR.  In those cases where 
sample information is used to determine membership in 
R, exact computation of g(s) is not even feasible. 
However, g(s) has a simple, intuitive interpretation that 
leads to a feasible approximation. Using the definitions 
of inclusion and joint inclusion probability, we have that 

f - =¢s, Old, 
U - R  

= f[=(s)=(t)-=(s,t)]at-f[rc(s)=(t)-=(s,t)]at 
v " (9) 

= n ~ ( s )  - (n-1)~:(s) - ~ = ( s )  + f~:(s, 0 d r  

R 

= f n ( s ,  Odt - l c ( s ) ( ~ - l )  . 
R 

Set nCtl s) = g(s, t)ln(s) , so that nCtl  s) is 

the conditional inclusion density at t given a sample 
point at s. Then 

f=(s, t )dt  =  (s)fn(t I s ) d t  = n ( s ) [ ~ ( s )  - 1] , 

R R 

where n" (s) is the expected number of sample points 

in R given a sample point at s. Substituting this result 
into (9), we have that 

g ( s ) =  ~(s)[~(s)  - n ) =  x( s )An- ' ( s ) .  (10)  

As for g(s), An"a(s) is computable given ~(-) and ~(-,-) 

and the boundary of R, but all of the previous objections 
regarding g(s) apply. However, in the case of an RTS 
design, we can get a crude but easily computable 
approximation to A~(a )  with relative ease. The 

approximation is based on two observations: first, 
A~( s )  = 0 for s in the "interior" of R, that is, if a 

grid cell centered on s ~ R does not intersect a grid cell 
centered anywhere on the boundary of R, and second, 
because of the tight control over "local" spatial density 
of the RTS design, each point in the interior of R is 
guaranteed to have neighbors that are not "too far" 
away, where the precise meaning of "too far" depends 
on the geometry of the underlying grid. The surrogate 
for A~(s )  that we propose is based on counting 

neighboring sample points in R for each sample point in 
R, and comparing that number to the expected number 
of neighbors. The approximation takes the form 

m ~  achieved number of neighbors ] 

A~(s )  = 0, 1 -expe¢ted number o f  n e i g h b o r s  ) " 

The hope, of course, was that points with fewer than 
expected neighbors were in that condition because their 
neighbors fell outside of R. 
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The definition of "neighbor" that we use is based on 
the observation that, for the RTS design, 

C(s)NC(t) = o implies ~(s, t) = n(s) n(t) , where 
C(x) is a grid-cell shaped polygon centered on x, so that 
a neighbor of s is any point t such that 

n(s ,  t) , ~ ( s ) ~ ( t )  . Geometrically, this is any point 
t in a polygon centered on s, similar to C but with four 
times the area. We will refer to this estimator as YG- 
Neighbor (YG-N). 

6. Simulation Study Design 
We investigated the behavior of these 

approximations and the resultant variance estimators by 
simulating random surfaces on irregularly-shaped 
regions. The random surfaces were generated using two 
distinct procedures. The first procedure produced a 
surface by interpolating between points that were 
uniformly distributed over the unit square, with values 
independent N(0,1) variates. By varying the number of 
points in the unit square, we can control the spatial 
variability of the resulting surface, with more random 
points giving a surface with more rapid changes. Two 
of the surfaces utilized in the simulations were created 
using the first procedure. One surface, which will be 
referenced as Surface I, was produced using 20 points 
in the unit square. The other surface, which will be 
referenced as Surface II, was produced using 100 points 
in the unit square. The second procedure was designed 
to produce a surface with essential no spatial structure. 
A regular square grid composed of a large (greater than 
10,000) number of grid points was employed to cover 
the unit square. A N(0,1) variate was generated 
independently for each grid point, and the variate value 
was assigned to all points in the tessellation polygon 
(square cell) associated with the grid point. Thus, the 
surface was composed of a large number of fiat plates. 
The third surface utilized in the simulations, which will 
be referenced as Surface III, was created using the 
second procedure. The three surfaces are shown in 
Figure 5. 

The rationale for using a design that controls the 
spatial dispersion of the sample points is to exploit the 

structure of the surface in an attempt to increase 
precision. Thus, we expect the RTS design to have less 
variance than an IRS design, and anticipate that the IRS 
variance approximation to the RTS variance will 
overstate the variance for Surfaces I and II. Surface III 
has essentially no structure to exploit, so that an RTS 
design should have roughly the same behavior as an IRS 
design, making the IRS variance approximation 
appropriate. 

The cumulative distribution function (cdf) was used 
to evaluate performance of the variance estimators. For 
each combination of surface and region, a set of points 
that covered the range of possible sample values was 
determined. The true calf for the surface was calculated 
for this set of points. A total of 1,000 replicates were 
obtained for each combination of surface and region. 
For each replicate a sample was selected from the 
region, and estimates of the true cdf and variance 
estimators were calculated for each of the points. For 
each variance estimator composite estimates of variance 
were obtained by calculating the sample mean of the 
1,000 variance estimates at each point in the calf. 
Estimates of the true variance of the calf were obtained 
by calculating the sample variance of the 1,000 calf 
estimates at each of the points. Two measures were 
used to evaluate performance of the variance estimators: 
(1) relative bias and (2) 90% confidence interval 
coverage. Bias was estimated as the difference between 
the mean of the variance estimates and the estimated 
true variance of the cdf. Relative bias was obtained by 
dividing the bias estimate by the estimated true variance 
of the cdf. A relative bias of 1 indicates a variance 
estimate inflated by a factor of 2. Coverage was taken 
as the proportion of the confidence intervals that 
included the true calf value, where the confidence 
intervals were obtained using Normal distribution theory. 
Finally, the sampling plan employed in the simulations 
used the same sampling density for the entire region. 
The expected size of the sample in the region was 30. 

7. Simulation Study Results and Discussion 
Performance of each of the variance estimators will 

be discussed in this section. Due to the relatively small 

Surface I Surface II 

z 

Figure 5. The three surfaces used in variance simulation. 
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Figure 6. Variance and coverage of variance 
estimators for Surface I. 

sample sizes used in the simulations, all of the 
estimators produced poor performance in the tails of the 
calf. Thus, performance of the estimators will be 
evaluated only for values of the cdf between 0.1 and 
0.9, inclusive. 

Typical simulation results are illustrated in Figures 
6 through 8 for the three surfaces, respectively. The 
figures show results for region Regular. In each figure 
part (a) is a plot of the estimated true variance of the 
calf and the variance estimators evaluated at each point 
in the cdf, and part (b) is a plot of coverage of the 90% 
confidence intervals for the variance estimators 
evaluated at each point in the calf. 

Results were similar for Surface I and Surface II 
(Figures 6 and 7) in comparison to Surface III (Figure 
8). For Surfaces I and II the IRS estimator produced 
extensive overestimation of the true variance for most 
points, whereas the HT and YG-N estimators produced 
slight to moderate overestimation of the true variance. 
For Surface III the IRS and HT estimators produced 
slight overestimation of the true variance, and the YG-N 
estimator produced slight to moderate overestimation of 
the variance for most points in the ca l f .  Confidence 
interval coverage for the surfaces mirrored the variance 
results. For Surfaces I and II coverage was much 
greater than the nominal value for the IRS estimator, 
slightly greater than the nominal value for the YG-N 
estimator, and less than the nominal value for the HT 
estimator. For Surface III coverage for all three of the 
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Figure 7. Variance and coverage of variance 
estimators for Surface II 

estimators was close to the nominal value. Boxplots of 
the variance estimates for the HT and YG-N estimators 
for the 1,000 samples from Surface I and region Regular 
are presented in Figure 9. As expected, the distribution 
for the HT estimator was skewed to the left and 
included negative variance estimates. The distribution 
for the YG-N estimator was skewed to the right, but the 
variance estimates were always positive. The skewed 
distribution for the HT estimator provided insight into 
the reason that coverage for the HT estimator was less 
than the nominal value even when the estimator was 
positively biased (see Figures 6 and 7). 

Further evaluation of the estimators will utilize 
means of the relative bias and 90% confidence interval 
coverage estimates for cdf values between 0.1 and 0.9, 
inclusive. Means of the relative bias estimates are 
provided in Table 2 and means of the 90% confidence 
interval coverage estimates are provided in Table 3. 

As expected, the IRS variance estimator performed 
poorly for Surfaces I and II and performed very well for 
Surface III. Mean relative bias of the IRS variance 
estimates indicated extensive overestimation for Surfaces 
I and II and slight overestimation for Surface III (Table 
2). Mean coverage for the IRS estimator was very 
conservative for Surfaces I and II, i.e., coverage values 
often were close to 1.0 (Table 3). For Surface IlI mean 
coverage was marginally greater than the nominal value. 

The HT variance estimator was expected to be 
unbiased but very unstable. Negative estimates, 
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Figure 8. Variance and coverage of variance 
estimators for Surface HI. 

sometimes very negative, are common. These estimates 
are a foreseeable consequence of the joint inclusion 
function for the RTS design, which lets points get close 
together with vanishingly small probability. Points that 
are close together then have large leverage on the HT 
variance estimator and can easily cause it to be negative. 
Mean relative bias results for the HT estimator indicated 
that the estimator was positively biased for all three 
surfaces (Table 2). Positive bias for the HT estimator 
was not anticipated. Recall that the ratio estimator for 
variance is only approximately unbiased. For the 
surfaces, regions, and sample size employed in the 
simulations, the approximation seems to be less than 
optimal for the HT estimator. Additional simulations 
indicated that the amount of bias for the HT estimator 

Figure 9. Boxplots of HT and YG-N estimators for 
Surface I and Regular region. 

decreased as the sample size increased. 
Confidenceinterval coverage for the HT estimator 
consistently was less than the nominal value for Surfaces 
I and II and very close to the nominal value for Surface 
III (Table 3). 

The YG-N estimator was stable, never negative, and 
much closer to the true variance than the IRS estimator. 
Mean relative bias values indicated that the YG-N 
estimator moderately overestimated the true variance for 
all three surfaces (Table 2). Confidence interval 
coverage for the YG-N estimator was moderately greater 
than the nominal value for Surfaces I and II and slightly 
greater than the nominal value for Surface III (Table 3). 

Regarding the three surfaces, mean relative bias 
decreased for all of the estimators as the smoothness of 

Table 2. Mean of the relative bias of the IRS, HT and YG-N estimators evaluated at all values of the cdf 
between 0.1 and 0.9 for the two surfaces and the seven regions. 

Region Surface I Surface II Surface III 
IRS HT YG-N IRS HT YG-N IRS HT YG-N 

Regular 1.345 0.349 0.580 0.762 0.193 0.384 0.127 0.115 0.243 
Frag-2 1.335 0.378 0.588 0.845 0.262 0.471 0.174 0.168 0.291 
Frag-4 1.088 0.344 0.547 0.834 0.249 0.454 0.169 0.155 0.304 
Frag-8 1.074 0.314 0.521 0.783 0.274 0.446 0.116 0.098 0.229 
Holes 1.204 0.332 0.586 0.827 0.229 0.475 0.125 0.105 0.254 
Irregular 1.511 0.385 0.643 0.676 0.193 0.370 0.203 0.203 0.337 
L&N 1.374 0.371 0.736 0.591 0.170 0.408 0.140 0.114 0.301 
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Table 3. Mean of the ninety percent confidence interval coverage of the IRS, HT and YG-N estimators 
evaluated at values of the cdf between 0.1 and 0.9 for the three surfaces and the seven regions. 
Region Surface I Surface II Surface III 

IRS HT YG-N IRS HT YG-N IRS HT YG-N 
Regular 0.987 0.855 0.937 0.963 0.869 0.927 0.908 0.869 0.927 
Frag-2 0.983 0.862 0.937 0.968 0.870 0.933 0.914 0.902 0.913 
Frag-4 0.975 0.867 0.936 0.967 0.876 0.931 0.913 0.897 0.912 
Frag-8 0.973 0.859 0.934 0.964 0.882 0.933 0.906 0.890 0.903 
Holes 0.980 0.860 0.935 0.967 0.867 0.936 0.906 0.893 0.907 
Irregular 0.985 0.851 0.935 0.960 0.870 0.924 0.917 0.909 0.919 
L&N 0.984 0.862 0.948 0.952 0.863 0.931 0.912 0.897 0.919 

the surface decreased (Table 2). Similarly, for all three 
estimators, mean confidence interval coverage became 
closer to the nominal value as the smoothness of the 
surface decreased, which means that mean confidence 
interval coverage decreased for the IRS and YG-N 
estimators and increased for the HT estimator (Table 3). 
For each combination of surface and estimator, results 
were consistent among the seven regions, i.e., for a 
given surface the type of region had little impact on 
performance of the estimator. This consistency occurred 
for both mean relative bias and mean confidence interval 
coverage. Increasing the fragmentation of the region 
produced no consistent pattern regarding bias or 
coverage. Similarly, there was no consistent pattern of 
difference in bias or coverage between the regular 
region and the irregular regions or the region with holes. 

Among the three estimators examined in the 
simulations, the YG-N estimator produced the best 
overall performance. Although the YG-N estimator was 
positively biased due to the skewed distribution of the 
estimates, coverage for the estimator was close to the 
nominal value for all cases. The IRS estimator 
produced extensive overestimation of the true variance 
and conservative confidence interval coverage for 
Surfaces I and II. Although the HT estimator was 
positively biased for Surfaces I and II, confidence 
interval coverage was less than the nominal value. For 
Surface III the IRS and HT estimators produced 
excellent performance, but the YG-N estimator also 
performed very well for that surface. 
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