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Dr. Nascimento Silva is to be congratulated 
on organizing a session with a good set of related 
papers. The authors' work raises some timely 
questions given the recent surge in interest in model- 
assisted estimation. Rao and Singh give some unified 
theory for ridge regression and calibration methods 
plus provide some clear descriptions of computational 
algorithms. How to select variables for a regression 
estimator is a key issue addressed by Bankier, Houle, 
and Luc and by Nascimento Silva and Skinner. The 
comments here on the last two authors' work relate 
mainly to Nascimento Silva and Skinner (1997), 
which was the paper available when this discussion 
was given. 

Much of the discussion of general 
regression, raking, and related methods emphasizes 
their ability to force sample estimates to equal 
benchmark values for different variables. Hitting 
census totals has some cosmetic appeal, but this 
fixation on matching benchmark totals seems 
misplaced. If our highest goal in a survey is to 
estimate well what we already know, then, perhaps, 
we are all being overpaid. 

Rao and Singh give several ways of relaxing 
the benchmark constraints while also restricting the 
range of weights. Their results are very useful 
because they have devised a way of adaptively 
changing the constraints and maintaining asymptotic 
design consistency. They also provide detailed 
algorithms that lend themselves to programming in 
matrix languages like S-Plus TM or SAS/IML TM (also 
see Singh and Mohl 1996). 

Adaptive procedures are sometimes difficult 
to develop theory to justifymtake the stepwise 
regression procedures studied by Nascimento Silva 
and Skinner, for example. Rao and Singh, however, 
show how to do ridge regression with an adaptive 
choice of the ridge parameters or equivalently the 
tolerances on how closely the benchmarks are hit. 

In their numerical study Rao/Singh observed 
some losses of precision using ridge-calibration 
methods compared to the regression estimator with no 
range restrictions on the weights. This is not always 
true, however. Jayasuriya and Valliant (1996) report 
a numerical study using household expenditure data 
in which restricted regression estimation yields 
coefficients of variation that are always less than or 
equal to those from unrestricted regression. We also 
did not observe any convergence problems using 

L=0.5 and U=2 in restricted regression with a 
substantially larger sample size than Rao/Singh had. 

The model used by Rao/Singh is probably 
fairly weak, including only four demographic 
auxiliaries for each household. Although the types of 
predictors available for household populations tend to 
be limited, it would be nice to see how the alternative 
methods perform in a case where a richer set of 
auxiliaries can be usedmin a business population, for 
example. 

The Bankier, et.al., paper has goals of 
making sample estimates of person counts that match 
census population totals, and, at the same time, 
producing a set of household weights. The paper 
highlights one of the dilemmas faced when taking a 
modern-day census. If a sample is selected at the 
same time a census is done, there may be some 
pressure to force agreement between the census and 
sample estimates on characteristics collected by both. 
Achieving this kind of benchmarking for very 
detailed domains may dilute the gains that regression 
estimation can produce for more aggregated statistics. 

The condition number (CN) reduction 
method used by Bankier, et.al., do not consider any 
response variable when deciding which constraints to 
retain. This contrasts with the variable selection 
methods studied by Nascimento Silva and Skinner 
that must have a Y. 

CN is affected by the units of the variables, 
and, if the variables are on different scales, some of 
the best predictors may be lost as in the Nascimento 
Silva/Skinner example. In surveys where there are a 
few key response variables, the CN approach is not 
recommended because it does ignore the y's. The 
Bankier, et.al., paper does highlight the need for 
careful numerical analysis when calibrating. Though 
collinearity among the x's be unimportant when 
making predictions, as long as extrapolation does not 
occur (Gunst and Mason 1980, p. 310), most 
practitioners prefer models that are reasonably stable 
over time. Using nearly linearly dependent x's seems 
risky. 

The situations in the Nascimento 
Silva/Skinner paper and in Nascimento Silva and 
Skinner (1997) raise the question: What do we 
condition on when making an inference? The set of 
variables used in a regression model is a random 
event since different samples may lead to different 
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sets. When should this source of randomness be 
accounted for in estimating a variance or constructing 
a confidence interval? 

This situation bears some similarity to the 
measuring device example given by Cox and Hinkley 
(1974, p. 38). In that illustration, two instruments are 
available for a scientific experiment with much 
different characteristics. One is selected at random 
and the experiment conducted. It is known which 
instrument is used. An inference can be drawn either 
accounting for the initial random selection or not, but 
ignoring that step is justified since the random 
selection is ancillary. What to do about the selection 
of regression variables is less clearcut because the Y 
and x's used for subset selection may be earlier 
versions of the ones to be collected in a subsequent 
survey. 

If the subset of auxiliary variables used for a 
regression estimator is selected based on a training 
dataset and then used until some periodic updating 
occurs, conditioning on that set of x's seems like the 
sensible thing to do. 

For example, suppose that a household 
survey is revised every 10 years after decennial 
census data are available for redesigning the sample. 
Assume that, as part of that revision, variable 
selection is redone but that the selected variables will 
be used for the next 10 years. Although the particular 
set of x's certainly affects the bias and variance of the 
regression estimator, the fact that we might have 
picked a better or worse set of x's seems irrelevant to 
making an inference using the particular set we did 
select. This argument seems more compelling as the 
survey period moves further away from the model 
development period. The possibility that we might, 
by chance, have chosen a different set of auxiliaries 
eight years ago, say, does not seem pertinent to 
constructing a confidence interval today. 

A trivial example may better illustrate the 
conundrum. Suppose we have a population with the 
y - x  relationship pictured below. A simple random 
sample is selected and turns out to consist of the units 
in the ellipse. The usual variable selection methods 
probably will not pick up the dependence of y on x, 
so we decide that the best estimator of the population 

mean is y.,.. Now, if we draw other samples and go 

through the variable selection procedures, quite often 
we will realize x is a good predictor, and chose some 
sort of regression estimator. Of what relevance is this 

when we have decided to use ~.,. as the estimator in 

the one sample we have in our hands? 
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Figure 1 of Nascimento Silva and Skinner 
(1997) illustrates that there is a dependence of the 
m s e  on the number of auxiliary variables selected in 
their household population. The simulation study of 
Nascimento Silva and Skinner, on the other hand, 
does account for the random event of variable 
selection by re-selecting the x's for each sample. 
When evaluating different methods like forward 
selection or best subset selection prior to settling on 
an estimator, accounting for that source of 
randomness seems perfectly reasonable. After a 
particular sample and set of x's are selected, however, 
conditioning on that set is logical. 

The issue of how much to account for in 
variance estimation is especially germane when using 
a replication variance estimator. It is a simple matter 
to repeat the variable selection process for each 
replicate sample, thereby reflecting that estimation 
step in an estimated variance. But, the wisdom of this 
seems doubtful. The set of selected auxiliaries can 
vary among the replicates. Thus, we could be 
computing a variance among point estimates that can 
be different from the one used in the full sample. The 
same questions also apply to adaptive procedures that 
can vary from one replicate to another. Suppose, for 
example, that one uses a post-stratified estimator but 
applies a collapsing rule if the sample size in any 
post-stratum dips below 20. Then applying the same 
rule to replicates might lead to different sets of post- 
strata in the replicates than in the full sample. 

Confidence interval coverages in Tables 1 
and 2 of Nascimento Silva and Skinner (1997) seem 
unusually poor, ranging from about 81% to 83% in 
Table 1 and from 81% to 89% in Table 2 for the 
subset selection strategies. Even the sample mean has 
less than nominal coverage at 91.8%. In Table 1 
coverage percentages are poor even though the m s e  

estimators are approximately unbiased. Perhaps this 
has to do with the fact that the test population 
contains units that may be correlated (in a model- 
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based sense) since 426 households are used from only 
20 enumeration areas. Skewed incomes may also be 
inducing a correlation between numerator and 
denominator of the t-statistics that would lead to poor 
coverage. Further investigation to discover the cause 
seems warranted. 

Author's  Note 

Any opinions expressed are those of the 
author and should not be construed as policy of the 
Bureau of Labor Statistics. 
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