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1. Introduction 

approach is also related to ideas for weighting class 
methods which suggest choosing weighting classes 
according to MSE considerations (Tremblay, 1986; 
Kalton and Maligalig, 1991). 

Nascimento Silva and Skinner (1997) (hereafter NS) 
consider the selection of auxiliary variables in the 
regression estimation of finite population means under 
simple random sampling. They consider the classical 
objective of regression estimation, which is to improve 
precision compared to the sample mean, and note that 
the variance of the regression estimator is not 
necessarily minimised by including all possible 
auxiliary variables because of the effect of estimating 
regression coefficients. They consider alternative 
approaches to selecting auxiliary variables based on the 
minimisation of various estimators of the variance of 
the regression estimator. 

In this paper we extend the approach of NS to handle 
nonresponse. The primary new issue is that of bias. 
Under simple random sampling, the regression 
estimator is approximately unbiased (under a design- 
based approach) for any choice of auxiliary variables. 
Hence NS base their choice of auxiliary variables only 
on variance considerations. Under nonresponse, 
however, the estimator may be biased. 

We shall assume in this paper that there is no bias if the 
maximal choice of auxiliary variables is used, but that 
bias may arise with subsets of auxiliary variables. We 
propose to select auxiliary variables according to the 
estimated mean squared error (MSE) of the regression 
estimator, thus trading off nonresponse bias against 
variance. 

The use of regression estimation to compensate for 
nonresponse has been considered widely in the 
literature. See, for example, Cassel, Stirndal and 
Wretman (1983), S~irndal and Swensson (1987), 
Bethlehem (1988) and Fuller, Loughlin and Baker 
(1994). Our paper extends an approach in the latter 
paper, which compares the estimated MSE of the 
regression estimator to that of the estimator which 
makes no use of the auxiliary information. Our 

2. Basic Theory 

Let r denote the set of respondents, which is a subset of 
a finite population U. Let y be the survey variable of 
interest, with values y~ observed for ier and suppose the 
aim is to estimate the population mean 

Y - N -1~  Yi' where N is the size of U. Auxiliary 
u 

information is assumed available on the population 
means of the survey variables x~l),...,xo), that is we 
suppose values x~l,...,x~j of these variables are observed 

for ier and that X0) = N -1 ~ x i j is known for j - 
i6U 

1,...,J. 

Let A denote the subset of the auxiliary variables 
{x(~),..., xo)} to be used in regression estimation and B 
the complementary subset of variables not used. Write 
x~ = (X~A X~B) as the 1 x J vector, containing the values 
xi~,...,x~j ordered such that x~A is a l xJA vector 
containing values of the selected auxiliary variables 
and xiB is a 1 x JB vector (Jg + Ja = J) containing values 

m m 

of the remaining variables (ieU). Let X - (XA XB) 

be the corresponding vector based on the X(j) and let X 

- (XA XB) be the corresponding nrx J matrix with rows 
x~, ier, where nr is the size of r. Let Y be the nrx 1 
vector of values y~ (ier). 

We define the regression estimator of Y based upon 
the information on the selected auxiliary variables as 

where 
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/ -1 
13 A - ( ~  WiXiAXiA) ~ WiXiAYi 

1" r 

/ - 1 X /  = ( X A W X A )  A W Y ,  

w~ is a given weight, W = diag (Wi)  and X / W X A  is 

assumed non-singular. We also assume that X~A always 
includes unity as its first element. The weights w~ are 
treated as arbitrary but fixed. They may, for example, 

-1 
be of the form w i ~ 7~ i , where x~ is the probability 

of sampling unit i. For the case where all auxiliary 
variables are selected and x~ = XiA, we write 

- X. 13 (2) 
reg 

and refer to this estimator as the saturated regression 
estimator. 

m 

We wish to estimate the mean squared error (MSE) of Yreg,A 

for alternative choices of subset A. We shall evaluate 
the MSE and its components with respect to the joint 
distribution induced by the sampling scheme, the 
nonresponse mechanism and the model generating the 

m 

y~ values. We may write Yreg,A as a linear estimator in 

the form 
- - 1  

Yreg,A - nr ~ gAiYi (3) 
1" 

where / -1 w gAi - X A ( X A W X A )  iXiA 
(4) 

m 

The estimation of the variance of Yreg,A has been 

widely discussed (for example, Siirndal et al, 1992, sect 
6.6) and will not be pursued here. To take a specific 
simple choice of variance estimator, we shall use 

V@reg,A)- Eg~i  ~ i / [n r (n r - JA) ] ,  (5) 
r 

where eAi - Yi-XAi[~A ' following NS but ignoring 

the finite population correction. This estimator is 
natural when the observations may be treated as 
independent and identically distributed. Fuller et al 
(1994) consider a similar estimator for the more 
general case of stratified two-stage sampling. 

In order to estimate the bias of Yreg,A ' we shall suppose 

that the saturated regression estimator is unbiased to 
first order of approximation. Fuller et al (1994) discuss 
alternative sufficient conditions for this to hold. In 

particular, Yreg is unbiased if the following linear model 

holds 

Yi - X i [ ~  + el' E ( e i l x i )  - 0,  (6) 

and the combined nonresponse and sampling 
mechanism is ignorable given the x~, that is the 
selection of the respondents r is conditionally 
independent of the y~ given the x~ for ieU. Under the 

assumption thatYreg is unbiased we estimate the bias of 

Yreg,A by 

t~(Yreg,A)-- - Yreg,A - Yreg (7) 

m 

and estimate the MSE of Yreg,A by 

MSE(Yreg,A ) - 

V(~rog,A) + g(~rog,A) 2 - v[fi(~rog,A)], 

(8) 

w h e r e  V[]~(Yreg,A)] is an estimator of the variance of 

t ~ -  t3@reg,A ) to be derived. A possible 

modification, following Fuller et al (1994), would be to 

replace t~ 2 _ V ( ] ~ )  in (8) by zero, if it is negative. 

Before proceeding to consider the estimation of the 

variance of 13,we first present a model-based 
argument to justify the choice of (7) as the estimator of 

m 

the bias of Yreg,A" Let 

XBI A - XB-XA(XA/WXA)- 'XA/WXB , (9) 

be the residual part of XB obtained by subtracting its 
projection, weighted by W, on XA. Correspondingly, 
let 

w ~ m / 

XB[ A - X B - X A ( X / W X A ) - I X A W X B "  
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Since a regression estimator is invariant to a linear 
transformation of the auxiliary variables and XA and 

/ - 0), the saturated XBIA are orthogonal (X AWXB IA 
m 

regression estimator Yreg may be expressed as 

_ - / -1XA/WY Yreg - XA(XAWXA) + 

- / 

Xa I A(XB/I AWXB IA)- 1Xa IAWY" 

(10) 

Thus we may write 

Yreg - Yreg,A + XBIAI~BIA 

m 

= Yreg,A + Yreg,BlA' 

(11) 

- -  - 1  

Yreg,A - E(Yreg,A) - n~ ~ gAieAi (15) 
1" 

- - 1  

Yreg - E(Yreg) - nr ~ giei , (16) 
r 

where eAi - Yi-XiAE([~A) and e i - Y i - x i E ( [ ~ ) .  

Subtracting (16) from (15) leads to 

[Yreg,A-Yreg ] - [ E ( Y r e g , A ) - E ( Y r e g ) ]  

-1 
= nr ~ (gAi eAi-gi el) 

r 

(17) 

where 

Yreg,B A : XBIA[~B A (12) 

and 

[3B A 
/ 

- (XB/IAWXB [A)-IXB [AWY. 
(13) 

Hence the bias estimator in (7) may be expressed 
alternatively as 

(14) 

If [~ in (2)is partitioned as ~ - ([~/A [~/B ) / then it 
follows (eg from a weighted version of Theorem 3.7(ii) 
of Seber, 1977) that [~B A = [~B and moreover if 
model (6) holds that the conditional bias Of Yreg,A given 
the x~ is 

m 

E(Yreg,A - Yreg ]xi) - -XBIA [~B" 

In so far as [~ is the preferred estimator of [3 we argue 
that the bias estimator in (7), which reduces 
t o - X ~ g  [~ , is the preferred estimator of the 
bias - A  B ]A BlaB" 

To obtain the variance estimator v[B(Yreg,A)] we 

proceed by linearising the regression estimators in the 
same way as in a derivation of the variance estimator in 
(5) to give 

which suggests as the last term of (8) the following 
estimator 

V[fi(Yreg,A)] - Z ( g A i ~ A i - g i ~ i ) 2 / [ n r ( n r - J B ) ]  
r 

(18) 

where ei - Yi -xi [~" 

m 

To summarize, the estimated MSE of Yreg,A is given 

in (8) with the terms on the right-hand side given by 
(5), (7) and (18). 

3.  V a r i a b l e  S e l e c t i o n  P r o c e d u r e s  

As a first variable selection approach, denoted BEST 
SUBSET, we propose to select the subset A of 

variables for which MSE(Yreg,A ) is minimum. To 

apply the BEST SUBSET approach requires calculating 
(8) for all 2 J~ possible subsets of auxiliary variables 
(assuming a constant is always included), which may 
be very onerous computationally as J increases. 

NS found that in the case of simple random sampling 
little precision was lost by using forward selection 
compared to a best subset approach. As our second 
variable selection method we therefore propose the 
following FORWARD SELECTION approach. 

Begin with the subset A containing only the constant 
term (X~A- 1)as an auxiliary variable and compute 
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MSE(Yreg,A ) . Now let B k denote the kth variable in B 

to be considered for inclusion and set C(k )=A [)B k . 

Compute MSIE(~r~g,CCk)) for every k and determine 

its minimum value, M~iE(Yr, g,CC~)) say, where BK is 

the variable for which the estimated MSE is minimum. 

If M~iE(Fr~g,C~K)) < M~IE(y~g,A) then set A = 

C(K) and B = B - B~, and proceed with another step of 

this algorithm. If MSE(Yreg,c(i() ) >_ MSE(Yreg,A ) 

then stop and use only the variables in A. 

As our third approach, we consider simplifying the 
MSE estimator in (8). Note first that under the linear 
model in (6) with constant weights w~ and independent 
observations with constant error variance the least 

squares estimators ~A and ~BiA are uncorrelated 

given the x~. Under this approximating assumption we 
may therefore write, using (11), 

MSE(~reg ) - V(Yreg,A ) + V[t~(Yreg,A)] 

Subtracting from (8) gives 

MSE(Yreg,A ) - MSE(Yreg ) 

= I~(Yreg,A )2 - 2V[]~(Yreg,A)]  

If again we follow a model-based approach conditional 
on the x~ we obtain from (14) 

MSE(Yreg,A ) - MSE(Yreg ) 

- - /  / -- 
: XBIA (~BIA [~BIA - 2var([~BIA)) XBIA 

which reduces to 

MSE(Yreg,A ) - MSE(Yreg ) 

_ XB--21A ( t~ lh-2)  var(~Blh) 

where 

tB A - f~B a / [var (~s lA)]  '/2 

in the case when Ja=l. This suggests a very simple 
forward selection approach. Suppose as a very crude 
approximation that for any given subset A, adding any 
further auxiliary variable will remove any bias. Then 
the estimated MSE will fall by adding a given variable 

2 
only if the associated tB[ A is greater than 2. The 

2 
quantity t~l A is simply the usual F-to-enter statistic 

commonly used in stepwise regression. Thus as a 
highly simplified (but easy to apply) approach we 
consider a STANDARD FORWARD SELECTION 
approach where the critical value of F is set to equal 
2. 

4. Simulation Study 

In order to assess the performance of such variable 
selection procedures, a numerical simulation exercise 
was carried out based on a population consisting of 953 
records for heads of household (HH) interviewed 
during the 1988 Test Population Census of Limeira, 
Sgo Paulo state, Brazil. These records include all heads 
of household from enumeration areas 1 to 40 who filled 
in a long (sample) form. 

The main purpose of this exercise is to assess how the 
choice of auxiliary variables affects the performance of 
regression estimators when they are used not only to 
improve precision but also to correct for nonresponse. 
The target survey variable y is total income, and the 
auxiliary variables available, denoted x(~) to X(l l )  , a r e  

described in Table 1 in the Appendix. 

A standard saturated linear regression model to predict 
y with x(~) to X(~l) as explanatory variables was fitted 
using all the population records. The resulting fitted 
model displayed an adjusted R 2 of 0.8322, thus yielding 
reasonably high explanatory power. However, the 
fitted saturated model might be criticised as not 
parsimonius. A standard stepwise model search carried 
out considering all population records would lead to a 
"smaller" model, with only x(~), x(~) and x(5) included, 
having a slightly higher adjusted R 2 of 0.8329. 

Despite this criticism, the saturated model was used 
here to generate predicted values for y. This decision 
was taken because a nonresponse mechanism that 
depends on all auxiliary variables available was 
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desired, such that the bias induced by nonresponse 
could in principle be removed by a saturated regression 
estimator, as hypothesized in the theoretical 
development of estimators for the bias of the regression 
estimator based on subsets of the auxiliary variables. 
The idea is to use the predicted values ~ based on the 
saturated regression model as input to a logit-type 
model for the probability that nonresponse occurs for 
each unit, given that it has been selected for the sample. 
The nonresponse probabilities were thus generated for 
all the population units by 

exp(a bdi) 
1 - P r ( i c r  l ies  ) - + (19) 

1.5[1 +exp(a +bdi) ] 

where a=0, b=0.5 and the d i a r e  the standardised 
predicted values Y i based on the saturated model. 
Figure 1 (Appendix) displays the generated 
nonresponse probabilities for all the population units. 
The minimum and maximum are 0.2678 and 0.6648, 
respectively, with a median of 0.3083. This model 
assigns higher nonresponse probabilities for units with 
higher predicted income. 

The simulation study proceeded by selecting 1,000 
simple random samples of size 100 from the 
population, and then determining for each sample 
which units would be respondents. A sample unit 
would be selected as a respondent if a uniform[0,1] 
pseudo random number was greater than its 
corresponding nonresponse probability. Because this 
process was applied independently for each sample, a 
given unit might be a respondent for one sample and a 
nonrespondent for another. The reason for using this 
two stage process was that estimators which adjust for 
nonresponse using auxiliary information at the 
complete sample level might be of interest later, 
although for the current exercise this situation was not 
considered. Observed response rates for the 1,000 
simple random samples of size 100 averaged 67%. 

Five estimation strategies were applied for each sample 
replicate, all treating the basic weights w~ as constant 
for all sample units. The "sample mean of respondents" 
estimator y (denoted SM) and the saturated regression 

m 

estimator Yreg (denoted SR) were computed as 

benchmarks. Three other strategies based on regression 
estimation after subset selection were also applied: the 
BEST SUBSET selection (denoted BS) and 
FORWARD SELECTION (denoted FS) procedures 
based on the MSE estimator given in (8), and a 
STANDARD FORWARD SELECTION (denoted SFS) 

procedure based on standard F-to-enter selection 
criteria, as implemented in SAS Proc Reg (see SAS, 
1990). Table 2 in the Appendix displays the simulation 
estimates of the bias (absolute and relative) and mean 
squared error for each of these five estimation 
strategies. 

The SM estimator displayed substa_ntial bias in 
estimating the population mean Y (which is 
150.4633). This was expected in view of the 
nonresponse mechanism imposed, for which units with 
higher predicted income ~ (and hence y) have higher 
nonresponse probabilities. The saturated regression 
estimator SR provided a substantial reduction in the 
MSE compared to the SM estimator. There is no 
evidence of a bias in the SR strategy which suggests 
that the assumption underlying the bias estimator in (7) 
is reasonable. 

Regression estimation after BEST and FORWARD 
subset selection (BS and FS) performed very similarly 
and displayed negligible relative bias (-0.36%), while 
at the same time offering modest improvement in MSE 
over SR. Because FS is cheaper to compute, this 
method might be preferred over BS in applications, as 
already noted by NS. Finally, SFS also displayed no 
noticeable bias, with slightly higher MSE when 
compared to BS and FS, while still improving over SR. 

Closer examination of the subsets selected by BS and 
FS revealed that the two approaches coincided in 
69.6% of the samples, which helps explain their very 
similar performance. It is also worth noting that SFS 
generally selected smaller subsets, with 80% of 
samples yielding up to two variables included, whereas 
the other subset selection methods included an average 
of 6 variables in the model. This was expected because 
the selection criterion considered in this approach only 
takes variance into account, but not nonresponse bias, 
which is expected to be bigger for smaller subsets due 
to the nature of the nonresponse mechanism imposed. 

Other important aspects of the proposed estimation 
procedures are variance estimation and coverage 
properties. NS noted that variance estimation may be 
difficult after variable selection since variance 
estimators may underestimate the MSE. Average of 
mean squared error estimates and empirical coverage 
rates for 95% confidence intervals based on asymptotic 
normal theory were also computed for each estimation 
strategy. The variance estimator used with SM, SR and 
SFS was the variance estimator given by (5), whereas 

80 



the minimised estimated MSE given by (8) was used 
with BS and FS. Results are given in Table 3 in the 
Appendix. 

The underestimation of the MSE is severe for SM, 
particularly since the bias is substantial for this 
strategy. This is also reflected by the substantial 
undercoverage for this procedure. All the other 
procedures have similar coverage rates (around 85- 
86%) which are below the target 95% nominal level, as 
well as similar levels of underestimation (around 75- 
77%) of the corresponding simulation MSEs. 

5. Conclusions 

The results obtained here are similar to those found in 
NS for the simpler case when there is no 
nonresponse.They indicate that, in some instances, 
variable selection may be a useful strategy for 
improving precision over standard fixed subset 
regression estimation procedures, despite the higher 
associated computational costs. It is also worth noting 
that the incorporation of a bias component due to 
differential nonresponse into the MSE estimator used 
for variable selection is worth considering, at least in 
cases where the saturated regression estimator may be 
assumed to be approximately unbiased. 

It is also worth noting that variance (MSE) estimation 
becomes more difficult after variable selection, 
although in the present case the saturated regression 
approach was not superior to regression estimation 
after variable selection according to this criterion. 

Further research is still needed to develop better 
variance (MSE) estimators, as well as to assess the 
effect of using unequal weights w~. 
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APPENDIX 

Figure 1 - Generated nonresponse probabilities 
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Table 2 - Bias, Relative Bias and Mean Squared 
Error estimates for altemative estimation strategies 

Estimation Strategy 

S M -  Sample mean of 
Respondents 

SR-  Saturated 
Regression Est. 

BS - Best Subset 
Regression Est. 

FS -  Forward 
Selection Regression 
Est. 

SFS-  Standard 
Forward Selection 

Bias 

-17.88 

0.03 

-0.54 

-0.54 

0.36 

Relative 
Bias (%) 

-11.88 

0.02 

-0.36 

-0.36 

0.24 

MSE 

757.45 

172.79 

143.27 

143.50 

152.32 

Table 1 - List of Auxiliary Variables Available 

Variable Label 

X(l) 

X(2) 

X(3) 

X(4) 

X(5) 

X(6) 

X(7) 

X(8) 

X(9) 

X(lo) 

X(I1)  

Variable Description 

Indicator Sex = Male 

Indicator Age <= 35 

Indicator 35 < Age <= 55 

Total Rooms in HH 

Number of Bathrooms in HH 

Indicator HH = Owned 

Indicator HH = House 

Indicator of Car in HH 

Indicator of Colour TV in HH 
. . . . . . .  

Years of Study of Head of HH 

Proxy Income 

Table 3 - Empirical coverage rates for nominal 95% 
confidence intervals and average of Mean Squared  
Error estimates for alternative estimation strategies 

Estimation 
Strategy 

S M -  Sample mean 
of Respondents 

SR-  Saturated 
Regression Est. 

BS - Best Subset 
Regression Est. 

FS-  Forward 
Selection Regression 
Est. 

SFS-  Standard 
Forward Selection 

Empirical 
Coverage 
Rate (%) 

72.1 

86.1 

85.2 

85.0 

85.4 

Average of 
MSE 

Estimates 

429.05 

130.30 

109.99 

111.58 

115.03 
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