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ABSTRACT 

The generalized regression (GR) method is often 
used to adjust sampling weights to satisfy benchmark 
constraints (BC), but some of the calibrated weights may 
not satisfy range restrictions (RR). BC are needed in the 
interest of efficiency due to correlated auxiliary 
information and also to make estimates internally 
consistent with published population totals, while RR are 
needed to avoid extreme weights which may render 
domain estimates inefficient. To address this problem, 
several iterative methods that attempt to meet both RR 
and BC have been proposed in the literature. However, 
for given RR and BC, and a specified number of 
iterations, these methods may not converge even if RR 
are mild, e.g., restrictions to only nonnegative weights. 
This is likely to happen in practice if there is a high 
discrepancy between a BC and its estimate due to sample 
being not large enough, or if there are too many BC or 
multicollinear auxiliary variables implying instability in 
the estimated regression coefficients. A third possibility 
of course is if RR are too tight. For given RR, a natural 
and practical way out is to relax a few BC, i.e., make 
them nonbinding within specified tolerances, while 
keeping other BC as binding (i.e., with zero tolerance). 
An important requirement while relaxing BC is that for 
given tolerance levels, the calibration method should 
ensure asymptotic design consistency (ADC) like GR. 
Note however that since the extreme weight problem is 
due to sample being not large enough, asymptotically the 
problem disappears. This implies a possible loss in 
efficiency by making BC nonbinding. Therfore, in the 
interest of efficiency, the tolerances should be specified 
adaptively so that asymptotically they tend to zero 
implying, in turn, that the calibrated weights tend to GR 
weights. The RR themselves can be further relaxed if 
necessary to get lower tolerance levels. In this article, for 
complex surveys, we consider first Rao's (1992) 
modification of the ridge-regression method of Bardsley 
and Chambers (1984) so that the resulting estimator has 
the ADC property in spite of the presence of the ridge 
matrix which makes BC nonbinding. We then establish 
an important relation between the ridge (or inverse cost) 
matrix and the matrix of specified tolerances, and show 
that the above method can be adapted to meet BC up to 
specified tolerances while maintaining ADC. This 
method like GR is noniterative, and can be easily 
implemented. However, in spite of relaxing BC, the 

method may not meet RR. We, therefore, propose an 
iterative method termed ridge-shrinkage, which 
generalizes the above ridge-regression method in a 
manner analogous to the generalization of the usual GR 
by calibration methods to meet RR. The proposed 
method is designed to force convergence for a given 
number of iterations by using a built-in tolerance 
specification procedure to relax BC while satisfying RR 
and maintaining design consistency. Numerical results on 
the relative performance of several related methods are 
also presented. 

Key Words: Asymptotic design consistency; Binding 
and nonbinding benchmark constraints; Range 
restrictions; Ridge regression; Shrinkage-minimization. 

1. INTRODUCTION 

In survey sampling, perfect auxiliary information in 
the form of benchmark constraints (BC) is commonly 
incorporated by means of generalized regression (GR) or 
raking methods of estimation. Use of BC is not only 
desirable from the efficiency perspective, but also due to 
the need to make estimates internally consistent with 
published population/domain totals. It is also known that 
regression or raking methods may lead to extreme 
calibrated weights, which may render domain estimates 
highly unreliable. To get around this problem, several 
methods are proposed in the literature to adjust sampling 
weights to meet BC while satisfying certain range 
restrictions (RR); see Huang and Fuller (1978), Deville 
and SS.rndal (1992) and Singh (1993). For an expository 
review, see Singh and Mohl (1996). 

All these methods are iterative in nature and may 
not lead to a solution in a fixed number of iterations. 
Note that at any iteration, we can always ensure that RR 
are met by shrinking the weights to the boundaries of RR. 
(Some methods automatically satisfy RR after each 
iteration and iterations are continued to meet BC, while 
others automatically satisfy BC after each iteration and 
iterations are continued to meet RR.) Now if at the 
maximum number of iterations allowed, BC are not met 
but RR are, the process can be terminated and the 
resulting estimator will have the ADC property. 
However, this approach is seriously deficient in that there 
is no control on the extent of discrepancy in meeting BC. 
The nonconvergence problem is likely to happen in 
practice if RR are too tight, or if there is a high 
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discrepancy between a BC and its estimate due to sample 
being not large enough, or if there are too many BC or 
multicollinear auxiliary variables implying instability in 
the estimated regression coefficients. One way out might 
be to drop some BC as suggested by Bankier et al. (1992) 
who encountered the problem of negative weights in 
weight calibration for census 2B sample because of a 
large number of BC at the enumeration and weighting 
area levels. This approach may seem somewhat drastic in 
that most BC are treated as binding ( i . e . ,  with zero 
tolerance) while some as nonbinding in the extreme sense 
( i . e . ,  with infinite tolerance). A practically appealing 
alternative might be to allow most BC to be nonbinding 
with possibly varying tolerance except for a few binding 
ones based on subject matter considerations. 

A solution to the above problem may be motivated 
by drawing analogy with the problem of instability in 
regression estimates due to insufficient sample in the 
presence of multicollinearity or too many auxiliary 
variables in regression modelling, y = lu,, + 13'(x -lax) + e. 
A standard solution in classical statistics is to use ridge 
regression in which the least squares criterion is modified 
by a penalty function involving a cost matrix; the inverse 
cost matrix appears as the ridge matrix in the ridge 
regression estimate. It is interesting to note that although 
the resulting estimate of the regression coefficient 
becomes biased (but stable), the regression estimate of 
the unconditional mean bt,, of the dependent variable 0') 
remains approximately unbiased and consistent. 
However, unlike the usual regression estimate, it does not 
reproduce perfectly the mean lu x of the auxiliary vector 
(x) when y is replaced by x. This would tend to reduce 
the estimator's efficiency, had true [3 been known. 
This, however, is compensated by using a more stable 
estimate of 13 when it is unknown. 

In survey statistics, the problem of instability in GR 
(GR is defined by a difference-type estimator where the 
difference coefficient corresponds to the regression 
coefficient 13) is often due to the large dimension of [3 in 
view of many predictors needed to satisfy multipurpose 
needs of the user For this case, an important and 
interesting model-based method using ridge-regression 
was proposed by Bardsley and Chambers (1984) to obtain 
a set of adjusted weights for the estimator. They showed 
that in order to satisfy RR, extreme weights can be 
avoided by choosing the parameter in the ridge matrix 
appropriately. However, no guidance was provided on 
choosing the ridge matrix to meet a desired tolerance on 
benchmark controls corresponding to the auxiliary 
variables. Moreover, they did not consider the use of 
survey weights for a design-based approach. Rao (1.992) 
modified the above method to take account of the survey 
weights to ensure the important property of ADC. 
However, the problem of a suitable choice of the ridge 
matrix to meet specified tolerances on BC for given RR 

was not addressed. 
In this paper, we first establish a relation between 

ridge (or inverse cost) and tolerance matrices so that for 
a given set of upper bounds on tolerances, the 
corresponding cost matrix for ridge-regression can be 
specified. In particular, zero tolerance would correspond 
to infinite cost ( i . e . ,  zero inverse cost), and infinite 
tolerance would lead to zero cost in the limit. This can be 
used to modify the Bardsley-Chambers method so that 
BC are met within tolerances, although in this article we 
have not pursued model-based methods. The above result 
on the relation between ridge and tolerance matrices 
enables us to modify several existing (iterative) 
calibration methods via the ridge-regression idea to meet 
RR while relaxing those BC which are not deemed 
binding. For given RR, the tolerance levels are chosen 
adaptively in order to relax BC only when necessary in 
the interest of efficiency and internal consistency. We 
can also relax RR if it is desired to get lower tolerances. 
The proposed method, termed ridge-shrinkage, starts with 
GR weights (corresponding to zero tolerance) which are 
then shrunk to meet RR. Next, at each cycle of iterations, 
tolerance levels for discrepant BC (up to the specified 
tolerance) are raised in increments, and thus are defined 
adaptively. Assuming that asymptotically GR weights 
meet RR, tolerance levels so defined tend to zero, and the 
ridge-shrinkage method becomes asymptotically 
equivalent to GR. Therefore, the asymptotic variance of 
the proposed estimator can be estimated using the GR 
fommla with ridge-shrinkage residuals replacing the GR 
residuals. 

Section 2 provides a brief review of existing 
methods for the cases of binding and nonbinding BC. 
The proposed method is described in Section 3 in which 
its asymptotic equivalence to GR is outlined. A 
numerical example based on Statistics Canada's FAMEX 
data is presented in Section 4, and finally some remarks 
in Section 5. 

2. EXISTING CALIBRATION METHODS 

For a sample of size n, let h~ denote the initial 
design weight, and c k the final calibrated weight for the k th 

sample unit, 1 _< k _< n. Let the RR be given by lower and 
upper bounds [L, U] such that L h  k <_ c k <_ U h k for all k. 
The BC are given by X/c = 1: x, where X is the n x p 
matrix of values of the p-auxiliary variables, and z x is the 
p-vector of control totals. Assume without loss of 
generality that l:xi >_ 0 for 1 _ i _< p. The tolerance matrix 
A for BC is A=diag(61 ..... iSp), where & i is the 
tolerance for the ith BC and is defined as 

/ 

[ x i c -  Zxi I <_ ~)iT, xi , 1 <_ i <_ p .  (2.1) 
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Note that 8i> 0 implies a nonbinding constraint and 
8i= 0 corresponds to a binding constraint. The limiting 
case of 8i= co implies discarding of constraint. Also, 
note that if the control total r.xi-O, then 8 i can be 
defined as [x/i c] <_ 6 i N where N is the population size 
ascertained from external sources. 

2.1 Nonbinding Case 

We consider a modified version of the ridge 
regression of Bardsley and Chambers (1984) as proposed 
by Rao (1992) for survey data. Suppose the inverse cost 
matrix is A = diag (~l ...... Zp). Then consider 
minimization of the objective function in the form of a 
penalized least squares criterion: 

Arid(c, h)  - ( c -  h) / r  -1 (C- h) + 

( X  / c -  r.x ) / A  -1 ( X  / c - Zx) 
(2.2) 

where 1-' = diag(h). The solution is given by 

c rut = h + r x  ( x  / g' x + A) -1 (.c x - x / h )  (2.3) 

The above solution minimizes A rid provided the 
second derivative, 1"-1 + X A-~ X/, is nonnegative 
definite. Note that technically the cost matrix A -1 need 
not be nonnegative for the above condition to be satisfied, 
although then it loses its usual interpretability. 

The estimator z ~ia of the population total "l;y for the 
study variable y is 

~ rid. = y /  c rut = y /  h +  

y / I '  X ( X  / F X + A) -1 (1: x - X / h) 
(2.4a) 

= (1- ~) ~yT+ ~ ~y6R, (2.4b) 

^GR where ~ynXis the Horvitz-Thompson (HT) estimator, "lT y 

is the GR-estimator, and ~ is the shrinkage coefficient 
which shrinks GR towards the HT-estimator. The corres- 
ponding expressions are 

^HT / ^GR / h T X ( X  / -1 T,y = y  h, T,y = y  + y I ' X )  ( Z x - X / h ) ,  

o~ = [ y / I ' X ( X / P X  + A) -1 (1: x - x /h ) ]x  

[y / I a X ( X  / P X )  -1 ('r. x - X / h ) ]  -1 

(2.5) 

Thus, the ridge-regression e s t i m a t o r  .~.~id is a linear 
combination of HT and GR estimators. If ~..-. 0, which 

-- ^~rid implies that all the BC become binding, then ~:y tends to 
GR as expected. If Xi-.~, implying that BC can be 

rid nonbinding with unlimited tolerance, then ~y tends to HT 
as expected. 

Moreover, we have for the ridge weights c ,~a, 

X / c  m =X/h +X/I'X(X/I'X+ A) -1 (Zx-X/h) 

= 1: x - A ( X / F X  + A)-l(zx - X / h )  
(2.6) 

It follows that i f  / ~ i - 0 ,  the corresponding BC ~xi is 
exactly satisfied by c r/a. For ).i > 0, the Zxi is not treated 
as perfect auxiliary information. As Xi--oo, the 
corresponding control total r.xi is automatically discarded. 
This can be seen as follows. Assuming all ~ > 0 ,  we can 
write c na as 

rid = h + P[I - A -1X/(1 -'-I + X A - ~ X / ) - l ] x  

X A - I  (-Cx - X /h)  
(2.7) 

Now, denoting X, A, 1: x without the ith row as  X(i), A(i) 
and r.x( O, and letting Xi-. ~, (2.7) reduces to 

-1 - -1 -1] rid h + 1-' [I A(i) X l(i) (Ia 1 = - + X(i)A(i ) X/(i)) X 

-1 h) (2.8) X(i) A(o ('Cx(O- X(o 

=h + ~X( i  ) (X/(i)~X(i)  + A(i) )  -1 ('r,x(i)-X(i)h) 

which proves the result. If some ~ -  0, the above proof 
still goes though if we initially set ~ equal to a small 
positive value ej and then take the limit in (2.8) as ej-~ 0. 

The ADC of ~yid follows easily by arguments 
A GR under the asymptotic similar to those used for 12y ^ 

framework oflsaki and Fuller (1982). Specifically, let 13 rid 
denote ( X / P X + A ) - I X / F y  and a s s u m e  /~i random and 
chosen adaptively such that ~ i / N -  Op(1), t h e n  ~rid 
tends in probability to a limit, [3r~ a ,say, and 

.~ rid. 
y =y /h  + [jlrid('r2x-X/h) (2.9) 

and the RHS is ADC for qZy under the assumption of ADC 
of y / h  and X/h. We remark that the only difference 

^GR ^rid is that ~GR is replaced by ~rid" between "~y and Z y 
The predictors Zx-X/h are unaltered even though Zx are 
not perfectly satisfied. This is the reason why ADC of 
^GR • 
"l;y IS maintained in ridge-regression. Note that if 
)~i /N = Op(1), then the ridge regression estimator will be 
equivalent to the GR-estimator. 

Clearly, the behaviour of c 'id depend on A. In 
particular, for X i sufficiently large, all c-weights should 
behave well, i.e., should be free from extremes. Bardsley 
and Chambers (1984) consider A = Z I ,  and use a 
graphical tool (ridge trace as X varies) to find a suitable 
value of Z so that c-weights behave well. Thus, Z is 
chosen adaptively. A more satisfactory solution would be 
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to set tolerances 6i 's on B C  and then find the 
corresponding A that meets these tolerances. A method 
to achieve this is presented in Section 3. 

Finally, we note that Bankier et al.'s (1992) method 
of discarding some BC while the remaining BC are 
perfectly satisfied, is easily seen as a special case of the 

ridge-regression method when s o m e  /~i'S tend to oo while 
others are set at 0. 

2.2  B i n d i n g  C a s e  

Suppose all the BC are binding so that 6 i = 0 for all 
i. As mentioned in the introduction, there exist several 
iterative methods whose aim is to meet BC for a given set 
of RR. We will briefly describe only three methods 
which consist of GR-like steps in iteration. The proposed 
ridge method to meet RR and BC can be applied to any of 
these three methods, although it is the first method which 
is considered in detail here. 

2.2.1  S h r i n k a g e - M i n i m i z a t i o n  (SM)  

This method was proposed by Singh (1993); see 
also Singh and Mohl (1996). Each iteration consists 
exactly of a GR-step for a suitable chi-square distance. 
Let e ~) be the final weights obtained at iteration v. 
These weights satisfy BC by construction. If they satisfy 
RR, we stop. If not, they are shrunk to c (~) * to meet RR. 
Then treating c ~)* as initial weights for the next 
iteration, we minimize the chi-square distance. 

_ • ~X~+,(c,c =F--,,~s % ~k (2.10) 

subject to BC. Since each iteration is like GR (except 
that the distance function varies from iteration is 
iteration), it follows easily from section 2.1 how this can 
be converted into a ridge-regression to allow nonbinding 
BC. In fact, this is what is done in the proposed ridge- 
shrinkage method described in Section 3. The above 
minimization step at iteration (v + 1) leads to weights 
c (~ + ~) given by 

c ~+1 = c  (v)* + 1-'v X(X/I 'vX) '1 (Y.x-X/c(V)*), (2.1.1) 

Lh  k <_ c k <_ Uh k,1 <_k <_n. (2.12) 

Now, to speed convergence, the weights c (v ÷ 1) are 
shrunk more than necessary. For this purpose, two 
parameters a and rl are defined,0 < ~ < 1"1 < 1 (e.g., 

=2/3  and r 1=9/10.)  Let L / = 0 ~ L + ( 1 - a )  l, 
U / = ~U + (1 - a) 1, and L / /=  rlL + (1 - rl) 1, 
U/ /=  flU + ( 1 - r I) 1. Then, we shrink c (~ + 1) weights that 
are outside the interval [Lh k, Uhk] and also those which 
are inside but near the boundary, to points further inside 
the interval. Specially, 

( v +  i ) .  / ( v +  1) 
- L h ~  if c k ~ L //hk; C k 

(v + 1) //hk, U/hk if c k >_U • (2.13) 

• c,, + ~) otherwise. c k 

The above shrinkage step of iteration (v + 2) is 
followed by the minimization step with distance function 
AsM (c c ~v+l)*) analogous to (2.10) to get c (v÷2) If 

v + 2 .  ' ' " 

RR are satisfied, we stop; else iterations are continued 
until the maximum number Vm.~xOf iterations is reached. 
Clearly, there may not be convergence within Vma x of 
iterations if the RR are too tight, or if there are too many 
BC or if there is multicollinearity in the variables defining 
BC. 

Using ^sMSuitable regu!arity, conditions, the SM- 
estimator, 1:,, =F_.kc, ykc  k , can be shown to be 
asymptotically equivalent to the GR-estimator. This 
result is analogous to the Deville-Sarndal's (1992) result 
o11 the asymptotic equivalence of a family of calibration 
estimators to GR. It follows that ~sM is ADC and its 
asymptotic variance can be estimated from the familiar 
expression for GR. 

2.2 .2 .  M o d i f i e d  H u a n g - F u l l e r  M e t h o d  (or S M C S )  

This is a slightly modified version of the method of 
Huang and Fuller (1978), and was termed as the Scaled 
Modified Chi-square (SMCS) method in Singh (1993). 
In SMCS, at iteration (v + 1), a chi-square-type distance 
function is minimized subject to BC. It is given by 

where IF' v = diag(c tv)*). These weights satisfy BC but 
RR may not be satisfied. If RR are satisfied, we stop. If 
not, then we perform the shrinkage step for iteration 
v + 2 to get the initial weights c (v + 1).. It is defined as 
follows. Let [L, U],L< I<U denote the lower and upper 
bounds specified by RR which the calibrated weights c 
must satisfy, i.e., 

= - h )2/  "'v+IASMCS (c,h)  ~k,s_ (Ck k / q k  hk, 
[v] 

(2.14) 

_ iv] where qk is a scaling factor designed such that the h- 
weights for those units that tend to disobey RR are 
adjusted only a little. This is accomplished by making 
qtV] smaller for the next iteration. Note that, unlike SM, 
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at each iteration v the SMCS-estimator is not like the 
usual GR because of the scaling tactor. However, it does 
satisfy BC at each iteration, and iterations are continued 
until RR are met or v >_ Vm,,: ,. The form of c-weights at 
iteration (v + 1) is given by 

c(V+l)- h + I "vX  (X/ I"vX)  -1 (Zx- X/  h ), (2.15) 

where F v -  diag(q~ ul h k, 1 _< k _< n). Again, a solution 
may not exist for a specified v 

.. . m ~ d C S  
As before, the esumatorz~, from the SMCS 

method is asymptotically equivalent to the GR-estimator. 

2.2.3. Truncated Linear Method (or MCS-r) 

This method is due to Deville and Sarndal (1992), 
and was termed as the restricted Modified Chi-square 
(MCS-r)  method in Singh (1993). Unlike the previous 
two methods, here distance function does not change 
from iteration to iteration; and at each iteration RR are 
satisfied, but iterations are continued to meet BC. In 
MCS-r, the distance function to be minimized subject to 
BC is given by 

A MCS-r  ( c , h ) -  ~-,kc~ (Ck- hk)E/hk 

if L h  k <_ ck < Uhk; oo otherwise. 
(2.16) 

With the initial weights, c (o) = h,l-, ° = diag(h) and 
letting 1-' - diag(h~ ~)) where h~V)= h k if 

_ (v) 
L h  k <_ c k <_ Uhk; 0 otherwise, the c-weights at iteration 
(v + 1 ) are 

C(V+ 1.) : C (v) -t- Iao X ( X  / Iav X )  -1 ("r2 x - x / c (v)), (2.17) 

provided c k- (v+l) is inside [Lh k,., Uhk]. If outside, it is 
truncated at the left or the right boundary as the case may 
be. 

Note that the expression (2.17) for c ('+ l)-weights 
is somewhat similar to that for GR-weights except for the 
term 1-' 0 and the use of truncation. However, as was 
shown by Deville and S~irndal, the MCS-r  estimator is 
asymptotically equivalent to the GR-estimator. 

ridge-regression with each of the iterations of the SM 
method because each SM iteration is simply a version of 
GR. Before we describe the proposed ridge-shrinkage 
(RS) method, we need to establish a link between the 
tolerance matrix A = diag(6/) and the inverse cost matrix 
A = diag().i) which will be used at each iteration of the 
RS method. 

3.1 Link between tolerance and cost matrices 

In the ridge approach, it is probably easier to 
specify the tolerance matrix A in practice than the 
inverse cost matrix A. Now, it follows from (2.6) that 
for the (v + 1)st iteration of RS, 

A(X/F~X+A)-l(X/c(~)*-Zx)-X/c(v+l)-T.x (3.1) 

For each i, 1 _< i <_ p, we want the ith element of the 
RHS of (3.1) to be less than or equal to 6i'Cx/in absolute 
value. To find appropriate A for the (v + l)St iteration, 
we solve for A,, from (3.1) by setting the RHS equal to 
the boundat T values 6;'cx;with appropriate signs. In other 
words, we set the RHS equal to V v z x where 

V = d iag{sgn(x i /c  (v)*- "~xi) 6i,  1 <_ i <_ p} (3.2) 

In practice, in the interest of convergence, it would 
be better to modify V somewhat; see section 4 for 
details. We now have 

A v (X/F, ,X + A) -1  (X/c (v),_ l:x) _ V 1: x 

o r  

(X/c <v). _ Zx ) _ ( X / F X A ~  l + I) 7 v  x 

o r  

X / c  (v), _ (I + Vv)z x - X / P v x A v l V v z x  

3. THE PROPOSED METHOD OF 
RIDGE-SHRINKAGE 

As mentioned in Section 2.2.1, the proposed method 
combines in a fairly straightforward way the idea of 

which implies that 

A ( X / F X )  -~ (X/c ¢~)* - (I + V,,)-~ x) = VQ: x . (3.3) 
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So, A v being diagonal, can be obtained by element- 
wise division of the p-vector on the RHS by the p-vector 
on the LHS of (3.3). Note that A has zero on its 
diagonal when 8i = 0. The above method does not ensure 
nonnegative ~i" This is not essential in view of the 
comment below (2.3). Also note that if the choice of 6 i 
depends on the sample (thus rendering it random) then 
(3.3) implies that the diagonal elements of A / N  are 
O,,(nll2N-16iY.xi). This, in turn, implies that if 
n f/ZN-1 6i'~xi = Op(1), the ridge regression estimator at 
the v th iteration will be asymptotically equivalent to the 
GR-estimator in view of the comment below (2.9). 

3.2 The RS Method 

Similar to SM, each iteration of RS consists of two 
steps: the ridge step and the shrinkage step. It consists of 
cycles of iterations, the qth cycle corresponds to a given 
tolerance Aq. For each cycle q, there is a prescribed 
maximum number of iterations• For the initial cycle 
q = 0, the usual SM is performed except for the reverse 
ordering of steps, i.e. first the minimization step and then 
the shrinkage step. (Note that the minimization step can 
be viewed as the ridge step with a l l / ~ i -  0 ). The order of 
steps is reversed because of the introduction of tolerance 
on BC. Thus, after each iteration, RR are necessarily 
met. If the BC are satisfied within the tolerance levels 
(for checking this, it is better not to shrink the weights 
more than necessary, i.e., truncate outlying weights to the 
boundaries only), then we stop the iterations. Else, 
iterations are continued until Vma x . Denote the final SM- 
weight after shrinkage as c si* . If at this point BC are 
not met within tolerance, then we start the next cycle 
q = 1 with c sM* as the initial weights. For this cycle, the 
tolerance m a t r i x  mq with q = 0 is used to specify Aq__ 0 
using equation (3.3). Each iteration v within this cycle 
consists of two steps: 

Step I (Ridge)" Do ridge-regression on c (v), with the 
inverse cost matrix Aq to obtain c v+l from formula 
(2.3). Now, all BC are met within the prescribed 
tolerance. If RR are met, stop; else perform the next 
step. 

Step II (Shrinkage): First truncate outlying weights 
to the boudaries only so that they just meet RR. Stop 
i fBC are met within tolerance• If not, shrink c (v*l) 
to c (v÷l)*, and then repeat steps I and II until 
convergence or v >_ Vma x . 

Similarly cycle 2 is performed if there is no convergence 
after cycle 1. Note that each cycle is started with the 
same cSM*-weights for initialization. However, the 
tolerance levels are revised adaptively (in increments 
such as 1%) so that BC showing higher discrepancy are 

assigned higher tolerances. With  Aq= 1 so chosen after 
cycle 1, the inverse cost matrix Aq= 1 is obtained and then 
the iterations for cycle 2 are conducted as in cycle 1. 
This process is continued until convergence (within 
revised tolerances) after each cycle. Note that in the 
absence of convergence, the process can be terminated 
after reaching Vma x of iterations in the maximum allowed 
number of cycles qmax" At this point, RR are of course 
met, but BC can be deemed as satisfied with tolerances 
suitably increased. Note that from (2.5), the g-weights 
(g-weights are simply defined as ck/h k, 1 < k <_ n) for GR 
can be shown to be 1 + Op(n -1/2) uniformly in k, and 
therefore, GR-weights satisfy RR asymptotically. This 
implies that as n-.~o, with high probability RS will 
converge after the initial cycle itself. Thus 8i=0 with 
high probability from which it follows that A q / N  tends 
to zero in probability using the comment below (3.3). 

One can also define ridge-versions of the other two 
methods, SMCS and MCS-r by introducing the inverse 
cost matrix Aq in (2.15) for fidge-SMCS and in (2.17) for 
ridge-MCS-r. The specification of Aq from Aq is quite 
similar to (3.3) for ridge-SMCS, but somewhat different 
for ridge MCS-r; see Section 4. 

3.3 Asymptotic Properties 

The RS-estimator ~ynS of "l;y is asymptotically 
equivalent to ~yaR if at the final cycle q0°f iterations, 
N - 1  ~,(q0) i -'p0 for all i. A sufficient condition for this to 
hold is that tolerances 5i be initialized at 0, and be 
revised adaptively as described above. The proof for the 
asymptotic equivalence is outlined below. First note that 

• " R S  • 

for given A = A _ , the RS-estlmator 1: is simply an 
• . . qo . " r id  Y 
lteratlve modification of "l:y to meet RR which is 

• . " G R  " S M  • analogous to the modification of 1: by 1: Thus it • y v " 
^ R S  ^ r id  can be shown that 1: -" "l;y by parallel arguments used 

• ^ S M  ^ ~ R  • • 
for showing Ty - 1 2 . .  N O W  ~t remams to show that 
^ r id  ^ G R  • 1 (qo~ 
"lYy - "lTy If N -  ~'i -"p0, 1_< i _< p. This follows easily 
from the expression 

" r id  
T ,y  = y/h - t - ( y l [ a x )  ( x l r x )  -1  ( T , x - X  / h) 

+ (y/PX) [ ( x I r x  +Aqo) -1 - ( X / r X ) - l ] x  

( r .x -X  / h) 

(3.4) 

and the fact that the last term in the RHS of (3.4) is of 
(q0) 0.  smaller order because N -13, i -.p 

In view of the above asymptotic equivalence, the 
Rs asymptotic variance of "~y can be obtained from that for 

GR, using the RS g-weights rather than the GR g-weights. 
One can then construct confidence intervals for 1: using 

" R S  y a finite population central limit theorem for "Ijy • 

For ridge-versions of the other two methods SMCS 
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and MCS-r, above asymptotic properties can be similarly 
obtained. 

4. APPLICATION TO THE FAMEX DATA 

The numerical results are based on the work of 
Yannick Janneau completed for a M.Sc directed studies 
course in 1996 at Carleton University. He extended the 
numerical comparison of Singh and Mohl (1996), based 
on Statistics Canada's family expenditure (FAMEX) 
survey data, to include ridge methods. All the three 
methods: RS, ridge-SMCS, and ridge MCS-r, were 
compared although full details for ridge SMCS and MCS- 
r are not given here. The tolerances were set either at 0 
or at a common value of 6>0. This proved to be 
convenient in practice. The matrix V of (3.2) was 
modified by replacing 6 i by 14Iai8 i where a i = O  if the 
discrepancy (Xi/c (v)*- "r2xi ) is _< 11/6i, and 1 otherwise. 
The parameter ~,  0 < q r <  1 makes tolerances 
conservative, and helps to speed up the convergence. We 
used ~ = .9 in the example. The indicator variable a i 
treats the ith control as binding in the ridge step of the 
(v + 1)st iteration if the discrepancy at the vth iteration 
is within tolerance. This modification is again in a 
conservative sense, and helps to speed up the 
convergence. Details about description of the FAMEX 
data, choice of BC and RR, and behaviour of existing 
calibration methods are given in Singh and Mohl (1996). 

Now, along the lines leading to the equation (3.3) for 
establishing the link between tolerance and the cost 
matrices, the corresponding equation for ridge SMCS can 
be obtained. It is very similar and given by 

A~ (X/Y~X) -1 [X/h - (I + V )  l:x] = Vvz x, (4.1) 

where IF" is now diag(q~ ~1 h k, 1 <_ k <_ n) .  Note that c (v)* 
in the LHS of (3.3) is now replaced by h. However, for 
ridge MCS-r, the equation (3.3) changes somewhat, and 
can be obtained by using the same line of argument as 

A~ (X ToX) -~ [X/c (') - (I + V )  1: x] 

= Vv~  x 4- (X / (Po  - Pv)S) (S /P0x) - lx  (4.2) 

[X/c <~> - (I + V)~:x], 

where Pv and c (v), in the LHS of (3.3) are now replaced 
by Y0 and c (v) respectively, and an additional term is 
added on the RHS of (3.3). The vector ~ from each of 
(4.1) and (4.2) can be solved as before by dividing 
element-wise the p-vector on the RHS with the p-vector 
on the LHS. 

For the sake of illustrating the ridge methods, the 
three methods were applied to the 1990 FAMEX data for 
the city of Regina. Since there were only a few BC, the 
RR bounds [L,U] were made quite tight so that none of 
the existing calibration methods converged. For L=.5, 
U=2, even after 100 iterations, the % discrepancy in 
respecting the four BC were 21.64, 16.94, 75.17, 
andl9.61 for SM, 24.17, 18.73, 75.17, and 21.01 for 
SMCS, and 97.28,-21.09, -12.42, and 2.62 for MCS-r. 

For L=.5, U=2, Table 1 shows the CV(g) (coefficient 
of variation of g-weights) and percentage discrepancy in 
respecting BC. Here (~min denotes the minimum tolerance 
required for a given ridge method so that all the BC are 
met within tolerance. It is seen that all the three methods 
behave quite similarly and the discrepancy in respecting 
BC can be considerably reduced in comparison to non- 
ridge methods. Table 2 shows the relative difference 
(RD) and relative precision (RP) in point estimates for 
four study variables. RD is defined as the ridge- 
calibration estimator minus the regression estimator 
divided by the regression estimator, while RP is the SE 
(regression estimator) divided by the SE (ridge- 
calibration estimator). The variances were computed 
using jackknifing, see Singh and Mohl (1996) for further 
explanation. It is seen that all the estimates give higher 
estimated variance as compared to the usual regression 
estimator. This is expected as explained below. 

Observe that even if some weights are extreme (e.g., 
negative or very high), there may or may not be instability 
in the GR-estimator depending on the study variable. 
Now with respect to the variables studied, GR does not 
seem to have the instability problem because with loose 
bounds [.2, 5], it is known from Singh and Mohl (1996) 
that all the usual calibration methods converge fairly 
quickly with estimated variance similar to that of GR. 
For our example, the bounds are further tightened to [.5, 
2] so that the calibration methods no longer converge for 
the sake of illustrating the ridge methods. Now since the 
ridge methods do not satisfy BC perfectly, ridge- 
calibration estimates, although asymptotically equivalent 
to GR, are expected to have higher variances for finite 
samples whenever GR is not unstable. There is likely to 
be a further loss in efficiency if we drop a BC (i.e. 
increase the tolerance to co) as an alternative approach to 
get rid of the problem of extreme weights. For example, 
one can perhaps drop the second BC and then attempt to 
satisfy perfectly the remaining three BC in this alternative 
approach. However, note that the RS method also 
satisfies almost perfectly these three BC and within 4% 
the second BC. With only three BC (i.e., when the 
second one out of four is dropped), all the three non-ridge 
methods converge in one iteration which implies that GR 
also satisfies RR and the three BC. In this case, the 
discrepancy with respect to the dropped BC is -13.77%, 
much higher in magnitude than the 4% tolerance required 
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by the ridge method RS. REFERENCES 

5. CONCLUDING REMARKS 

The proposed method of ridge-shrinkage is a simple 
iterative method of adjusting sampling weights to meet 
RR and BC within tolerances. Each iteration involves a 
ridge step which modifies the usual GR-formula by 
introducing an inverse cost matrix A. A simple relation 
was established to choose A corresponding to a specific 
tolerance matrix A. The RS-method, like the result of 
Deville and S~irndal (1992), for other calibration 
methods, remains asymptotically equivalent to GR if the 
matrix N-1A tends to zero in probability. The condition 
N -1A--,p0 is satisfied by the adaptive choice of the 
tolerance matrix A as proposed in the paper because the 
GR-weights meet RR with high probability for large 
samples in view of the ADC property. This shows that 
RS is ADC, and its asymptotic variance can be conve- 
niently obtained from the variance expression for GR. 

The RS method generalizes the existing shrinkage- 
minimization calibration method by allowing BC to be 
nonbinding while meeting RR. Some other calibration 
methods, namely, the Huang-Fuller and the truncated 
linear can also be generalized in a similar way. The RS 
method also generalizes the existing ridge methods 
(which include the method of discarding BC as a special 
case) by allowing iterations to meet RR while satisfying 
BC within tolerances. Thus, it is expected to provide a 
useful practical calibration tool as it combines strengths 
of various existing methods dealing with both binding and 
nonbinding BC under RR. 
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Table 1: CV(g) and Discrepancy in respecting BC (FAMEX-Regina City) 
(ec = . 6 7 , [ 3 - . 8 , T I  = .9 ,  ~ = . 9 ,  Vma x - 10, qmax-- 10) 

L = 0.5, U = 2.0, #BC = 4 

Method 

Dicrepancy in respecting BC in % 

CV (g) 1 2 3 4 6r~n(%) 

RS .520 0.00 -3.88 0.00 -0.07 3.88 

Ridge-SMCS .524 3.51 -3.51 0.00 0.00 3.51 

Ridge-MCS-r .589 -9.40 -5.3 0.00 -3.59 9.40 

Table 2: Difference in Point Estimates and Precision Relative to Regression Estimator 

Owned Dwelling FurniturekEquipment 

Method RD RP RD RP 

RS -.070 .881 -.008 .888 

Ridge-SMCS -.062 .869 -.004 .893 

Ridge-MCS-r -.096 .893 -.033 .894 

Women's Clothing Men's Clothing 

RS -.019 .869 -.032 .899 

Ridge- S MCS -.015 .874 -.025 .902 

Ridge-MCS-r -.036 .870 -.032 .894 

Note: RD and RP denote respectively "relative difference" and "relative precision". 
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