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1. I N T R O D U C T I O N  

A permanent random number (PRN) is a 
convenient way of sampling from administrative lists, 
especially if they are computerized. The idea goes back a 
long way, even before the advent of computers -- at least to 
the days when statistical work was still being done on tab 
machines that mechanically sorted punch cards. 

Ben Mandel, for example, instituted the use of 
PRN's for sampling in the 1930's and 1940's at the Social 
Security Administration (e.g., Perlman and Mandel, 1944 
and Perlman, 1988).. At that time he began the Continuous 
Work History Sample. This sample has now tracked U.S. 
social security accountholders for some 60 years. 

In large automated record systems, like Social 
Security, each record typically has an identifying number 
(supposedly unique) assigned in some systematic, usually 
nonrandom fashion (for example, an ID number used 
internally by an agency). Administratively, this number is 
not supposed to change over time. For use in sampling, 
depending on how it was assigned, the number can be 
employed directly or transformed by a conventional pseudo- 
random number generator. In any case, as we will see, 
permanent random numbers afford many advantages, from 
cost savings to variance reduction, especially when 
estimates are required over time. 

In the present paper, we will examine a PRN 
application at the Internal Revenue Service (IRS). Virtually 
all major administrative statistical samples at Internal 
Revenue employ the PRN technology; however, our interest 
here will center primarily on just one of these -- the highly 
stratified Statistics of Income (SOI) annual sample of 
corporate tax returns (e.g., Hughes et al 1996). 

Organizationally, the paper is divided up into 5 
parts. This introduction is Section 1. In Section 2 the current 
SOI sampling process using permanent random numbers is 
described and alternative variance estimators are briefly 
reviewed. Section 3 illustrates, via a simulation, how and 
under what circumstances we might improve the current 
variance estimation for year-to-year change. Then Section 
4 describes what happens when the finite population 
correction factor cannot be ignored. Areas of future study 
are outlined in the last section -- Section 5. 

2. SAMPLE SELECTION USING THE PRN 

The use of permanent random numbers is a fairly 
standard proc~ure in the sample designs at the Statistics of 
Income Division of the Internal Revenue Service (e.g., 
Harte, 1986). The SOl sample discussed in this paper is 
from the population of corporate tax returns (filed on Forms 
1120). For each tax year, a stratified probability sample is 
selected, with sample rates ranging from .0025 to 1. The 
strata are defined by size of the corporation and the type of 
corporation, in terms of the tax form used. The certainty 
strata (generally large corporations) constitute the bulk of 
the sample. 

2.1 Background and Problem Statement. -- For all SOI 
samples, the main advantage of using a PRN in sample 
selection is that the year-to-year sample overlap can be 
increased; this, in turn reduces the variance of estimates of 
year-to-year change. There is a disadvantage, though-- 
namely that the variance estimation can in some cases 
become more complicated. Because of this complexity, 
currently in SOI, sometimes the variance estimator may be 
very conservative. 

To get better estimates of precision for year-to-year 
change, we investigated the use of replication. This 
approach was first set forth by Mahalanobis (e.g., 1946) and 
popularized by Deming (e.g., 1960), among others. In order 
for replication to work, each identically distributed 
subsample or replicate must capture the properties of the 
overall sample design. For PRN sampling, this means that 
each subsample must include the mechanism that results in 
sample overlap. Therefore, the replicates must be defined 
using the permanent random numbers, themselves, so that a 
unit is always put in the same replicate over time. 

The use of replicate methodology could also allow 
users to calculate variance estimates in the cross-sectional 
more easily too -- and without detailed knowledge of the 
sample design -- a clear benefit to users. 

While the annual cross-section estimates of tax and 
revenue items have many applications, SOI's major user, the 
Office of Tax Analysis, is primarily interested in modeling 
economic/tax dynamics over time. In order to increase the 
year-to-year sample overlap, without sacrificing cross- 
section estimates, the current PRN design for corporations 
was first advocated in a 1975 WESTAT contract report. 
Some earlier theoretical papers which may have lead to the 
suggestions in the WESTAT report may be traceable to 
Brewer et al (1972). In any case, the use of the current PRN 
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approach to sample selection, plus the large proportion of 
the sample drawn with certainty can result in a two-year 
sample overlap as large as 70%. 

2.2 PRN Selection Method. -- The PRN sampling builds on 
an administrative process that assigns each corporation an 
employer identification number (EIN) which is unique to 
that corporation. A corporate return is selected into the 
sample as follows: 

(1) The EIN is transformed to an 11 digit permanent random 
number, denoted as T, using a pseudo-random numerator 
generator of the form: T = (c * EIN) modulo n, where c and 
n are large, predetermined integers and 0 < T < n. 

(2) The key is to choose c and n so that values of the 
transforms, T, are roughly uniform and independent. 

(3) Suppose that an individual falls into a stratum with 
probability of selection equal to p. 

(4) If the number consisting of the last four digits of T is less 
than 10000*p, this return is selected into the sample. 

If the same values of c and n are used each year, 
then the probability of an individual being in the sample 
over k years is equal to the minimum of its sampling rates 
over those years. In particular, large or "growing" 
corporations are more likely to stay in the sample over time. 
One last comment, whatever is happening to the sample 
from year to year, at any given point, the PRN method 
always yields a representative cross-section of the 
population, including births. 

Typically, there can be a high correlation in some 
variables from one year to the next, in which case this 
selection technique significantly reduces the sample 
variance for estimates of year-to-year change. Problems 
arise in variance estimation, however. The variance of the 
estimate of a simple difference, say, between the totals in 
years 1 and 2, is 

The first two terms above are the cross-section 
variances in each year and can be estimated in a standard 
way. The estimation of the covariance term, though, cannot 
-- since the probability of a unit being in both samples 
depends on its sampling stratum each year and this can 
change. 

2 .3  Current Variance Estimator. -- Historically, what has 
often been done is to estimate the year-to-year variance 
assuming n__q correlation, i.e. 

where, using the standard notation (Cochran 1977), and 
treating Nh and nh as the known population and sample sizes 
for the h th stratum, the variance of the cross-sectional 
estimate is 

2 
2 Sh 

h Iltl 

where I h = nh/N h is the sampling fraction in stratum h. 
For variables which are highly correlated from year 

to year, and with the SOI design resulting in year-to-year 
overlaps that can approach 70%, this estimate of the 
variance of the difference can be extremely conservative, 
even "punishingly" so. 

2.4 Replicate Variance Estimation. -- For a population 
total, say D, a replicate variance estimator is available as 

: G(G-I) _ 

where 

and the G random group replicate estimates, D v are each an 
estimate of the population total D. 

This variance estimator will be approximately 
unbiased, assuming the sampling rates are small in every 
stratum (e.g.,Wolter 1985). If the finite population 
correction factors cannot be ignored, Wolter provides an 
alternative approach that, while awkward, seems workable 
for cross-section or level estimates. In Section 4 we will 
provide another technique that works for both level and 
change estimates. 

In Sunter (1986), there is some discussion of the 
variance properties of permanent random number samples; 
but mainly in the cross-section and for the special case ot 
statistics based solely on a simple longitudinal overlap from 
year to year. In Hinkins, Jones and Scheuren (1988), some 
of Sunter's observations are made with the SOI corporate 
application emphasized. The focus in the 1988 Hinkins et 
al paper, however, is on how to better control the overlap as 
the population elements shift from stratum to stratum over 
time. 

Cross-section variances can be approximated in 
the usual way as all authors point out. However, in none of 
these settings are detailed approaches given for handling the 
impact of the overlap when estimating the variance of 
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measures of change from year to year. 
Our proposal here, for both cross-section and time 

series variances, is to use the PRN itself (digits other than 
those used in the selection) to create permanent replicates 
that can be employed in calculating variances. Two digits of 
the 11 digit PRN should allow for adequate degrees of 
freedom in the estimates. Perhaps 25 replicates, with 24 
degrees of freedom, might be enough. The "t" value for a 
95% confidence interval in this case would be 2.06, only 
slightly larger than the "z" value of roughly 2 that would 
ordinarily be used. 

While clearly arbitrary, 25 replicates should be 
workable for SOI. Too many replicates raises the possibility 
of strata without observations. The SOI samples are large 
enough, though, to safely handle 25 replicates without this 
problem arising. 

3. A SIMULATION STUDY 

A population was created to form the basis of the 
simulations to be discussed. Two variables were generated, 
X and Y, highly related to each other and connected over 
time as well. These were simulated from a mixture of 
Gamma and Normal random variables for a population of 
10,000 units. A stratified design of five strata, with an 
expected sample size of 500 in each year, was superimposed 
on this structure. The strata boundaries were fixed in the 
first year and remained unchanged even though the 
population values for X (the strata variable) grew over time. 

A form of optimum allocation was employed for 
the first year to select strata boundaries but in both years the 
selection rates (Ih) chosen were far from proportional to the 
individual strata sizes. Births and deaths were not included 
in the simulation. A take-all stratum generally would arise 
in such populations too; but this was a feature we thought 
could be added later. 

A 100 identically designed stratified samples were 
drawn from the population and divided into 11 replicates. 
The variables of interest were X, Y, and the ratio Y/X. 
Naturally, our focus was on measures of change in these 
quantities from one year to the next. The random group 
replicates were defined within each sample using part of the 
PRN, so that units would stay in the same replicate over 
time. Crucial to the interpretation of any approximate 
variance calculations is the degree of year-to-year 
correlation. Scatterplots, again based on all the replicates 
for all 1 O0 samples, show that for X there is clear evidence 
of a strong relation. For Y this is less and for the ratio Y/X 
there is almost no pattern. 

A simple natural competitor for the replicate 
variance calculations is to use the cross-section estimates 
calculated for each year and to treat the yearly samples as 
independent, as described in Section 2. This is, in effect, 
what is done currently in SOI. It is referred to here as the 
"naive" variance estimator. For the simulations, we ignored 

the fpc's in both the replicate and naive approaches. For 
each variable and for each of the 100 samples, the estimated 
standard error of the change was calculated using both 
methods. To compare the two techniques, the ratio (see 
Table A) was then calculated of the standard error using the 
replicate method over the standard error using the naive 
variance estimator. 

Table A. -- Simulation Results: Ratio of Replicate to 
"Naive" Standard Error in 100 Samples 

X Y Y/X 

Mean .73 .93 .99 

Median .73 .94 1.O0 

IQR 

Range 

(.60,.83) 

(.37,1.16) 

(.82,1.05) 

(.57,1.31) 

(.89,1.09) 

(.59,1.29) 

Using the naive variance estimator for X resulted 
in an overstatement in standard error that was "punishingly 
conservative." In 94 of the 100 samples the naive estimator 
of variance overestimated the standard error as compared to 
using the replicate variance estimator. The replicate 
estimate averaged just 73% of the naive, conservative 
approach. 

For the variable Y, the overstatement in standard 
error using the naive approach, as table A shows, turned out 
to be only a minor annoyance. Still the replicate variance 
approach was marginally better. For the ratio of Y/X, the 
confidence interval was lengthened slightly by using the 
replicate estimates over what would have been obtained by 
combining standard textbook estimates taken from the 
separate cross-sections. This last result is the penalty that 
has to be paid for using "t" rather "z" as the reference 
distribution for inference. 

In summary, for variables with strong year-to-year 
relationships, permanent replicate variance estimators make 
sense. For variables with weaker or almost no year-to-year 
relationship, there appears to be little to gain or lose. Since 
SOI samples typically have variables of all types -- from 
those that are weakly related to those that are strongly 
related over time -- then acquiring the ability to calculate 
replicate variance estimates seems wise. 

4. FINITE POPULATION CORRECTION 

The replicate variance estimate is approximately 
unbiased if the finite population correction (fpc) is close to 
1, i.e. ifthe sampling rates are small. This problem was not 
addressed in the simulation study -- neither estimator 
included a finite population correction. 
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4.1 Problem Formulation.-- Consider estimates of means or 
totals from a random sample of size n = mG. The sample 
can then be divided into G random groups, each of size m. 
Within each random group, an estimate of the total is 
calculated as 

X : X(~)i 
g m i.l 

and the replicate estimate of the total is equal to the original 
estimate 

l~f =f. 

The replicate variance estimate is 

vz : a(a-1) _ 

and 

E : 

(fpc) (fpc) 

Therefore, the replicate variance estimate is a conservative 
estimate, overestimating the variance, and is only 
approximately unbiased when the fpc is close to one. 

For a stratified sample, such as ours, if the fpc's 
were equal for every stratum, one could simply correct the 
replicate variance estimator. Having nonconstant fpc's 
across strata would be typical in highly skewed populations 
and is true in our case too; hence a simple adjustment is 
unavailable to us. 

4.2 A Partial Solution. -- When the sampling rates are no 
larger than .5, there is a reasonably straightforward way to 
adjust the definition of the replicates in order to get an 
approximately unbiased estimate of variance. When 
sampling rates are between .5 and 1.0, there is also a 
solution, but the approach we have so far is rather 
cumbersome; and will not be discussed here. 

To motivate our idea, notice that the expected 
value of the variance estimator V~ can be written (e.g., 
Wolter 1985) as 

E (V I) :Var (X.) -Cov (Xa, Xb) , a~b 

covariance between the estimators from different random 
groups will be negative; and VI will, as a result, be 
positively biased. What if one could alter the covariance 
between replicate estimates, so that the covariance was 
approximately zero? Then, the replicate variance estimator 
V~ would be nearly unbiased. 

Assume that the original sample has been divided 
into G dependent random groups each of size m. And 
assume that the groups are randomly ordered; also suppose 
that the units within groups are randomly ordered, so that we 
can denote the sample and the random groups as n units, 1, 
2,..., n. The first group consists of units 1 through m, the 
second group consists of units m+l,  m+2, ..., 2m, etc. For 
example, if n = 12 and G = 3, we can denote the groups as: 

Group Units 
1 x x x x  

2 x x x x  

3 X X X X  

Now we want to form 3 new groups by randomly 
selecting k units in the original group 1 to overlap with 
group 2, k units from the original group 2 to overlap with 
group 3, and k units in the original group 3 to overlap in 
turn with the new group 1. In the example above, if k = 1, 
this might look like: 

Group 
1 

2 
3 

Units 
X X X X  

X XXXX 

X X X X X  

Therefore there are still 3 groups, but now each 
group has m+k units, and each adjacent group shares k 
units. Unfortunately, the replicate estimate of the total, X, 
no longer exactly equals the original sampl~ estimate of the 
total, X. Still, one may interested in using V1 as an estimate 
of the variance of X,. In this case we have 

(G-I) (m+k) 2 

and by solving for the value ofk which makes the coefficient 
on S 2 equal to zero, we can construct an unbiased estimate 
V~. To be useful, the solution k must satisfy 0 < k < m. If 
the sampling rate and the number of replicates, G, satisfy 

n 1 1 -- < _+ 
N 2 2 (G-l) 

then the solution is 

If there is no intervention, because of the fpc's, the 
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k _ 

N-(n-m) -~N(N-2 (n-m)) 

G-1  

Therefore, for sampling rates no larger than .5, this is a 
solution for any value of G. This result is only an 
approximately unbiased estimate because we must round the 
exact solution to get an integer value for k. In order to 
assure a conservative estimate of variance, one should 
always round down. 

4.3 Further Considerations. -- If rather than picking a value 
of k, we instead want the subsampling rate for the overlap, 
k/m, we find that this is a function only of the original 
sampling rate and the number of groups: 

k 
p ~- - -  - r - l - v / r ( r - 2 )  

m 

1 G N G 
where r= -- ~ = 

f (G-l) n G-I 

In some instances, one may want a replicate 
variance estimate that is an unbiased estimate of the 
variance of the original sample estimate. In this case we 
find 

E (Vz) -V(X) - 

N2 ( 2k _ i _ k (m-k) ) S 
(G-l) (m+k) 2 N n (m+k) 2 

and by solving for the value of k, say kl, that makes the 
coefficient on S 2 equal to zero, we have an unbiased 
estimate. In order for 0< k~ < m, the same condition as 
before is required, and the solution in terms of the 
proportion overlap is 

k I f 
pl~ -- = m l-f (I ') (a+l) 1 -  1 -  8f(G-l) 

2 (l-f) (G-l) (G+I) 2 

where this solution lies between 0 and 1. Note that for both 
p and p~, if the sampling rate, f, is very close to zero, then 
the proportion of overlap is zero. Now if the fpc is 
approximately 1, this method indicates that no overlap is 
required -- as we would have hoped from our earlier 
discussion. 

Table B shows some examples of the proportion of 
overlap required to achieve an approximately unbiased 
replicate estimate of variance for three original sampling 

rates, f, which are all less than or equal to .5. As expected, 
the amount of overlap needed increases with the sampling 
rate. In the table, the proportion of overlap required is 
shown for estimating both the variance of the replicate 
estimator and the variance of the original estimate. One 
needs significantly more overlap in order to estimate the 
variance of the original estimate. 

Table B.-- Proportion of Overlap 

f G 

.10 20 

50 

.053 

.054 

100 .055 

.30 20 .208 

50 .218 

100 .225 

.50 20 

50 

100 

.635 

.752 

.818 

Pl 

.100 

.107 

.109 

.387 

.412 

.428 

.900 

.960 

.980 

To illustrate, suppose one has a stratified sample 
with three strata and sampling rate .10, .30, and .50 
respectively, as shown above. Suppose further we wish to 
employ a replicate variance estimator with G=20 replicates. 
Then each stratum is randomly divided into 20 groups. In 
the first stratum, approximately 5% in each group is chosen 
to also be included in the next group. In the second stratum, 
again 20 groups are defined, but in this case the rate of 
overlap is 20%, etc. In this way, G replicates of equal size 
are defined. 

When the sampling rates are no larger than .5, 
then, we can devise replicates that produce nearly unbiased 
estimates of variance. It can be seen from Table B why this 
is limited to sampling rates of no larger than .5. When the 
sampling rate is equal to .5, as G increases, the percent 
overlap approaches 100%. The maximum amount of 
overlap has been reached. 

As noted already, it is possible to use an overlap 
technique when the sampling rates fall between .5 and 1.0; 
but the method becomes more complicated and is not 
discussed here. 

5. FUTURE STUDY 

• This paper indicates several directions for further 
study. Two problems were discussed: (1) The use of 
"permanent" replicates for variance estimation -- in order to 
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improve on the "naive" standard error estimates of year-to- 
year change. (2) A method to pursue for improving the 
replicate variance estimator for any stratified sample -- 
when the fpc's cannot be ignored. 

5.1 Value of Replicate PRN Variances. -- For SOI samples, 
like that for corporations, the number of variables which 
have punishingly conservative confidence intervals for 
estimates of change is large. Clearly in such settings a look 
at the operational issues of providing for permanent 
replicate variance estimation may be warranted. For other 
SOI samples, such as the sample of individual returns, 
permanent replicates may or may not be cost effective. In 
any event, to determine the relative merits of this 
methodology for the SOI environment, more simulations 
need to be done, constructing variables with longer tails; 
and, perhaps, stronger year-to-year relationships than we 
used initially. 

5.2 Handling fpc's. -- We already have a general approach 
that builds in enough dependency between replicates so that 
the conventional replicate approach works routinely, no 
matter what the fpc's differences are from strata to strata -- 
as long as all sampling rates are no larger than .5. The SOI 
problem lies within these bounds. The next step is to put 
this technique in place, using both the overlap and the 
"permanent" replicate definition; and see, perhaps, how well 
the two work together in the SOI corporate sample. 

For applications where at least one sampling rate 
is between .5 and 1.0, further work is needed. Our starting 
point for this paper and for this continuing work is the 
notion that when doing replicate estimation, the certainty 
strata are usually included in each replicate. For these 
strata, in other words, the random groups are identical, 
having complete and identical overlap in every replicate. As 
the sampling rates get larger and larger, therefore, we want 
a method which converges to this form of replication. 

5.3 Handling complex estimation. -- We have already 
calculated the replicates with the full sample weights and 
with weights conditioned on the actual replicate strata 
sample sizes. Only the full sample results are discussed 
here. The raking estimates used in the corporate SOI 
program have not been reflected (e.g., Oh and Scheuren 
1987). The pertormance of our approach in a raking setting 
needs to be checked. We are unsure whether separate 
raking weights by replicate will be needed. 

5.4 Last Words.-- The key, as in all applied work, is to give 
the customer all the good they can afford (to rephrase 
Jefferson whose original words were "To give the people all 
the good they can endure"). We hope to continue this effort 
with that dictum in mind. 
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