
C A L I B R A T I O N  E S T I M A T O R S  B A S E D  O N  S E V E R A L  S E P A R A T E  S T R A T I F I C A T I O N S  

Phillip S. Kot t ,  USDA/NASS 
3251 Old  Lee Highway, Fa i r fax ,  VA 22030 

Key Words" Design, Model, Permanent random 
number, Probabity proportional to size 

Many of the list flame surveys conducted by the National 
Agricultural Statistics Service (NASS) are integrated in the 
sense that survey variables cover a range of heterogenous 
items such as planted crop acres and grain stock 
inventories. Bankier (1986), Skinner (1991 ), and Skinner 
et al. (1994) have shown how an old method of combining 
independently drawn stratified simple random samples-  
where each sample comes from a (list) frame with a 
different stratification scheme - can be made reasonably 
efficient (i.e., the variance of the estimation strategy would 
not be too large). 

Even more appealing for many applications would be a 
sampling design that tends to select the same units from 
every frame. This paper explores several such designs. 
Three make use of permanent random numbers. The 
fourth, and best, uses a variation of systematic probability 
proportional to size sampling. 

The paper shows how a calibration (i.e., reweighted) 
estimator can provide relative efficiency by capturing what 
we know about the original stratum sizes in the estimation. 
It also addresses variance estimation for the contemplated 

estimation strategies. 
A final section points out that the use of a least-squares- 

based calibration technique can do more than simply reflect 
original stratum sizes. In fact, one may want to do away 
with stratification entirely in certain applications. 

1. An Unbiased Multiplicity Estimator 

Suppose we have F independent frames; for example, a 
sorghum frame, an oats frame, and a general grain stocks 
frame. Each frame is stratified independently, and without 
replacement simple random samples are drawn fi'om each 
stratum of every frame. Frame f (say, the oats frame) 
contains 1-If strata; stratum h (large oats operations) in 
frame f has N~ population units, out of which rt~ units are 
selected. The union of the F frames must cover the entire 
(list) population, but no single frame need be complete. 

One unbiased estimator for a population total T = EicP Yi 
is the simple multiplicity estimator: 

tM = ~.ep y~,)/E[n(~)], (1) 

where P denotes the entire population, and n6) is the number 

of times unit i is selected for the sample from any flame. 
Observe that r~0 = 0 for the population units not in the 

sample. In the great majority of applications, n(i) will be one 
for most sampled units, but n(i) > 1 is a possibility with this 
design. 

The expected number of times unit i will be selected for 
the sample is E[rki)] = ~v Pif, where Pif is the probability of 
selecting unit i in the stratified simple random sample fi'om 
frame F; that is, p~ = rt~/N~, where unit i is in stratum h of 
frame f. 

Skinner et al. provide a variance estimator for tM under 
this design. There is also a Horvitz-Thompson estimator 
for T under the design, namely tar = ~i,s Yi ~hi, where S 
denotes the sample and "J~i " - -  1 - (1 - pil)(1 - p~) "'" (1 - Piv). 
Estimating the design variance of tar, however, is difficult. 
See Bankier (1986) for further discussion of this approach. 

2. Sampling Strategies Using Permanent 
Random Numbers 

The sampling design discussed above is independent 
across flames. For many of NASS's purposes, however, it 
would be convenient if the design were not independent 
across frames. In fact, it is often a desirable for a design to 
have a tendency to select the same operators in every frame. 

To this end, suppose each unit began with a target p~ in 
each frame that was constant for all units in stratum h of 
frame f. One can then assign unit in the population a 
permanent random number (pro) drawn from the uniform 
distribution on the interval [0, 1). Unit i is selected for the 
frame f sample when its pm is less than Ptf. 

The result is a Poisson sample in which the probability of 
selecting unit i for the sample is ni = maxf {p~f}. An 
unbiased Horvitz-Thompson estimator for T under this 
design is 

tp = EieS Yi/maxf {ptr}. 

A collocated variant of this design assigns each 
population unit a unique pm from among the members of 
the set {0, I/N, 2/N, 3/N, ..., (N-1)/N}. In practice, one 
can first draw provisional pin's for each unit and then 
assign 0 to the unit with the smallest provisional pro, 1/N to 
the units with the secx)nd smallest provisional pro, and so 
on until (N-1)/N is assigned to the unit with the largest 
provisional pro. The estimator tp remains unbiased under 
collocated sampling. 

819 



A third version of this design begins with target n~ values. 
The units in stratum h of frame f with the n~ smallest pin's 
are selected for the sample. A Horvitz-Thompson 
estimator under this sample size prn design requires one to 
compute the selection probabilities of the sampled units - a 
difficult task which may have to be approximated by 
simulation. 

3. A Systematic Probability Proportional to 
Size Design 

Another sampling design with the same selection 
probabilities as the Poisson (and collocated) sampling 
scheme described in the last section consists of the 
following steps: 

0) When necessary, create an additional "stratum" for each 
flame consisting of those units not in any design stratum. 

1) Divide up the population into mutually exclusive cells 
such that every unit in a particular cell is in the same 
stratum of each frame (e.g., the large oats stratmn, the 
medium grain stocks stratum, and the no sorghum stratum). 

2) Randomly order the population units in each cell and 
then sort the cells themselves in any order. This results in 
a list of all population units. 

3) Draw a systematic probability proportional to "size" 
(pps) sample from this list using the ni described in the 
discuss,on of Poisson sampling as the measures of size (the 
word "size" is in quotes because the ~i are not really size 
measures in a conventional sense). 

The systematic pps sampling design introduced above will 
always result in a sample of size close to ~i~P hi. In fact, if 
~.~pn i is an integer, then the sample size will exactly equal 
that sum. Otherwise, the sample size will be one of the two 
integers closest to ~i,P hi. Similarly, the expected number 
of sampled units in a cell, C, will be EieC hi, while the actual 
sample size will either be ~i,c ni or one of the two integers 
closest to it. 

Consider now a particular stratum h in a particular frame 
f with target sample size n~. For a unit i in this stratum, 
ni ~ n~ /N~ by design. Let P(fh) denote the set of 
population units stratum fh. The expected number of 
sampled units in fh is ,V_.a,r~o n i 2 ate.  There is no 
guarantee that the realized sample size in the stratum will 
be greater or equal to n~. Nevertheless, given the above 
inequality and the lower bounds on the sample sizes of the 
cells within fh, the sample size in stratum fh will never be 
far below rt~. 

The advantages of this design over Poisson and collocated 
sampling is obvious. The sample it produces has a more 
stable size and a greater likelihood of meeting 
frame/stratum requirements. Sample size pro, by contrast, 
will always meet frame/stratum requirements, but it does so 
at a cost: the design has a less stable overall sample size, 
and selection probabilities can be very difficult to 
determine. See Amrhein et al. (1996) for more on these 
four sampling designs. 

4. Calibration 

The problem with both tu and tv (or t~) is that they are 
not usually very good estimators for T in term of precision 
(variance). One of the properties of single-frame, stratified 
simple random sampling is that the conventional expansion 
estimator estimates the stratum population size perfectly 
(i.e., with zero variance). In our multiple frame set up, 
however, neither tu nor tp will estimate the N~ perfectly 
in most applications. 

Let us define wi ° = rk0/E[n0) ] as the original sampling 
weight ofunit i in tu. Similarly, w f = 1/maxf {Ptr} in tp and 
1~hi more generally for a Horvitz-Thompson estimator. 
The Skinner articles (following Bankier's original 
suggestion) propose raking to create a set of adjusted 
weights {w i c} such that 

E wc = N~ (2) 
i~S~ 

for each stratum h in every frame f, where S~ is that part of 
the sample that is in stratum h of frame f regardless of the 
frame(s) from which the units were selected. 

The Skinner articles do not say so, but for equation (2) to 
be logically coherent, units not assigned to any stratum of a 
particular frame for sampling purposes must be assigned to 
such a stratum now. One way to do that is to add an 
estimation stratum to every incomplete frame containing all 
population units not in the frame. This may already have 
been done to draw a systematic pps sample. 

Deville and Samdal (1992) call (2) a calibration 
equation. They point out that there are a number of ways 
to compute the calibration weights, the wi c, so that equation 
(2) is satisfied and wiC/wi ° is in some sense close to 1 for all 
i. One method is raking as suggested in the Skinner 
articles. Another method uses least squares. Either way, 
the resulting estimator 

tc -- EieS wiCyi, 

where S denotes the entire sample, will be nearly design 
unbiased because wiC/wi ° is close to 1 for all i. 
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The estimator t c is also unbiased under the model: 

Yi = [30 "I- ~ ~ %~lh ~" Ei, (3) 
f=l t1=2 

where the dummy variable, ~ is 1 when unit i is in stratum 
h of flame f (sampled or not) and zero otherwise, while Ei is 
a random variable with a mean of zero. The 130 and the 13n, 
are unknown constants ([30 represents the mean y-value for 
a unit in the first stratum of every frame; that is why the 
second sum excludes h = 1). The same .d~ values apply to 
every survey item (y) of interest, while the [3 values change 
with the survey item. For many survey items, 13~ values will 
be zero when frame f (say, grain stocks) is irrelevant to the 
item (say, planted oat acres). 

5. Simple Post-Stratification 

It is the satisfaction of the calibration equations in 
equation (2) that assures the unbiasedness of tc under the 
model in equation (3). One question that needs to be asked 
before proceeding in practice is whether the effort needed 
for satisfying the calibration equations in (2) is worthwhile. 

For example, we may not care about the other frame 
stratifications when estimating planted oat acres in a state. 
Let f=l be the oats frame. A useful set of calibrations 
weights for oats estimates would be 

wi c = (N,h / 2~ wj°)wi °, (4) 
j6Slh 

when i is in stratmn h of the oats frame. (At noted above, if 
the oats frame is incomplete, we may need to add an 
additional oats "stratum" to cover sample units with oats 
from the other frame samples that are not in the oats frame; 
this will only be possible, of course, if such units exist:) 

The simple weight adjustment in equation (4) is identical 
to post-stratification. Skinner calls the resulting tc a "ratio 
estimator" ("separate ratio estimator" would be more 
accurate). It is not hard to see that this estimator is 
unbiased under a model in which the units within the same 
oats stratum have a common mean. 

The logic behind equation (4) allows there to be a 
different set of weights for each frame. It is usually 
convenient, however, to have as few weights as 
possible. As a result, we will concentrate on developing a 
single set of weights for all estimators from now on. 

6. General Calibration Using Least Squares 

In this section we discuss a general method of satisfying 
calibration equations. Let x~ = (xn, ..., x~o) be a row vector 
containing known values for every unit in the population P. 

The general set of calibration equations we want to satisfy 
are 

E w~Cxi, = E  x~ for g=  l, 2, ..., G. (5) 
ieS ieP 

Expressed in vector notation, this is ~s wiC% = ~P %. 
Suppose x~ in equation (5) is 1 when i6 P(th) and is 0 

otherwise. Then the general calibration equation (5) 
collapses to the specific calibration equation (2). 

One good method for calculating general calibration 
weights, a variant of least squares, is discussed below. Let 

wF = Z % ( Z w7%'%)-' wiO% • 
jeP jeS (6) 

= w? + ( Z % - Z w?%) ( Z w?%'%)-'w? %' 
jeP jes jes 

for all sampled units i. The last equality assume the 
existence of a row vector p such that p%' = 1 for all i. 

Using the calibration weights in equation (6) renders tc = 
(~i,P xi)b, where 

b = ( ]~ wj°xj'xj) ' ~ wi°xi'Yi . 
jeS ieS 

Observe that b is the weighted least squares estimator for 
13 in the model: 

Yi = Xil~ -~" Ei, (7) 

where E(E) = 0. It is now easy to see that t c is unbiased 
under this model (because 

E,(tc) = (Z,,P xt)[3 = E~(ZiEp Yt) = E,(T)). 

In the simple case of post-stratification (equation (4)) with 
f being the relevant frame, xi8 = 1 when i is in stratuna g of 
frame f and zero otherwise. For the model in equation (3), 

xi = (1, di12 ..... dimo~, ~2 ..... ~a(2), ..-, din, ..., divH0~), 

where H(f) denotes the last stratum in frame f. Note that 
will this %, p = (1, 0, 0, ..., 0). 

7. A Generalization 

Recently, Brewer (1994) has proposed the following 
alternative to equation (6): 

Wi C --  Wi 0 + 

( E %- E wj°%) ( E {[wj ° -  1]/zj}%'%)-~{[ w°-  1]/%}%, 
jeP j6S j6S (6') 
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where the z i are to-be-determined constants. Brewer's 
problem with equation (6) is its tendency to produce 
calibration weights that are less than unity. Equation (6'), 
while it too can produce very small (and even negative) wi c 
usually will behave better than (6) - especially when the 
zj are well chosen (exactly how depends on the context). 
For example, consider the version of (6') that is analogous 
to equation (4): 

N,h- E wj ° 
jeS~h 

wi c ----wi 0 + 
E (wj ° - 1 )  

jeSlh 

(w~ ° - 1). (4') 

When wi ° is close to unity, the wi c produced by equation (4) 
can dip below 1, while the calibration weights produced by 
(4') cannot. 

Equations (6) and (6') can both be viewed as special 
cases of the general form: 

wi c = wi ° + ( E ~ - E w?~O ( E ~wf~'~)-'¢wi%. 
jeP jeS jeS 

(8) 

In equation (6), c~ = 1 , while in equation (8), c~ = 
(w~ ° - 1)/(w~d ]. The scalar d ican be called a "ttming" 
constant. Its function, when it has one, is to keep the values 
of the wj c within desired bounds. 

8. The Variance Under Non-Replacement 
Sampling Designs 

Suppose we have a calibration estimator with weights 
satisfying equation (8). Let B = ( ~p c~xj'xj) -~ ]~p ~x(yi, and 
ei = Yi - xiB. Now the design mean squared error of t c = 
]~s wiCyi is identical to that of ]~s wiCei because 

ES wiCYi- EP Yi =Es wiCei- Ep ei. 

Given the sampling designs under consideration, it is not 
hard to show that w c/wi ° is 1 + Op(1 A/n) for all i, and 
]~p xi/~s wi°xi is also 1 + Op(1 A/n). As a result, 

]~ wiCe~ = ]~ w~°e~ + 

i~S i~S 

( E xi - E wi°xi) ( E c~wi°xi'xj)" E ~w~ ° x~'e, 
j~P j~S jeS ieS 

-~ E wfei. 
i tS  

In this section, we will confine our attention to non- 
replacement sampling schemes, like the three pm designs 

and the systematic pps design discussed previously. Let n~, 
denote the joint selection probability of units i and k. Then 

MSED(tc) = VarD(ES wi°e0 

= E (wi ° -  1)ei 2 + ,Y-., [(']'l:ik/ni~0-llei% 
i~P i*k 

Under the Poisson version of pm sampling, the selection 
of one unit is independent of whether another unit has been 
selected. This means that n~, = nin k. The design mean 
squared error of t c thus collapses to ]~v (1/n i - 1 )ei 2. 

For the other two versions of pm sampling, n~, will be 
slightly less than n~nk, and no simple expression for the 
design mean squared error of t c appears to exist. 
Nevertheless, given the nature of the ei's (they are 
sometimes positive and sometimes negative, with an 
average value around zero), it may not be unreasonable to 
assume that 

~i,k [(/l:t/rl:irl¥) - 1 ]eiek = 0. 

For the systematic pps design, n~, may be considerable less 
than nink when i and k are in the same cell. Moreover, 
when i and k are in the same cell, eie k will - if anything- 
have a propensity to be positive reflecting an "interaction" 
effect not captured by the model in equation (7). 
Consequently, ~p (1/r I: i - 1)ei 2 may be an overstatement o f  
true design mean squared error. 

Isaki and Fuller (1982) call the model expectation of the 
design mean squared error of t c the "anticipated mean 
squared error" of the estimator. This value is of most use at 
the planning stage of a sample survey. 

ffthe model in equation (7), Yi = xi~ + El, holds and the E i 
are uncorrelated, then the anticipated mean squared of t c is 

E~[MSED(tc)] = E~ { ED[(E s WiCEi- ~p El)2] } 

-~ ~_,p(1/n i - 1)E,(ei 2) + 

[(n~/nin 0 - 1 ]E~(EiE 0 
i*k 

E~, (I/n~ - 1 )Ee(Ei2). (9) 

It is of some interest to note that using Poisson, collocated, 
and systematic pps sampling result in estimators with 
identical anticipated mean squared errors. 

Suppose we had used stratified simple random sampling 
and selected unit i with probability Pif g rq, where f is the 
frame relevant to y. It is not hard to show that 
theanticipated variance of the simple expansion estimator 
would have been ]~p (1/Pif - 1)Ee(Ei2), which is at least as 
large as the right hand side of equation (9). Thus, there are 
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gains from "integrating" the samples from various frames 
as we have effectively done. 

9. Variance/Mean Squared Error Estimation 

If we accept that the design mean squared error of tc is 
approximately VD = ~e(1/ni - 1)e~, then a nearly unbiased 
estimator of this design mean squared error is 

VD = Y-s (1/rq 2 - 1/r~)ri 2, 
where r i =Yi- xib " et Since wi c - (1/nO(1 + Op(~/n)), the 
alternative 

v = ~s ([wiC] 2 - wiC)ri 2 (10) 

is also nearly design unbiased. 
Let us now look at the model in equation (7), and again 

assume that the e i are uncorrelated with E(ei :) = oi ~-. 
The model variance of tc as estimator for T is 

E~[(tc- T)'] = E~[(~,swiCy~- Ep y.02] 

= E,[(Es wi c Ei- EP E0 2 

"- ES (Wg)2Oi2 - 2 E$ wiCoi 2 + EP Oi 2" 

If we add the additional assumption o~ ~ = x~T for some 
vector T, then the model variance of tc is 

V,--  ES ([wiC] 2" wiC)oi 2" 

Since E(ri ~) - oi 2 + O(1/n) under mild conditions, v in 
equation (10) is a nearly unbiased estimator of the model 
variance oftc as well as the design mean squared error of tc. 
It should also be noted that the assumption oi' = x~), is not 

really necessary when all wi c >> 1 so that V, .~ ~s (wi c)~oi 2. 
The appendix (available from the author upon request) 

explores an alternative method of variace/mean squared 
error estimation using a delete-a-group jackknife. 

10. Is Stratification Necessary? 

In Section 4, it was pointed out that if calibration weights 
were design to satisfy equation (2), the resulting estimator 
would be unbiased under the model in equation (3). In 
Sections 6 and 7, a general way of producing calibration 
weights was discussed that producexl an estimator unbiased 
under the model in equation (7), of which the model in (3) 
was a special case. In many applications, there may be a 
more appropriate model on which to based calibration than 
the one in equation (3). For example, if there was a 
continuous control variable used to stratify a particular 
frame, it makes more sense to use that variable directly in 
the model rather than indirectly through frame/stratum 

identifiers. For a survey of chemical use on vegetables, say, 
it makes more sense to treat the farm acres of each 
vegetable of interest as the comtmnents of rs in equation (7), 
rather than creating a separate dummy variable (a .duo for 
all but one stratum of every vegetable frame. 

In fact, for some applications, we may want to abandon 
stratification at the design stage as well. For example, in the 
vegetable strvey discussed above, rather than stratifying for 
each vegetable, a tentative univariate pps selection 
probability, Pic = nov~/~j,v vjo, can be computed for farm i 
based on its acreage, vio, of vegetable c, where n¢ is the 
target sample size for the vegetable. The farms' actual 
selection probability would then be its largest tentative 
selection probability across all vegetables, 11; i "- max~{p~}. 
Sample selection would be by systematic pps with farms 
sorted by, ~ the presence or absence of the least common 
vegetable of interest to the survey, then the second least 
common, and so forth. As a result of this selection process, 
most should vegetables at least meet their sample targets. 
See Hicks et al. (1996). 
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