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Introduct ion  

Suppose we are required to make some inference 
about population parameters. In many practical 
problems, we have some information about the pop- 
ulation. For example, some population values of the 
auxiliary variable x are known, such as the popula- 
tion mean or median. Another example is that we 
may know that the population variance is a function 
of the population mean. By using this kind of knowl- 
edge, we would like to provide improved inferences 
on the population parameters such as the popula- 
tion mean and the population distribution function. 
Empirical likelihood methods, recently introduced 
by Owen (1988, 90, 91) in the context of iid ran- 
dom variables, provide a systematic nonparametric 
approach to utilizing auxiliary information in mak- 
ing inference on the parameters of interest. Hart- 
ley and Rao (1968) gave the original idea of empir- 
ical likelihood in sample survey context, using their 
"scale-based" approach. Chen and Qin (1993) ex- 
tended their results to cover distribution function 
and median. Qin and Lawless ( 1994, 95) used em- 
pirical likelihood and estimating equations in the iid 
case to deal with interval estimation or hypothesis 
testing. They obtained an empirical likelihood ratio 
test statistic (ELRS) and its asymptotic distribution 
under null hypothesis. The aim of this article is to 
study the case of stratified random sampling. 

In section 2, we give the maximum empirical like- 
lihood estimator (MELE) for the parameter of in- 
terest, where we know the mean of X of the auxil- 
iary information x and samples are taken without re- 
placement in each stratum and independently across 
strata. Some large sample properties of MELE are 
also discussed. The empirical likelihood ratio esti- 

mator (ELRE) is discussed. The results show that  
MELE is equal to ELRE. Empirical likelihood ratio 
tests (ELRT) are also discussed. In section 3, we 
use empirical likelihood and estimating equations to 
deal with interval estimation and hypothesis testing. 

2 Empir ica l  Likel ihood Infer- 
ence Us ing  Stratif ied Ran-  
dom Sampl ing  w i thout  Re- 
p lacement  

2.1 I n t r o d u c t i o n  

Suppose that  a target population is divided into 
H strata  with known weight Wh for all stra- 
tum h, ~ h  Wh -- 1. In s t ra tum h there are 
Nh units with values Zhi(i -- 1 , . . . , N h ; h  = 
1 , . . . ,  H), where Zhi is a d-dimension variable, Zhi -- 
(x~,i,Y~,i) r, xhi and Yhi are d - p  and p dimen- 
sions respectively and r denotes the transposition. 
Denote the h th s t ra tum population mean, median 

, , T )7" and distribution function by (X~, y~ ) r ,  (m~h my h 

and Fhgh(S) -- ghl{6(z~l) + . . .  + 5(ZhN~)} re- 
spectively, where 5zh, is the point measure at 
zhi. Also, let (X  r, Yr ) r ,  (mrx, m~.) and FN(S) -- 

H ~ h = l  WhFhgh(s) be the mean, median and dis- 
tribution function of the target population respec- 
tively, where N - E g h=l Nh. Obviously, X = 

H Eh=l  WhXh, Y - EhH=I WhYh. We want to make 
inference about target population parameters such 
as ]7" or m y .  

2.2 M E L E  wi th  X known 

Suppose that  Zh l , ' ' ' ,  Zhnh is a simple random sam- 
ple without replacement from s t ra tum h with distri- 
bution function Fhgh for all h, and that  the samples 
are selected independently across the strata.  The 

798 



empirical likelihood for the above sampling scheme 
can be approximated by 

L -  IIH=lII'~h=lPh i (2.1) 

if nh < <  Nh and large Nh, where Phi -- Pr ( zh  -- 
zhi) and zh -- (Z~h, y~)r has the distribution function 

F h N h  • 

We consider the case of known vector of popula- 
tion means, X, of the variable x - ( x l , . . . ,  Xd-p) ~" 

H H Yh 

f( -- E WhE(Xh) - E WhNhl E Xhi. (2.2) 
h = l  h = l  i = 1  

Clearly, the maximum likelihood estimator should 
be sought among distribution functions satisfying 
(2.2).  Using the same argument as in Owen (1990), 
we need consider only estimators of FhNh whose sup- 
port is contained in the set of observations. The 
problem therefore reduces to maximizing 

subject to 

and 

l - E E log Phi (2.3) 
h i 

E Phi -- 1 (h - 1, . . . , H; Phi >_ O) (2.4) 
i 

h i 

where E h  H nh - - E i = I  A ~ h = l  and ~ i  . unique 
solution for the above problem exists, provided 
that  )( is within the convex hull of the points 

X l l ~ ' ' ' , X l n l ; ' ' ' ; X H I , ' ' ' , X H n H .  

The estimators of Phi are the solutions of the fol- 
lowing system of equations 

Phi -- 1/nh[1 + mhCr(Zhi  - Xh)], (2.6) 

i 

h i 

where Z h  --  E i  P h i X h i ,  m h  -- n W h n h  1 and Phi sub- 
ject to 0 < Phi ~ 1. We denote the solutions of (2.6), 
(2.7) and (2.8) as ~h~. The estimator we get by using 
this method is called the Maximum Empirical Like- 
lihood Est imator  (MELE). An efficient method for 
getting Phi is given in an unpublished report. 

We will discuss the properties of Phi and other 
related topics in the following sections. Proofs are 
omitted. 

2 . 3  A s y m p t o t i c  R e s u l t s  

We assume that both the sample size nh and the 
s tratum size Nh go to infinity as a certain index u 
attached to nv and N~ goes to infinity for all h, i.e., 
nhu and Nhu go to infinity as u ~ exp. However, 
for convenience, we will suppress the index u in the 
followingwhenever possible. And we will denote the 
solution ¢ by ¢~ since we are going to deal with large 
sample problems. 

Theorem 2.1. Suppose that as u ---. c~, Nh, 
nh, N h -  nh go to infinity, n / n h  ---+ kh, kh > O, 
n/Nh ~ O. ~ .d  both Eh Wg E .  ~'r"' II xh~ II 3 ,.rid 
E ~  w~E, ~ '  II Yh, Ii h~v~ an upper bound inde- 

pendent of  v, and (rh,z¢ = C o V ( X h , X h )  > O" 1 ~> 0 
for a11 h and u, where gl is a fixed posi t ive  definite 
matrix. Then 

~ ; ~ ( ¢ -  ? ) &  N,(O, I,), 

A-½ U¢~ L Nd-v(0, Id-p) ,  

A -½ (~',~(s) - FN(S))  L Na(O, V) ,  

as v --. ~ ,  where Fn(s) - ~ h ~ i ~ h i l ( Z h i  < S), 
(7" v - -  

E h  W ~ ( n h  1 -- N h l ) [ V a r ( y  h) - 2 B C o v ( y h , X h )  + 
B Y a r ( z h ) B r ] ,  B - ~ h  k h W ~ C o v ( y h , X h )  . 

[Eh khWgCov(~h, ~ ) ] - ~  ~,d U ~ - C ~ ,  ~ ,  - 
E~ k~W:V°v(~ ,~) ,  C - E~ k~W:, V = 
C -~ E~ Wgk~F~(~)(1- F~(~))- C - ' a ~ 2 a  ", a = 
E h  W ~ k h C o v ( l ( z h  < s), x~h). 

From the results of Theorem 2.1, we know/~,~(s) 
is asymptotically more efficient than the empirical 

c.d.f. F,~(s). Also, Y has the same asymptotically 
variance as the optional regression estimator ~3,t + 
B ( X  - ~,,). 

In above discussion we consider auxiliary informa- 
tion of the form of (2.2), but we can easily generalize 
it to other form of auxiliary information such as 

g h  

w~ N ;  ~ E ~ ( ~ , )  - o 
h i - 1  

The choice W(Xhi) -- X h i -  X gives (2.2). When the 
population median m~ is known and x is a scalar, 
we let W ( Z h i ) -  I[~h,_<mx]- 0.5. 

2 . 4  V a r i a n c e  E s t i m a t i o n  

In this section, we will consider how to estimate ~r, 

the variance of Y and A½V,  the variance of/~,~(s). 
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Under the conditions of Theorem 2.1, we can see 

- 1  _ Nh 1 
~ w~ nhnh _ l 

h 
rlh 

i=1 

and 

A½f /  - A - ½ [ E W ~ I F h , h ( s ) [ 1 -  Fh.~h(s)] 
nh ' 

h 

n 

are consistent estimators of cr and A½ V respectively, 
where 

[? - [ ~ _ ,  n W ~ n ;  2 E ( y h ,  - ]~h) (zh , -  2 h ) r ] s ; :  • 

h i 

We can use this result to get confidence intervals for 
Y and F(s) ,  which are asymptotically correct. 

Another consistent estimator of cr is the jackknife 
varianceest imator .  We omit the theorem here. 

2 . 5  E L R E  e s t i m a t o r  

Now we turn to the empirical likelihood ratio es- 
t imator  (ELRE) of f ' .  Here we denote E(z) = 
E h  W h  E ( z h  ) - -  0, where 0 - (0;, or )  r ,  Ok -- X ,  Ou - 

] 7", and k, u mean "known", "unknown" respectively. 
By (2.1) we know the empirical likelihood function 
is 

L(F)  - IIH=I iii=l (Zhi)  - HH=I  I-[nh_lPhi, 

(2.9) 
where phi - dFh,N~ ( z h i ) -  Pr(zh - zhi) and F de- 
note the population distribution. Noting that phi >__ 
0, Ph - 1 Eh WhFh,N, we know 
(2.9) is maximized by F~(s) - ~ h  WhFh,~(s) ,  
where Fh,~h = ~ ~ i  I(zhi < s). The empirical like- 
lihood ratio is then defined as R ( F ) -  L(F) /L(F,~)  
which reduces to 

R ( F )  IIH=I nh . (2.10) -- I I i=l  nhPhi  

Since we are interested in the parameter 0~ - 12 
and we have auxiliary information (2.2), we define 
the profile empirical likelihood ratio function 

RE(O) -- s u p { R ( f )  l phi >__ O, E P h i  -- 1, 
i 

Wh ~ P h i Z h i  - O}. (2.11) 
h i 

As discussed in section 2.2, for a given Ou, a unique 
value for the right-hand side of (2.11) exists, pro- 
vided that 0 is inside the convex hull of points 
z 1 1 , " ' ,  z1~1 ; " " " ; ZH1, " " ", ZHnH. Using the Lagrange 
multiplier method, let 

E E log Phi -- E ~h ( E  Phi -- 1) 
h i h i 

- o )  

h i 

where t - ( t l , t 2 , ' ' . , t d )  r are Lagrange multipliers. 
Taking derivatives with respect to Phi, we have 

01 

OPhi 
-- Phi - 1  -- Ah -- nWh t r z h i  -- O, i -- 1 , . . . ,  nh;  

h -  1 , . - . ,  H, 

Ol 
E Phi OPhi 

i 

= nh -- Ah -- nWh tr E P h i Z h i  -- 0 
i 

::~ /~h -- nh  -- n W h t  r E P h i Z h i .  
i 

Hence, 

Phi -- 1/nh[1 + m h t r ( z h i  -- Z h ) ] ,  (2.12) 

where Zh - ~ i  PhiZhi ,  m h  -- nWhn~  1 and Phi with 
the restriction 

E W h  E Phi Zhi 
h i 

Wh 1 

= E - ~ h  • l + m h t ' ( Z h i - - Z h )  
Zhi . 

We know that t can be determined in terms of 0, 
and t - t(0) is actually a continuous differentiable 
function of 0. 

The empirical likelihood function for 0 is now de- 
fined as 

L~(e) n~=, nh 11 1 
-- Hi=l(n---£ 1 + mhtr(zh i  - Z h ) '  

which leads to the empirical log-likelihood ratio 
statistic" 

lE(O) - E E log[1 + rnh t r  (Zhi -- Z h ) ] .  (2.13) 
h i 

We minimize lE(O) to obtain an estimator 0~ of the 

parameter Ou , 0 ( fi[r ~r -- ,0~,) r, called empirical like- 
lihood ratio estimator. In addition, this yields es- 

t imators Phi ,  and an estimator for the distribution 
function F: 

F ,  (s) - E Wh E Ph, l(zh, < S). ( 2 . 1 4 )  

i i 
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Now we turn to the calculation of 0, i.e., minimiza- 
tion of IE(O). From the context above we know that  
it is equivalent to maximizing 

L -  IIhIIiPhi (2.15) 

subject to :  

E Phi - 1, Phi ~_ O, (2.16) 
i 

E Wh E PhiXhi -- Ok, (2.17) 
h i 

E Wh EPhiYhi  - O~ (2.18) 
h i 

where 0~ is also unknown. Since 0~ is unknown, 
(2.18) does not add any information into the estima- 
tion problem. Hence, L will be maximized dropping 
(2.18). We can show this as follows. Let 

11 -- E E ]Ogphi -- E " ~ h ( E P h i  - 1) 
h i h i 

- ) 

h i 

- ) ,  

h i 

where tk,t~ are multipliers with the same dimension 
as Ok) 0~, respectively. Then" 

Ol~ 
= ntu - -  0 =¢> tu - -  O. 

00~ 

This shows that  we can drop (2.18). Therefore, Phi'S 

are the same a s  Phi'S in section 2.2, and 0~-  Y - 

~ h  Wh ~ i  Phi Yhi. 
We note here that under the hypothesis H0 " 0~ - 

0~,o, the estimator for Phi will be changed to 

Phi - 1 ) 

nh[1 + ~ r l h i r ( O o ) ( z h i  - Z h ) ]  

) _ _  ) T .  where Zh - ~ i  PhiZhi O0 (X ~, 0~o 
The empirical likelihood statistic for testing Ho is 

given by 

wE(Oo) 21E(0o) -- 21E(0) 

2 E E l°g[1 + rnhff(Oo)(zhi - Z h ) ] -  
h i 

- 2  E E log[1 + rnh 7" (O)(Zhi-- 2h)], 
h i 

where Zh-- ~-,i Phi Zhi. 

Theorem 2.3. Under the hypothesis Ho and the 
conditions of Theorem 2.1 and Var(zh ) >__ (71 > 0 for 
any h and u. 

WE(O0 ) L_~ X2 (p) as u ---, cx:), 

w h e r e 0 0 - ( 0 ~  O r )r ) It o • 

3 Empirical Likelihood and 
General Estimating 
Equations 

3 . 1  I n t r o d u c t i o n  

Likelihood and estimating equations provide the 
most common approaches to parametric inference. 
Our purpose is to combine empirical likelihood, esti- 
mating equations and stratified sampling technology 
together. In order to simplify our discussion, we as- 
sume i.i.d, sampling in each stratum, but the discus- 
sion can be carried over to simple random sampling 
without replacement. 

Suppose that a target population with d- 
dimensional characteristic x has the unknown dis- 
tribution function F and a p-dimensional parameter 
0 associated with F. We are interested in making 
inference on 0. The sampling scheme is as follows. 
Suppose that the target population is divided into 
H strata with known weight Wh's for all strata. We 
get an i.i.d, sample Xhl , " ' ,  Xhnh from Xh, the stra- 

~S turn h which has distribution Fh, where Xhi are 
d-dimensional and h - 1 , . . . , H ,  i - 1 , . - . , n h  and 
Fh's are unknown, and the samples across strata are  

also independent. We have 

F -- E WhFh. (3.1) 
h 

We also assume that information about 0 and F is 
available in the form of r >_ p functionally indepen- 
dent unbiased estimation functions, that  is functions 
g j ( x , O ) , j -  1 , . . . , r  such that EF{g j (x ,O)} -  O. In 
vector form, 

g(x, 0) -- (g~ (x, 0 ) , . . - ,  g~(x, 0)) ' ,  

where g(z, O) satisfies 

Er{g(~ ,  0)} - ~ W~E~ {9(~h, 0)) -- 0. (3.2) 
h 

In the following we will show how to use such in- 
formation to estimate 0 and F, in conjunction with 
empirical likelihood. 

801 



3.2 M E L R  es t ima to r s  

We define empirical likelihood as 

L(F)  - HhH=I IIi~lPhi , (3.3) 

where Phi -- Pr(xh -- Xhi). Only those F dis- 
tributions with Fh's which have an atom of prob- 
ability on each Xhi have nonzero likelihood. Not- 
ing (3.2), we know (3.3)is  maximized by the em- 
pirical distribution function F~(s) - ~ h  Fh,~h(s), 
where n - E h  nh, Fh,~, (S) -- A~ E i  l(xhi < s). 
The empirical likelihood ratio is then defined as 
R(F)  - L(F)/L(F,~) ,  and after a little calculation 
we get 

R ( F )  - HH=I IIi~ 1 nhPhi. (3.4) 

Since we are interested in estimating the parameter 
0, and we know the estimating equation (3.2), we 
define the empirical likelihood ratio function 

R~(o) - =~p{R(F) I P~, >_ O, ~ Phi -- 1, 
i 

E Wh E Phighi(O) - 0}, (3.5) 
h i 

where ghi(O) -- g(xhi,O) for all h and i. For any 
given 0, a unique value for the right side of (3.5) ex- 
ists, provided 0 is inside the convex hull of the points 
gll(0),""" , gln,(O); " " ;gill(O),'" " , gHnH(O). The 
maximum may be found via Lagrange multiplier 
method. The estimators for [9hi a r e  solutions of fol- 
lowing equations 

1 
Phi -- rig[1 + mhtr(ghi(O) - g h ( 0 ) ) ] '  ( 3 . 6 )  

ghi(O) (3 7) 
Oh(O) - E nh[1 + rnht ' (ghi (O)-  ~h(0))] ' " 

i 

}~ w~o~(o) -o,  (3.s) 
h 

from which t can be determined in terms of 0, and 
t - t(O) is actually a continuous differentiable func- 
tion of 0. Therefore, the empirical negative log- 
likelihood ratio statistic 

IE(O) -- E E log[1 + ,nht" (O)(ghi(O) -- t~h (0))]. 
h i 

(3.9) 
We may mininaize IE(O) to obtain an estimate 0 of 
the parameter 0 (called MELR ). In addition, this 

~S yields estimates Phi from (3.6), and an estimate 
for distribution F as 

F ,  ( s ) -  ~ W'h ~ Phi l(zh, < s)) (3.10) 
h { 

Here are a few conditions for the following theo- 
rems to be true. 

(1) As n ~ oo, n /nh  ~ kh > 0 for all h. 
And suppose that in a neighborhood of the true 
value 00, Eh[(g(Xh, 00) -- Ehg(Xh, O0))(g(Xh, 00) -- 
Zhg(Xh, 00))'] = 0.h(O0) > 0.1 > 0 for all h, where O" 1 

is positive definite, II g(~, 0)II 3 is bounded by some 
integrable function G(z)  in this neighbourhood, then 
for given 0. 

(2) Og(x, 0)/00 is continuous in a neighborhood of 
the true value 00; that  II Og(~,o)/oo II is bounded 
by some integrable function G(x) in this neighbour- 
hood; and that the rank of ~ h  WhEh[Og(xh, 0 0 ) / 0 0 ]  

is p. 

(3) °2g(='°) is continuous in 0 in a neighbourhood 0000 ~ 
o~g(=,o) of the true value 00, then if 1[ oooo, II is bounded 

by some integrable function G(x) in this neighbour- 
hood. 

Theorem 3.1. Under conditions (1), (2) and (3) 
above, we have 

x /~(0 -00) - -*  N(0, V), x/%(7-0)--- ,  N(0, U), 

¢,o 

v ~ ( r .  (~) - F(~)) -~ N(0, W), 

where Fn ( x ) -  E h W h E i  Phi l(Xhi < S), Phi -- 
~ T  

~[1 + m~ t ( g ~ ( o ) -  0~(0))] -~, ~ d  u, v,  w ~ 
defined below: U - M ~ I ( I  + M 1 2 M ~ ! l M 2 1 M ~ l ) ,  
where -- ~ h  Wh ~ - , i  Og~'o(O°) ~ M12, M21 -- M[2, 

- - E h  ~ Ei(ghi(Oo)--gh(Oo))(ghi(Oo)--~lh(O0)) r 
p 

Mll ,  M22.1 - -M21M~l l  M12, V -  (M21M~ll M12) -1,  
~nd W - Eh  W:k~F~(~)[1- r~(~) ] -  BUB ~, ~ h ~  
B - E h  W~khZh[(g(zh,  0o) - Zhg(Xh, 0o)) ~ l(xh < 
~)]. 

Theorem 3.2 In the semiparametric model  (3.2), 
for testing Ho • 0 - Oo the empiricaI Iikelihood ratio 
test statistic 

R 2 { ~  ~ log[1 + m~'(oo)(g~,(Oo)- M~(00)] 
h i 

- E E l°g[1 + rnh 7" (O)(ghi(O)t - Oh(O)t]} 
h i 

2 under Ho, assuming (1) (2) and is asymptotically Xp 
(3). 

3.3 M E L R  es t imators  and te s t ing  
with constraints  

In this section we extend the empirical likelihood 
methods to deal with the case in which there are 
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constraints on parameters. 
dimensional constraints on O" 

Suppose there are q- 

r(O) - 0 ,  (3.11) 

where r(O) is a q × 1 (q < p) and the q × p matrix 
R(0) - o°--~ is of full rank q. To minimize IE(O) 
defined by (3.9) subject to r(O) - O, we consider 

a :  - ! l ~ ( o ) +  . ~ ( o ) ,  
n 

where u is a q x 1 vector of Lagrange multipliers. 
Differentiating G2 with respect to 0 and u, we have 

1 alE(O) 

n 0 0  ~ 
, ~ R ( o )  - o, r(o) - o. (3.12) 

Consequently, to minimize lE(O) subject to r(O) - 0, 
we consider the solution of 

Now we turn to the problem of testing H0 : r(0) = 0. 
There are three popular methods based on likeli- 
hood: likelihood-ratio test, Lagrange-multiplier test 
and Wald test. Of course here they should be based 
on empirical likelihood. These statistics are defined 
respectively as: 

e ~  ~ T  e ~  

E L R -  21E(Or), LA - n u r HZ 1 ur, (3.16) 
6,. 

W A  - nr T (O)H~r(O), (3.17) 

where 0 is a solution of the estimating equation 
E h  Whnh 1 E i  ghi(O) -- O, and Ho defined in (3.15), 

is the asymptotic covariance matrix of x/~ ur. The 
following theorem gives the asymptotic behavior and 
relationship between the test statistics defined in 
(3.16) and (3.17). 

Q~..(o.  t. ~) - o. q2 . . (o ,  t. ~,) - o. q~. . (o ,  t. ~,) - 0. 
(3.13) 

where 

h Tlh i I "~ mh•r[ghi(O)-  gh(0)] '  

Q2,~(o,t,u) - 

Theorem 3.4. Under the assumptions of  Theo- 
rem 3.3, the three test statistics in (3.16) and (3.17) 
are asymptotically equivalent, and each of them is 

2 under Ho asymptotically distributed as Xq 
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