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1.0 Introduction 
in Census 2000, sampling techniques will be implemented 
for two purposes. The integrated coverage measurement 
(ICM) program is needed to resolve the undercount in the 
census numbers. The nonresponse followup (NRFU) 
program will consist of a sample of housing units (HUs) 
that did not return their questionnaires. This is in contrast 
with traditional census methods of following-up on all non- 
mail returns and is expected to be more cost efficient. 
Estimating the error due to sampling for any published 
estimate is a policy of the Census Bureau. In addition, the 
Census Bureau has legal requirements to publish census 
nulnbelS I'c)r blocks for use in congressional redistricting. 
rhc block-level data have to be cross-tabulated by the 
Ibllowing redistricting categories: race (5 categories), 
l-lispanic origin (2), age (2), and total population. There are 
39 total data items for which estimates at the block-level are 
needed. This introduces the problem of estimating 
sampling Clror tbr small areas. The challenge is to not only 
COlnptlte variances for the small areas, but also to compute 
variances for large areas not yet defined like congressional 
districts. A brief overview of the sample design and the 
estimation methods is given in section 2. The procedures 
for measuring sampling errors associated with census 
numbers l~)r small areas fiom the 1995 Census Test are 
explained in section 3. The assumptions and limitations of 
the methodology used to estimate the en-or due to ICM and 
NRFU sampling are discussed. Comparisons of variance 
generalization methods are discussed and the resulting 
procedtues are presented m section 4. The interested reader 
may contact the authors I"o1 a longer version which includes 
a more detailed discussion. 

unit, and unit sampling where the HU was the ultimate 
sampling unit. Block sampling was implemented in all 
three 1995 Census Test sites (Oakland, CA, Paterson, NJ, 
and NW Louisiana). Due to budget constraints, unit 
sampling was done only in Oakland. 

The ICM poststrata were defined with the intent of 
producing direct estimates of population for various 
demographic domains for each site. The categories for the 
poststrata are race/ethnicity (4), tenure (2), and age/sex (7). 
There was a different number of poststrata for each test site 
(Oakland (56), Paterson (42), and NW Louisiana (28)) 
because some poststrata were collapsed due to the small 
numbers in certain categories. The post-NRFU estimator 
in the 1995 Census Test for block i and ICM poststratum k 
is (~. - SR~. + AFRo, where SR~ is the person count from 
census self responses in block i for poststratum k, and N~Ra. 
is a weighted estimate of persons in census nonresponse 
units in block i for poststratum k. 

Two estimation methods were used in the ICM program to 
resolve the undercount, Dual System Estimation (DSE) and 
CensusPlus. Both DSE and CensusPlus collected data from 
census questionnaires in the ICM operations, but the 
estimation procedures tbr the calculation of the ICM 
poststratum factors, F k, differed somewhat. See Killion 
(1996) for details on the ICM operation. Both DSE and 
CensusPlus were used for the Oakland and Paterson sites, 
but only CensusPlus data was used for NW Louisiana. The 
variances ofpoststramm DSEs in Oakland and Paterson are 
not expected to differ fiom the conesponding variances 
fiom CensusPlus estimates (Schindler and Navarro, 1994). 

2.0 Sample Design and Estimation Methods 
["o1 the 1995 Census Test, the ICM sample consisted of a 
svstematic sample of block clusters. Blocks were grouped 
into clusters of 30 o1 more HUs and then stratified into ICM 
,,<amplila~ .<rata defined by racial and etlmic composition 
and size of the cluster. Further stratification defined groups 
of blocks. Each stratification group was split into two 
panels, then a systematic sample of block clusters was 
selected \vitlma ICM sampling stratum and panel. In ICM 
selected blocks, all noruesponding HUs were in the NRFU 
sample. In non-ICM selected blocks, a stratified systematic 
sample was selected fiom the nomesponse universe. The 
NRFU sainple explored two sampling strategies: block 
sampling where the block cluster was the ultimate samplillg 

3.0 Statistical Methodology for Direct Variances 
This section outlines the procedure to be implemented for 
the calculations of block and tract-level variances for the 
redistricting data item estimates in the 1995 Census Test. 
For redistricting data item K for geographic domain I, the 
final estimate is an aggregate of ratio estimates of the total 
population for block i and poststratum k, 

k~K iel 

where, F k :  I~J(~k , I~k is  the estimate from the ICM sample 
tbr poststa'amm k, and C k is the estimate of the census total 
for poststratum k based only on ICM selected blocks. A 
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limitation of the synthetic estimator,/}m, is that within ICM 
poststratum k, the census coverage rate is not allowed to 
vm.y fiom block to block. This presents a bias in the 
estimation procedure. The variances presented below do 
not reflect this bias in the synthetic estimator (see Bell, 
1996). More research is needed in order to provide 
estimates that allow for variation in census coverage over 
blocks. The variance of the estimate, JhT, can be obtained 
fiom the decomposition which conditions on the ICM 
sample, s~. The NRFU sample is denoted by s 2. 

This decomposition partitions the total variance into two 
components: 

Var(J~a) = l,"ar[E(Bh7 s~)] + E[Var(Jmls~)] 
s 1 s 2 s I s 2 

\vhere, E<(/3/,TJs~) denotes the average over all possible 
NRFU samples given the ICM sample, and the first term 
then is the variance of E,2(/}hT]s~) over all possible ICM 
samples, which is the sampling enor due to ICM sample. 
The Var,2(L}:,71s~) is the conditional variance over all 
possible NRFU samples given the ICM sample, and 
E~l [ Val~e(Jmls~) ] is the average over all ICM samples of 
the Val'~2 (13hTIs~). This second texan is the sampling error 
due to NRFU sampling. For the ICM variance component 
of the total variance, 

~,-IE(J~ls,)] -r."a,-lE(~gP~.¢~is,)] 
s I s :  s I s 2 k i ~ l  

-l"arlE:',~(Zd,~ls~)] 
s I k i ~ l  

i/a,.[Z/~]r(¢k, I s~) l 
s I k 

since I~]. is fixed given the ICM sample. Suppose we 
assume that C#I is an unbiased estimator of Ckl = ~/~/C#/, 
the census total tbr poststratum k and geographic domain I 
that would be obtained under 100% Ibllowup 
(Note: (;~ -C~ in ICM blocks and blocks in the NRFU 
block saml~les ). Then, E(C]./Isl)=CkI, and 

s I S 2 S 1 k 

= Y ]  ~ - ~ C O V ( k k , < ) ( C k l ) ( C l l  ) 

"['he variances and covariances of the ICM poststratum 
factors, I~., were calculated using the jackknife method by 
Town and Fay (1995). It should also be noted that before 
calculating the block-level ICM variances, the block-level 
data records were combined until the 'cluster of blocks' had 
a total l~opulation count greater than 50 (ibr block-level 

variances only). This was done so that more reliable 
'block-level' variances were used when generalizing the 
variances (Section 4.0). The above equation estimates the 
error due to variance in the estimated ICM poststratum 
factors. Therefore, the second variance component, 
E,l[ Var~E(J/alsl)], which is error due to NRFU sampling, 
is needed to measure total sampling enor in the 1995 
Census Test. 

For the NRFU component of the total variance, 

s.)) - 
s I s 2 s I s 2 k 

: k Z  
s I k l s 2 

= 

k l s 2 s 1 

= Y ] ~ C o F ( d ~ . l , ¢ l l  ) [ E ( C o V ( k k , k l )  

k l s. 2 s I s l 

+ 

s 1 s I 

In order to make computations easier, the procedure to 
approximate the variance due to NRFU sampling assumes 
unit sampling within each site,^simple random sampling, 
assumes that E(/Sk):l, Cov(Fk,Fl)=O Ibr all k,1, and 
Cov(£'kT,C)i):0 for k~l and do not depend on s~. More 
research is needed to address the sensitivity of the variance 
estimates to these assumptions. With those assumptions, 
we have, 

Z 
s 1 s ,  k k 

The NRFU sampling enor component of the total variance 
is approximated by a design-based variance estimator, 

2 

E[Var(~71sl)]  ~ g--I /, 
s 1 s 2 l / I g h l  

where, m~  is the number of sampled nomespondents for 
panel g, ICM stratum h, and geographic domain I, and Mgh~ 
is the total number of non-mail returns in panel g, ICM 
snatum h, and geographic domain I. For blocks associated 
with block sampling, we simulate unit sampling by letting 
m~a = fMgh~, where f is the sampling fiaction equal 
to 1/(3.5) in Oakland and 1/6 in Paterson and NW 
Louisiana. The estimated population variance of the 
number of persons per HU for redistricting item K, panel g, 
ICM sampling stratum h, is, 
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2 
SKg h = 

j=l 

m K g  h - 1 

where, C~:+ti is the number of persons in HU_j, for 
redistricting item K, panel g, and ICM stratum h, Cxg h is 
the average number of persons/HU for redistricting item K, 
panel g, and ICM stratum h. There were many block 
clusters with very few sampled units, so to estimate S 2 at the 
poststratutn level would result in unreliable variances. 
Therefore, S 2 was estimated at a higher aggregated level, 
which was the ICM sampling strata, and was assumed to 
hold at the geoD-aphic domain of interest. 

The standard errors due to ICM sampling, relative to the 
csthnatcd total, range fiom about 2% to 6%. These relative 
standard errors (RSE), or coefficients of variation, do not 
seem to be highly related to the magnitude of the estimated 
totals. The reason Ibr this is that the ICM RSE of the 
estimated block-level total for poststrata k, is theoretically 
equal to the RSE of the ICM site-level factors for poststrata 
k. That is, within poststratum k, the RSE is constant for all 
gco~aphic domains. When the NRFU variance component 
is added to the [CM variance component, the resulting 
relative variance is related to the estimated total. The same 
NRFU sampling fi-action is applied/'or all demoDaphic 
grout~s; so ibr people of races and ethnic background that 
arc not numerous, the estilnated number of people will have 
large RSI';s. As shown in Table 1, at the block cluster 
level, NRFU smnpling error colnponent is the dominating 
COlllpOl-lel-lt. 

Talkie 1. Median '% Contribution--NRFU Component 
()akland l~,lock Cluster Level (Tract Level) 

Age 

All 
Race and Elhnicity Persons < 18 18+ 

All persons ................. 94 (41) 99 (83) 91 (32) 
llispanic origin .......... 99 (93) 100 (96) 99 (92) 
White .................... 100 (96) 100 (97) 100 (95) 
Black .................... 100 (99) 100 (100) 100 (99) 
AI.Eskimo.Aleut ...... 100 (100) 100 (100) 100 (99) 
Asian, I'I ................ 100 (99) 100 (100) 100 (99) 
()ther race .............. 100 (97) 100 (99) 100 (97) 

Not of t lisp. Origin .... 96 (49) 99 (87) 94 (39) 
White .................... 99 (85) 100 (96) 99 (81) 
Black .................... 98 (67) 100 (93) 97 (57) 
AI.Eskimo.Aleut ...... 100 (99) 100 (100) 100 (99) 
Asian.l'I ................ 100 (97) 100 (95) 100 (98) 
Other race ............. 100 (100) 100 (100) 100 (100) 

Figures are rounded 

In Oakland, the median percent contribution from the 
NRFU sampling error component to the total sampling 
error is over 94% for each of the redistricting items. 

However, at the tract level, the NRFU component 
contributes less to the total sampling error. In fact, for 
total population estimates at the tract level, the median 
percent contribution from the NRFU component is 41%. 
The next section explains the variance modeling techniques 
that were designed to measure the relationship between the 
relative variances and their associated estimated totals. 

4.0 Generalized Variance  Functions 
Standard errors need to be published with each block 
estimate. Complexity arises when blocks are aggregated to 
form congressional districts because covariances between 
blocks would need to be provided. For instance, there are 
about 4,100 blocks in Oakland, so there would be over 8.4 
million covariances. Therefore, alternative ways to publish 
standard errors were evaluated. The major focus of the 
discussion is on generalized variance functions (GVFs). A 
GVF is basically a reDession model that estimates the 
relationship between the estimated relative variances and 
the estimated totals. It helps reduce publication costs and 
arguably has the appealing characteristic of smoothing the 
directly calculated variance estimates. GVFs also may be 
used to generate standard errors tbr large unknown 
geogTaphic entities like congressional districts. The 
estimated GVF equations can be provided to the user who 
can then substitute in an estimate of interest to get the 
resulting relative variance and consequently the standard 
elxor. Some related references on applications of 
generalized variance methods will provide the reader with 
a wide anay of examples. These include Dajani (1996), 
Bieler and Williams (1990), Judkins and Wright (1990), 
and Krenzke (1995). Wolter (1985) is a general reference. 
The following sections describe the comparisons made that 
helped develop the final variance model. 

4.1 Comparison of Methods 
Tluee main generalized variance modeling methods were 
evaluated that allow data users to calculate the standard 
errors. Method 1 involved calculating the median of the 
block-level relative variances, V 2 (see below) and the tract- 
level relative variances tbr each redistricting item. The 
estimate of the relative variance for redistricting data item 
K, at the geographic level I, is calculated as: 

V 2 
I~i~ = 

var(B~a) 

( ~  + GQ~) 2 

where GQK~ is the group quarters count for redistricting 
item K and geograpl-fic level I, and var(/}m) is obtained as 
described in section 3. This methodology., follows closely 
with what is explained in Fan (1983) and GM~fin, Navano, 
and Bates (1991). Method 2 involved calculating a 
different generalized variance function (GVF) for each of 
the 39 redistricting items, This method creates 39 sets of 
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parameters for each census test site. Method 3 involved 
calculating one GVF for each census test site, which will be 
used lbr all redistricting items. A limitation of this Method 
3 is that the two parameter GVF assumes a constant design 
effect (i.e., variance under a complex design divided by the 
variance under simple random sampling). Therefore, the 
model may not fit well to some of the redistricting data 
items. 

The following describes GVF Methods 2 and 3 in more 
detail. The GVF to be used in this comparison is, 

1) V~ = gy + b ( 1 - 1 )  
x y 

where, x is the estimated total, Vx 2 is the relative variance 
of x (i.e., RSE squared), y is the estimate of the site total 
population, Vv 2 is the relative variance of y, and b is the 
estimated regression parameter from the model. This can 
be rewritten as, V~ 2 = a + b / x, where a = Vy 2 - b / y. This 
model ensmes positive variances and controls the variances 
so that Vx 2 = My 2 when x = y. Due to this restriction on the 
model, we will not get the 'best' fit to the data points, 
however, it is presumed that it will improve the fit to larger 
unknown geographic entities (i.e., congressional districts), 
which are arguably more important. For Methods 2 and 3, 
the following procudures were used. The following data 
points were discarded when they satisfied the following, 1) 
x = 0, 2) the estimate comes from an ICM block sample 
(i.e., varyRR~(x)=0), 3) var(x) = 0. Ten iterations of 
weighted squares regression were done. For each iteration, 

2 the weights were adjusted as, w e i g h t  = 1 / ( V  )- predict " 
Observations were investigated if the absolute value of 
their standardized residual was greater than 3.5. The 
primm3, model evaluation tool was the median absolute 
relative deviation (ARD). We used the adjusted-R 2 as a 
seconda U evaluation tool to confirm the median ARD 
results. The model evaluation tools used were the adjusted- 
R 2 values and the median absolute relative deviation 
(ARE)). An appealing feature of the median ARE) is that it 
allows one to measure the fit to subgroups of the modeled 
data. The ARD is calculated by, 

A R D  = 100 x 
V 2 _ V 2 

predicted, x observed, x ]  

2,2 
~' obsen, ed, x 

Figure 1 is a plot of the relative variance and the estimated 
totals on the log scale for one of the 39 redistricting data 
items. Method I, the dashed line, does not fit the data well 
since it does not use the relationship between the relative 
variances and the estimated totals. The plot shows similar 
curves resulting fiom Method 2, the dotted curve, and 
Method 3, the solid curve. The median ARD for Method 1 

was 80, for Methods 2 and 3 the median ARD was 54 and 
56, respectively. Methods 2 and 3 being close in fit was 
typical for most of the 39 redistricting items. However, 
because Method 3 fit one model to all 39 data items, there 
were a small number of redistricting data items for which 
the model was poor. However, we wanted to keep the 
modeling process simple, so it was decided to use Method 
3. 

4.2 Comparison of Modeled Data 
In a different comparison, the models were fit to block 
clusters and tracts separately, and to both block clusters and 
tract data together. In fitting the GVFs, the block clusters 
and tract data are completely dependent. However, 
combining the two geographic levels provides us with a 
compromise between the two separate models. More 
importantly, it provides a wide range of data with larger 
estimates which may yield more accurate variances for 
congressional districts. The results in Table 2 show no 
apparent difference between the 'b '  parameters and median 
ARD, from the block cluster model and the block 
cluster/tract model. However, the block cluster/tract model 
is more appealing since it uses a full range of data. For 
instance, in Oakland, the largest block cluster size is about 
1600, but the largest tract-level estimate is about 9600. 
Another point to make is that the tract model gives slightly 
higher standard errors since the 'b'  parameters are larger. 
This may be due to the clustering of blocks within tracts 
which increases effect the variances. It was decided, 
however, that the block cluster/tract model should be used 
since it uses a wider range of data and uses two geographic 
levels. In the future, compromises such as using two or 
more geographic levels may be needed to approximate the 
variances tbr estimates the size of congressional districts. 
The highlighted parameters in Table 2 define the final 
GVFs. 

Table 2. Comparison of Modeled Data 

Med. 
Site Data a b ARD 

Oakland 

Paterson 

NW La. 

Block .000362 2.008873 66.0 
Tract .000360 2.815990 53.7 
Block/Tract .000362 2.061328 65.4 

Block .000316 5.784842 52.6 
Tract .000299 8.352548 46.6 
Block/Tract .000315 5.922080 51.9 

Block .000193 2.229869 71.1 
Tract .000169 5.110656 58.5 
Block/Tract .000193 2.292658 71.4 
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Figure 1. Comparison of Methods 
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4.3 Comparison of Models 
Several models were compared to Model 1 using the block 
cluster/tract data together. Most of the models were 
extensions of Model 1 as shown in Figure 2. 

Figure 2. Comparison of Models 

r - ! )  1) ~x, -r";~+b( 1 
x .v 

2) V - ~ - V 2 + b ( 1 - 1 ) + c ( 1 - 1 )  

.,) .,.-~'~]-+b - + ~- 
x y x-  .V- 

1,2 <_-+b(l 1)  1 1 ) , 
6)  , : , - - + c ( - - - - 7  + d ( x  " <v -) 

X V X- V" 

7) I,'~2. - 1 

( I__~ + b ( x - y ) )  

ri7 

The data showed no overwhelming support for any 
particular model. Model 1 compared favorably amongst the 
other models tbl each site and is also the simplest model of 

the seven that were compared. In addition, Model 1 is the 
only model having the desirable property where 
var(p) = var(1-p), where p is a proportion (Tomlin 1974). 
Therefore, Model 1 was the model chosen to present the 
standard errors to the data users. The final models were 
verified by block-group level variances. The median ARD 
was calculated to see how well the models fit the block- 
group data. 

Standard errors for the estimated number of persons for a 
domain of interest may be calculated by using the following 
formula 

- + b ,  

where, x = estimated number of persons, and a and b are 
variance model parameters• The formula to estimate the 
standard enor  for a proportion of persons in a domain of 
interest, where p = ,'4, 2, is derived from an approximation to 

• "~ [ " x  - [ y ) where the Taylor Series formula (i.e., I,~'- -- ,2 I2 

y = estimated base population. Then the standard error for 
p: 

/ 
s e ( p )  - ~1 ( ~ ) ( P ( 1  - p ) )  

Y 
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5.0 Summary 
Direct variances were calculated for 39 redistricting items 
for three 1995 Census Test sites. These variances include 
components from two sources of sampling error, error in 
estilnation due to ICM salnpling and error in estimation 
due to NRFU sampling. The statistical relationship 
between estimated totals and their associated directly 
calculated variance estimates was modeled for each site. 
Three ways to proceed with the modeling were compared, 
three data sets containing different combinations of 
geographic levels were used and the resulting model 
parameters were compared, and seven variance models 
were evaluated. The result of the modeling procedures is 
to use one GVF for each of the three Census Test sites to 
calculate the standard errors for estimated totals and 
proportions for all 39 redistricting items. 

6.0 Future Research 
This paper serves to document the beginning of research 
into xvaxs of measuring the sampling error in Census 2000. 
It is the authors hope that this paper generates ideas on 
enhancing the methodology that was implemented in the 
1995 Census Test and to generate ideas on alternative ways 
ofmcastuing sampling errors. More research is needed to 
examine the effects of the assumptions on the resulting 
\'ariancc estimates. Also, the variance modeling procedure, 
if it is to be used in Census 2000, needs to be refined 
because the 1995 Census Test sites were well-defined areas 
that \yore smaller than congressional districts. 
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