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I N T R O D U C T I O N  

In a longitudinal study, measurements are taken 
on a unit or subject repeatedly at different time 
points. If measurements are taken n times, then 
the complete vector of measurements on the i th unit 
is Yi = (Yix,. . . ,  Yi,). It is not uncommon for lon- 
gitudinal data to have missing values, that is, for 
some i, the whole 1~ vector will not be completely 
observed. A special case of this is when subjects 
leave the study prematurely, that is, if ~ j  is missing 
then all the succeeding ~k 's ,  k > j, are also miss- 
ing. This special case is commonly called a dropout 
((Diggle, 1989), (Diggle & Kenward, 1994), (Heyting 
et al, 1992), (Little,1995)). 

Dropouts cause the data to be unbalanced and 
there are statistical procedures that can handle un- 
balanced data. However caution is required in using 
these techniques in the presence of dropouts. This is 
because the dropout may cause bias. For instance, 
in a clinical trial patients who recover may tend to 
drop out more than those who do not. Then the 
group with more cured subjects will also have more 
dropouts. Analysis of the observed data will then 
be biased against the group with more recovered pa- 
tients. 

However there are cases where valid inference 
still results even in the presence of dropout. Ru- 
bin (1976) calls such dropouts ignorable, otherwise 
they are nonignorable. Since different types of sta- 
tistical methodology require different conditions for 
inference to be valid, the definition of ignorability 
depends on the statistical procedure used. Ignora- 
bility has been examined by many authors ((Rubin, 
1976), (Laird, 1988), (Little & Rubin, 1987), (Diggle 
& Kenward, 1994), (Little, 1995)). Except for the 
work by Rubin (1976), the complex relationship be- 
tween dropout, the population of inference and the 
statistical methodology is not emphasized. 

The main focus of this paper is to give a concise 
definition for ignorable dropout. This definition de- 
pends on both the population of inference and the 
type of statistical inference used. In Section 2 the 
definition of dropout is related to the population of 
inference. This is illustrated using the data from the 
Panel Study of Income Dynamics (PSID). 

In section 3 different types of dropout are de- 
scribed and compared to those found in the litera- 
ture. These are interpreted using the PSID example. 
Section 4 describes how the definition of ignorabil- 
ity depends on the type of inference. As an example, 
ignorability conditions for likelihood-based inference 
are given. 

D R O P O U T  A N D  THE P O P U L A T I O N  OF 
I N F E R E N C E  

We say that a subject leaving a study prema- 
turely is a dropout if and only if following the de- 
parture the subject remains in the population of in- 
ference. Note the explicit reference to the popula- 
tion. We illustrate this definition of dropout using 
the Panel Study of Income Dynamics (PSID) (Hill, 
199.2), 

Suppose that we are interested in explaining 
transitions into and out of poverty for the nonimmi- 
grant, noninstitutionalized elderly, those aged 55 or 
over. That  is, our population of inference is the set 
of all people, aged 55 or over, residing in the United 
States and not living in institutions. The PSID is 
an ideal data set for this purpose since the subset 
of the elderly in the PSID sample, when properly 
weighted, is representative of the above population. 
Further, sample families have been interviewed an- 
nually since 1968 to collect information on variables 
such as sources of income, employment information, 
work hours, geographic mobility and other demo- 
graphic variables (User Guide to the PSID, 1984). 
This makes it possible for us to trace the economic 
history of the respondents since entry into the study. 

The PSID loses some respondents for a variety 
of reasons, including: 1) change of address-  un- 
known new address; 2) refusal to be interviewed; 
3) institutionalization which can include going into 
service, moving into a nursing home, moving into a 
dormitory, etc., and; 4) death. Whether or not these 
losses should be considered dropouts depends on tile 
the population given above. Certainly individuals 
who were not interviewed for reasons like residence 
change or refusal to be interviewed are dropouts. We 
know that these respondents can be in one of two 
states" in poverty or not in poverty but which state 
is not known due to failure to obtain information on 
them. 
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A more complex question is whether people lost 
from the study due to death are dropouts. In our 
population of inference, death is a natural occur- 
rence. Therefore, those who die are not dropouts. 
Similarly, a person who goes into an institution 
ceases to be a member of our population of inference 
and thus, we do not lose any information once he en- 
ters an institution. In both cases a person leaving 
the study due to death or institutionalization to a 
nursing home is not a dropout since we want to make 
generalizations about the poverty experiences of the 
noninstitutionalized elderly in the U.S. Death and 
institutionalization are conditions or states a person 
can be in aside from being in poverty or not be- 
ing in poverty. In survival analysis, these are called 
competing risks where for a given period of time, a 
person can be in one of different possible states. We 
see then that  death or institutionalization signifies 
the end of a complete observation and that there is 
no loss of information on a respondent if either of 
these occurs. 

Next consider a conceptual population of people, 
aged 55 and older, who reside in the U.S. and for 
whom institutionalization is not permitted/possible. 
Then if in our sample an individual becomes institu- 
tionalized, this is a dropout. This is because we do 
not have information on the person's poverty status 
which would have been available had they not been 
permitted or allowed to enter an institution. 

On the other hand suppose our population of in- 
ference is the set of all people, aged 55 and older who 
reside in the U.S. Is poverty a relevant measure for 
people in institutions - that  is, can a person be poor 
and in an institution at the same time? If an insti- 
tutionalized person can be poor or not poor, then 
after a person in our sample becomes institutional- 
ized, we no longer have complete information about 
his poverty status. He is a dropout. If however 
a person cannot be poor or not poor in an institu- 
tion, institutionalization is then a competing risk. In 
this case, we do not lose any information if someone 
leaves the study due to institutionalization. There- 
fore, he is not a dropout. 

As we have seen a sample may be used for in- 
ference about more than one population. And a 
dropout for one population of inference may not be 
a dropout for a different population of inference. It 
is important  that  we first determine the population 
of inference and then define dropout for this popu- 
lation. 

T Y P E S  OF D R O P O U T  

Suppose that the units in our study are observed 
in discrete time, ( t l , . . . , tg) .  The ideal data for 

a subject is represented by Y - (Y1, . . . ,  YK) and 
X = (X1, . . . ,XK) corresponding to the K time 
points. We assume that for any k the distribution 
of (Y1, . . . ,  Yk) given ( X 1 , . . . ,  Xk) i s  independent of 
( X k + l , . . . , X K ) .  In other words, X may be a func- 
tion of time and baseline variables, which are com- 
pletely observed at time tl, and/or  X is an external 
covariate. Conditioning on past outcomes, the ideal 
data likelihood function , L(O) for one subject can 
be expressed as 

K 

L(O) - I t ,  (Y~ IX; 0) 1-I lr~ (Yk lye, ..., Y,_ 1, X; {9), 
k=2 

where fv, (y~ IX; 0) is the marginal density of 
Y1 given X and the conditional density of Yk 
given the past outcomes Y1,...,Yk-1 and X is 
fr~ (yklY~, ..., Y k - l , X ;  O). 

We now consider the case where dropout is pos- 
sible. In order to focus on a typical subject's re- 
sponse and dropout, we assume that observations 
on the subjects are independent and identically dis- 
tributed. We also assume that X is always observed. 
For one subject, the complete data can be repre- 
sented by {(Y1, X), (Y2, D2),..., (YK, DK)} where 
Dk = I(D > k) and D is the time of dropout. 

In reality, when Dk -- 0, Yk is not observed. 
Let Yk = Yk if Dk = 1 and Yk = * otherwise. 
The incomplete data can then be represented as 
{(Y1, X), (Y2, D2),..., (YK, DK, )}. The incomplete 
data likelihood for one subject is 

K 

L(¢) - fy,(91[X;O) H{fyk,Dk(Yk, llpastk;¢)} Dk 
k=2 

K 

H {fDk(Olpastk;¢)}X-Dk (1)  

k=2 

where past k = {X, (Yj ) j<k ,D _> k} and ¢ = (0,¢) 
and ¢ contains parameters that describe the condi- 
tional distribution of (DIY, X). Note that in this 
representation, there may be an overlap between 0 
and ¢. 

We now describe three conditions on dropout that 
appear frequently in the literature. In the following 
section these conditions on dropout will be used to 
establish ignorability for different methods of infer- 
ence. The conditions will be interpreted in the con- 
text of the population of nonimmigrant,  noninstitu- 
tionalized people aged 55 or over (people in late mid- 
life through old-age) who were residing in the U.S. 
in 1968. As we shall see, conditional independence 
is a statement about subgroups of this population. 
For the interpretations that will be given later on, 
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we will assume, for simplicity, that the only reason 
for dropout is emigration. The response is whether 
a person is in poverty or not. 

Moreover, unless otherwise indicated, the condi- 
tions that will be given are defined for all possible 
samples from the population. 

One condition, which we will call independent 
dropout I, is that for a person still in the study up 
to time tk the probability density of his potential 
response Yk is the same as the assumed distribu- 
tion in the case when dropout is not a possibility. 
Kalbfleisch and Prentice (1980,p. 120) and Ander- 
sen et al. (1988, p. 30) referred to an analogous 
condition, independent censoring, in the context of 
survival analysis for continuous lifetimes. This con- 
dition can be quantified as 

Yk is independent of {D > k} given (X, ]~, j < k) 

for k = 1 , . . . ,  K. Or in terms of the densities, 

f yk (yk lpas tk ;¢ )  = fy~(yk lX ,  Y j , j  < k;O) (2) 

f o r k =  1 , . . . , K .  
We now illustrate this condition using the popula- 

tion described earlier. Consider the group $1 of peo- 
ple with a similar past, say college graduate males 
who have not been poor from age 55 up to age tk, 
and let Pk be the group of males in $1 who are poor 
at age tk. Suppose that the proportion of males in 

n ( P k )  _ 0.10. poverty at age tk in $1 is 0.10. That  is, n(S~) - 

Now, divide S1 into $2 and S1 \ $2, where $2 con- 
tains those who have not emigrated before t k and 
S1 \ $2 contains those who have emigrated before 
tk. If the independent dropout I assumption is to 
be satisfied, then the proportion of poor men in $2 

n ( P k n S 2 )  __ 0.10. We il- should also be 0.10, that is, n(s2) - 
lustrate this in Figure 1. Note that this also implies 
that the proportion of poor men at tk in ($1 \ $2) is 
also 0.10. In effect, we are assuming here that those 
who have not emigrated before tk are as likely to be 
poor at age tk as those who have emigrated before 
tk. 

s~s 2 s 2 / ~ ~ s  2 s 2 s)s2 s2 A ~  s2 s2 

/ 

Figure 1" Independent Dropout I 

Suppose that  men unwilling to emigrate are more 
likely to become poor. In this case, relative to group 
$1, group $2 would be overly composed of men re- 
sistant to emigration and hence more likely to be 

poor. The independent dropout I assumption would 
not hold in this case. 

A second condition is the random dropout con- 
dition discussed by Diggle and Kenward (1994, p. 
53). They defined this as that the probability of 
a dropout at time tk depends only on the previous 
observations and not on the observation at t k. An- 
dersen et al. (1988, p. 30) described an analogous 
condition that the censoring process should depend 
(in a functional sense) only on the past and not on 
future events. They referred to censoring processes 
that satisfy this condition as predictable censoring 
processes. 

Mathematically, we can express the random 
dropout condition as 

Yk and Dk are conditionally independent given t)ast k 

for k = 1 , . . . ,  K. In terms of densities: 

fD~lY~(l lpastk,Yk;¢)---  fD~(l lpastk;¢)  (3) 

or equivalently, 

fY~lDk (Yk Ipastk, Dk = 1; ¢) = fYk (yk Ipastk; ¢), 
(4) 

for k = 1 , . . . , K .  

2. Given the past, the distribution of the potential 
response at time tk is the same for someone who 
drops out at time tk and someone who does not 
drop out at time tk. This can be expressed as 

f Y k l D k  (Yk Ipastk, Dk = 0; ¢) = 

fFklDk (Yk ]pastk, Dk = l; ¢) 

f o r k =  1 , . . . , K .  

It can be shown that (3), (4) and (5) are equivalent 
to each other. 

We now interpret Equation (5) using the elderly 
population. Define a subgroup in $2, group Ek, com- 
posed of men who emigrate at tk. Equation (5) re- 
quires that the proportion of poor men in S'2 among 
those who do not emigrate at t k is the same as the 
the proportion of poor men in $2 among those who 

n ( P k n E ~ n S 2 )  _ n ( P k n E k n S 2 )  
emigrate at tk. That  is, ,~(E,knS2 ) -- ~(EknS2) " 
Thus, among the men who have not emigrated prior 
to tk those who emigrate at tk are as likely to be 
poor at tk as those who do not emigrate at tk. We 
show this in the second and third sets of diagrams 
in Figure 2. By Equation (4), we have the equality 
with the first diagram. 
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Figure 2" Random Dropout 

Diggle and Kenward (1994) call the dropout infor- 
mat ive  if the random dropout condition is not satis- 
fied, that  is, if the probability of dropout at time tk 
depends on the potential response Yk. In estimating 
the rate of change over time in a continuous variable 
in a random effects model, Wu and Carroll (1988), 
Wu and Bailey (1989) and Schluchter (1992) call the 
censoring process i n format i ve  if the censoring proba- 
bility for each individual is related to the random ef- 
fects for that  individual. Little (1995) distinguishes 
between these two uses of the word informative by 
calling the first nonignorable outcome-based dropout 
in which the dropout probability depends on the 
missing values of the response variable and the sec- 
ond nonignorable random-coef f ic ient -based dropout 
where the dropout probability depends on the ran- 
dom effects. 

Another condition we will use to establish ignor- 
ability of the dropout is the independent  dropout II  

condition, 

Yk is independent of {D > k} given (X, Yj, j  < k) 

for k -  1 , . . . ,  K. In terms of densities, 

f Y k l D k ( y k l p a s t k , D k  = 1 ; ¢ ) =  fr~(yklX, Yj,j < k;0) 
(6) 

for k = 1 , . . . , K .  This is one possible quantifi- 
cation of Diggle and Kenward's (1994) assumption 
that "if an experimental unit is still in the study 
at time tk its associated sequence of measurements 

• j - 1, ..., k follows the same joint distribution as 
that of]~ • j - 1, ..., k". Diggle and Kenward do not 
quantify this statement.  

We are assuming here that given the past and that 
the subject has not dropped out at the present time, 
the distribution of his response at the present time is 
the same as in the case when there is no possibility 
of a dropout. In the population described earlier, 
we again consider the group, S1, of college graduate 
males who have not been poor from age 55 up to age 
tk and the following subgroups in $1: 5'2, composed 
of men who have not emigrated before tk; and Pk, 
composed of men who are poor at t k. 

Suppose that  the proportion of poor men at age t k 

in $1 is equal to 0 10, That  is -(vk) _ 0 10. Now, 
' ' n ( S l )  - ' 

we consider only those men who do not emigrate 
up to and including at age tk (E~ N $2). Under 

Condition (6), the proportion of poor men in this 
,~(PknE'knS2) _ 0 10 This set is also 0.10. That  is, n(E~nS2) . . . .  

is shown in Figure 3. 

s~s 2 s z / ~ ~ s  2 s 2 

/ 

s'ts2 s2 ~ 1  ~s2 s2 

Figure 3" Independent Dropout II 

From Figures 1, 2, 3 we see that  any two condi- 
tions imply the third. It should be noted however 
that  no one condition implies either of the two other 
conditions. 

These conditions are similar to the conditions used 
in the literature for general missing data patterns. 
Rubin (1976) defined missing data as miss ing  at ran- 
dom (MAR) if the probability of the observed pat- 
tern of missing data does not depend on the miss- 
ing y values. If we apply this to longitudinal data 
where a dropout occurs at time t d and we observe 
X -  x, (Y1 - .01,.. . ,  Yd-1 -- Yd-1) ,  we can interpret 
this condition as 

P ( D  - dlX , Y1, . . . ,  Yg;  ¢)lX=x,y,=91,...,yK=v~< = 

P ( D  - d l X  , Y1, . . ., Yd-1; ¢)lX=x,Y~=9, .... ,Y~-,=9~-x 
(7) 

for the observed time of dropout, d, the ob- 
served past,(x, y l , . . . ,  Yd-1) and for all unobserved 
Y d , . . . ,  YK. We will call this condition as Bayes ian  
M A R .  Some authors ((Laird, 1988), (Heyting et 
al., 1992)) use (7) and assume it to hold for all 
d -  2 , . . . ,  If, all ( /)1, . . . ,  Yd-1) and all (Yd, . . . ,  YK). 
We will call this condition as f requent i s t  M A R .  

As is shown by Robins et hi. (1995), frequentist 
MAR is equivalent to the following strengthening of 
random dropout: 

Dk is independent of (Yk, . . . ,  YK) given past k 

or equivalently, 

fDk(l lpastk;¢)-- fDklYk ..... vK( l lpas tk ,Yk , . . . ,YK;¢) ,  
(s) 

for k - 2 , . . . , K .  However, Bayesian MAR is not 
equivalent to (8). 

One may show that frequentist MAR (7 or 8) im- 
plies that independent dropout I (2) holds. However 
the independent dropout I condition does not imply 
frequentist MAR. 

Frequentist MAR (7 or 8) also implies that  ran- 

dom dropout (3) holds. However, if 

Dk 2_ Yk+a, . . ., YK given pastk,Yk. (9) 
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for k = 2 , . . . ,  K, then (S) is equivalent to (3). It 
would seem that  (9) would be satisfied in many prac- 
tical cases. Thus, in situations in which (9) is plau- 
sible, frequentist MAR is not substantially stronger 
than random dropout. Since independent dropout 
I and random dropout imply independent dropout 
II, it follows that  frequentist MAR also implies the 
independent dropout II condition (6). 

I G N O R A B I L I T Y  OF T H E  D R O P O U T  

We call the dropout ignorable if and only if the 
mechanism of inference for the ideal data (but pos- 
sibly unbalanced) is valid for the incomplete data 
subject to dropout. In large-sample frequentist in- 
ference, large sample properties, such as consistency 
and asymptotic normality of the estimator of the 
parameter are used for hypothesis testing and con- 
struction of confidence intervals. In particular, it 
is necessary that the estimating function for 19 be 
unbiased in order for the estimator of 0 to be con- 
sistent and asymptotically normal. We focus on this 
minimal property in defining ignorable dropout. We 
illustrate this using likelihood-based inference. 

Valid inference on the parameter /9 using likeli- 
hood methods depends on the correct specification 
of the likelihood function up to proportionality con- 
stants not depending on 0. Then, in general, the 
score function evaluated at the true value 19 will have 
mean zero (will be an unbiased estimating function). 

Suppose we observe, X,D, and Y1,...,YD-1. 
Then if we pretend that D is a constant and that 
there are only D -  1 observations, we will use the 
function 

L C (0) - fy~ (Y1 IX; 19) × 
D - 1  

H fYklY1,'", gk-l(yklx'~ll'''''(dk-a;19) (10) 
k=2 

and 

0 logL c ( 0 ) -  0 0--g b--g log It ,  (71 Ix; 0) 
K 

+ ~ Dkff-~ logfrklY, ..... Y k _ , ( Y k l X ,  y l ,  . . . ,  Y k - 1 ;  19) 
k = l  

as one subject's contribution to the likelihood and 
scole function respectively. In this case we are ignor- 
ing the dropout. Note that using this ignores the fact 
that the number of observed values of Y depends on 
the random variable D. The correct likelihood to use 
is the incomplete data likelihood L(¢) (Equation 1). 

If we can factor L(¢) into L c(0) and some other 
factor not involving 0, then the correct score func- 
tion for 0 will be ~ L C (19) summed over all subjects. 
In this case, we say that the dropout is ignorable. We 
now give a set of conditions for which the dropout 
is ignorable. 

T h e o r e m  1 
The dropout is ignorable under likelihood-based in- 
ference if, 

1. the independent dropout H condition holds for 
k =  1 , . . . , K ,  and; 

fDk (llpastk; ¢) is functionally independent of 0 
(11) 

holds for k = 1 , . . . ,  K. 

Under independent dropout II, LC(O) is a partial 
likelihood. Cox (1975) showed that under the usual 
regularity conditions, the score function from the 
partial likelihood has similar asymptotic properties 
as the score function from the full likelihood. This 
implies then that even if (11) is not satisfied, that is, 
even if the conditional probability of a dropout given 
the past depends on 0, we can still make valid large 
sample frequentist likelihood inference on 0 based 
on Lc(0) alone. However there will be a loss in effi- 
ciency if we use the partial likelihood instead of the 
full likelihood. 

Note that for a particular observed sample the 
likelihood will be correctly specified, if Equation (6) 
and Equation (11) hold only for the particular ob- 
served data and all unobserved Y values. Thus, for 
direct-likelihood inference which Rubin (1976) de- 
fines as inference that "results solely from ratios of 
the likelihood function", assuming (6) and (11) for 
the observed data and all unobserved data is suffi- 
cient for ignorability. Rubin's conditions for ignora- 
bility under direct-likelihood inference are that the 
missing data are Bayesian MAR and that t9 should be 
distinct from ¢. However to consider the asymptotic 
properties of est imators,  we assume these conditions 
for all possible samples from our population. Laird 
(1988) and Heyting et al. (1992) use the frequentist 
MAR condition (7/8) for ignorability and implicitly 
assume that 19 and ¢ are distinct. We have shown ill 
the previous section that frequentist MAR (7/8) im- 
plies both independent dropout I and independent 
dropout II. 

Laird (1988) comments that the asymptotic vari- 
ance of the estimator should be estimated by the 
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observed information. Under the conditions of The- 
orem 1 or 2, the observed information matrix de- 
pends only on L C(0) and is thus a consistent esti- 
mator of the asymptotic variance. The expected in- 
formation must be calculated relative to the density 
in (1). Therefore, the conditions of Theorem 1 or 2 
are not sufficient for the consistency of the expected 
information. 

D I S C U S S I O N  

We have shown that the definition of ignorable 
dropout depends on the population of inference and 
the statistical methodology used. Since one sample 
can be used to make inference about more than one 
population, it is important to carefully define the 
population when dealing with premature departures 
from a longitudinal study. Not all subjects who leave 
the study prematurely are dropouts- the population 
of inference dictates whether a premature departure 
is a dropout or an end of a complete observation. 

Ignorability conditions depend on the type of in- 
ference. Rubin (1976) considers ignorability for 
Bayesian inference. Since a Bayesian analysis is 
conditional on the collected sample, Rubin's ignora- 
bility conditions concern only the collected sample. 
We have discussed likelihood-based inference. Since 
this method depends on large sample theory for the 
construction of confidence intervals and hypothesis 
tests, our ignorability conditions must hold for all 
possible samples collected from the population. 

Tipa, Murphy & McLaughlin (1996) give ignora- 
bility conditions for different large-sample frequen- 
tist types of inference. They show that infer- 
ence concerning the preservation of marginal mo- 
ments have stronger ignorability conditions than 
likelihood-based inference. Ignorability conditions 
when interest is in the parameters of the conditional 
mean, on the other hand, are weaker. 
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