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1. Introduction 
Logistic regression models of the form 

l og i t [P (yg  - 1)] - / z  + ,flXq 

are extensively used in analyzing sample survey data to 
study the relationship between a binary response and a 
group of independent variables. Due to cost and 
efficiency considerations, stratified multistage samples 
are the norm. However, these samples, while efficient 
for estimation of the descriptive population quantities, 
pose challenges for model-based statistical inference. 
This sampling scheme often introduces multilevel 
correlation among the observations that can have 
implications for model parameter estimates. For 
multistage clustered samples, the dependence among 
observations often comes from several levels. Thus, 
drawing appropriate inferences from survey data may 
require complicated modeling techniques and very 
often, the computation required for this is very time 
consuming. 

This paper is focused on model-based analysis for 
binary data with a structure similar to that of the 
National Health Interview Survey. It proposes a logistic 
regression model which fits the between-cluster 
variation with random effects. The model also takes 
into account the correlation among small groups of 
observations within each cluster. An algorithm is 
proposed that makes the computation feasible for the 
mixed logistic regression model on large survey data. 
Generalized estimating equations (Liang and Zeger, 
1986) are used in the estimation procedure to 
accommodate the correlation among the observations 
within small groups, avoiding problems associated with 
the use of random effects to model correlations among 
large numbers of small groups. An adjustment is 
applied to eliminate the bias in estimation of fixed 
effects that exists in some procedures for random 
effects logistic regression noted by Rodriguez and 
Goldman, 1995. 

2 National Health Interview Survey and Modeling 
Considerations 

The current National Health Interview Survey 
(NHIS) is taken annually by the National Center for 
Health Statistics using a multistage sampling scheme. 

About 200 primary sampling units (PSU's) are selected 
from approximately 1900 geographically defined 
PSU's (each consisting of a single county or a group of 
contiguous counties) which collectively cover all 50 
states in the United States and the District of Columbia. 
These PSU's are stratified using socioeconomic and 
demographic variables and are selected with probability 
proportional to population size within a stratum. Within 
each PSU, groups of households or neighborhoods are 
formed and subsampled. Once a neighborhood is 
selected, some or all the households in this 
neighborhood are selected for interview, depending on 
the size of the neighborhood. For the sampled 
households, information on all the members of the 
household is recorded. Each year a new sample 
consisting of about 50,000 households containing 
approximately 120,000 individuals is taken. 

The sampling structure used by NHIS introduces 
multilevel correlation among the observations. A 
reasonable model must first consider the correlation 
within families. For example, in measuring the risk of 
disease, since household members are usually 
genetically related and live in close proximity, high 
correlation among the outcomes from the same 
household is possible. Other examples of correlated 
measures for household members include social and 
economic status, education, personal income and 
whether or not a person has health insurance coverage. 
The correlation is mainly caused by interdependence 
among the family members, economically, socially, or 
biologically. 

Another correlation the model should consider is at 
the PSU level and is the result of an area effect, 
sometimes referred to as an "ecological" effect. The 
same effect applies to all the individuals in a PSU but 
varies from PSU to PSU. For example, if air pollution 
is a major risk factor for a given respiratory disease, 
higher rates for occurrence of the disease would be 
expected in highly polluted PSUs than in PSUs with 
lower pollution levels. The effect of pollution and its 
interaction with other effects on the risk of the disease 
is similar for people living in the same PSU but 
different from PSU to PSU. Other examples include the 
effect of the economic environment or government 
policy on individuals' social or economic status within 
different political boundaries. 
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3. Problems Associated with Estimation In Random 
Effects Logistic Regression. 

One way to model the NHIS data is to use 
multilevel Random effects models with random effects 
specified at both family level and PSU level. However, 
estimation for random effects models is often 
complicated. Most of the estimation procedures are 
quite complex and calculations are time consuming, so 
that evaluation of their properties even through 
simulation is difficult. Properties associated with some 
of estimation procedures for logistic regression have 
become known only recently. 

Rodriguez and Goldman (1995) evaluated two 
software packages that are available for fitting 
multilevel models to binary data using a Monte Carlo 
study designed to represent the structure of a data set 
used in an analysis of health care utilization in 
Guatemala. In their study, two levels of random effects 
were included to model family and community 
clustering, in addition to several fixed effects. The 
results revealed substantial biases in the estimates of the 
fixed effects and/or variance components whenever 

1. the random effects are sufficiently large to be 
interesting, 

2. the number of observations within a given level 
of clustering (e.g. family) is small. 

Rodriguez and Goldman showed that the 
multilevel estimates from the packages they evaluated 
are virtually the same as those obtained by using 
ordinary logistic regression models that ignore the 
hierarchical structure of the data. This means that in 
estimating random effects with the logistic regression 
model, the improvement through implementing a very 
complicated algorithm by these packages is minimal 
compared to simply applying ordinary logistic 
regression, which ignores all the complex model 
specifications. Neuhaus and Jewell (1990) showed that 
given the random effects model is correct, estimates 
from procedures that ignore these random effects, such 
as ordinary logistic regression, are biased toward zero, 
which is confirmed by Rodriguez and Goldman's 
study. In another recent evaluation of approximate 
methods of inference for generalized linear model with 
random effects, Breslow and Clayton (1993) also 
obtained similar results. 

In the conclusion of their study, Rodriguez and 
Goldman stated that their simulation results leave open 
the question of whether random effects in the binary 
response model can ever be estimated at acceptable 
levels of bias and precision when the average size of 
clusters is modest. The sample size problem is 
unavoidable in a broad range of social, demographic 
and epidemiological studies when the lowest level of 
clustering is at the family level. Their findings highlight 

the need for alternative estimation procedures to handle 
multilevel models with binary response. 

4. Fitting Multilevel Clustered Data: Hierarchical 
Logistic Regression Model. 

The model proposed in this paper is a combination 
of the population average (PA) model and the random 
effects model. The population average model is used to 
take into account the correlation among observations 
from family members; the random effects model is 
employed to fit the between-PSU variation. This 
combination accommodates the multilevel correlations 
among the observations while avoiding the problems of 
estimation in random effects models when the sample 
sizes within each family are small. 

In the hierarchical model studied by Wong and 
Mason (1985), covariates were divided into two 
groups: those at the micro level (individual level) and 
those at the macro level (PSUs level). The examples for 
the micro level covariates are age, sex, education, etc. 
The examples for macro level covariates are population 
size of PSU, pollution level of the PSU, etc. This model 
combines information at the macro (PSU) level with 

that at the micro level as follows: for Yok,  the kth 

observation from the jth family in PSU i with micro 

level covariates X#k, the model is 

l o g i t [ p ( y , : j k  = 1)]  = X ~ j k f l  , , 

where f l i ,  which is p x 1, is the vector of regression 

coefficients for PSU i and 

//, = + v ,  

where Z i is a p x L macro level design matrix, and 

]3 is an overall fixed effect of order L x 1. The error 

vectors o i are independent and identically distributed 

with mean zero and a p x p variance-covariance 

matrix F. 
This random effects model can be extended to 

accommodate multilevel clustering of the data. 
However, in the NHIS, families define the lowest level 
of clustering. As discussed in section 3, due to small 
family sizes, specifying another set of random effects at 
the family level would not allow for satisfactory 
estimation. This problem can be avoided by using the 
PA model to fit the family correlations. The GEE 
estimation procedure for the PA model combines the 
samples of all families in a large cluster. So at the 
micro level, instead of introducing another set of 
random effects, the PA model is fitted to take the 
correlation into account. Accordingly, the final model 
for the vector of observations of family j in PSU i is 

log i t [P(y  0. = 1)] = Xo.]3 , 
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together with correlation matrices which specify the 
correlation structures among the observations within 

families. The distribution for fl; ,  the logistic 

regression coefficient for PSU i, is 

13,- fl, r ) .  
Since the full likelihood function for the GEE of 

logistic regression is not fully specified, the maximum 
likelihood estimation technique cannot be directly 
applied to this model. Korn and Whittemore (1979) 
introduced a two-step method that first uses a separate 
logistic regression of the binary response against micro 
level covariates in each PSU. These individual 
parameters are then combined to yield summary 
estimates for the overall effects of the covariates. This 
procedure provides a way to apply GEE to get 
estimates in each PSU taking into account the within 
family correlation and then to combine them to get 
second level estimates using currently available 
methods based on multivariate normal theory. 

5. E s t i m a t i o n  and  C a l c u l a t i o n  

This section explains the estimation procedure in 
detail. Assuming normality for the random effects, the 
model defined in section 4 becomes 

Iogit[p(y,/k = 1)] = X~jkfl , 

where ,8, = Z i f l  + t) i , t),-~ 34VN(0, F) and F is a 

variance-covariance matrix. 
Following the strategy proposed by Korn and 

Whittemore (1979), the estimation procedure for the 

fixed effect f l  splits into two steps: 

Step 1. Conditioning on fli, derive the estimated 

coefficient /), and the variance z)i for logistic 

regression from the observations in each PSU by 
directly applying Liang and Zeger (1986). 

Step 2. Assuming/~i - M'F'N(f l i ,  lli ) '  we have 

f l ,  ~ M V N ( Z i / 3 ,  r k + r )  (1) 

where r/i can be replaced by r/i. 

Racine-Poon (1985) gave a Bayesian approach 
which is among the best of its class (Gelfand et al. 

1990) for the calculation in step 2 when Z i equals the 

identity matrix. Following Racine-Poon, the prior 
distributions for fl and 1 - ' - I  a r e  assumed, respectively, 
vague and Wishart with degrees of freedom p and 
matrix Q. Racine-Poon pointed out that to represent 

vague knowledge about F -~ , p should be chosen as 
small as possible (i.e., p = p  the number of covariates). 
Except for the case with very few groups, the choice of 
Q has little effect on the result. In this section, Racine- 

Poon's result is extended to the situation when Z~ is not 

the identity matrix. 

To obtain the posterior distribution of fl and F -~ 
A 

given fl~ for i - 1 ,..., I, the joint density of ~/i, fli,,6, 

and 1 '-1 has to be evaluated first. It is proportional to 

( ' )  [ ] l~lr/,[ -1'~ exp -½ ~ (/~i- fli) r/];l(~i fl,) i=! i=l 

× Irl-"' exp _1 (/3, - Zifl)rF-l(fli - Zfl) 
,= 

x ]FI-('-"-'v2 exp[-½ trF-1 "O] 

This cannot be solved analytically. Following Racine- 
Poon's EM-type algorithm, first the conditional 

expectations of t h e / ~ ' s  and/5' are derived. Then they 

are plugged into (2) and the equation is maximized 
over F. 

Following a theorem due to Lindley and Smith 
(1972) and assuming that knowledge of /3  is weak, the 

posterior of fl given fli, i = 1 ,..., I ,  and F is L- 

variate normal with mean fl* and covariance matrix D: 

D = Z, r (q, + r ) - '  Z~ . 
i=1 

I 

+r) 
i=1 

Using a similar strategy, one can derive the 

posterior density of fli given ]3i, r k,  [3 and F is 

normal with mean fli and covariance matrix D i • 

D~ - (r/71 + F -1 )-1 

f l ;  - Di(qr, '  fli + F- 'Z ,  f l ) .  
Applying the EM-type algorithm is then 

, B (t-l) straightforward. At the/th iteration, let fl(t-)) ,-~ , 

F (/-1) be the approximations of fl, f l , ,  and F 

from the (l-1)th step, respectively. 

E-step" Conditioning on F (i-1) the posterior 

expectation for/3 is given by 
I 

f l ( ' ) -  [D( ' ) l~-- ' [g(rk + Fq-1))-~],~ i (3) 
i=! 

where 

1 -I D(t) _ Z r (17 i + F(l-l))-I Zi  , 

i = l  

By conditioning on f l -  fl(o and F - F (~-1) the Bayes 

estimates for f l i ' s ,  i = 1 , . . . ,  I are given by 
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9(,) -~ ̂ (,_~)-,Z, fl(, ) , : (~7'  + F('- ')- '  )-' (q ,  f l ,  + r ). 
= B (t) the log M-step: Conditioning on fli ,_~ , 

transformation of (2) is 

c - ½ ( I + p - p - 1 ) l o g l F [  

The conditional posterior model can be obtained as 

r~,) : [ (Q + ~ (/~I ') _ z , /~ , ))( /~l , )  _ z, /~<,)) , ]  
( I + p - p - 1 )  

The E and M steps are repeated until 

F -1 converges. Reasonable starting values of/3 and F 
a r e  

fl(o) _ (ATA)-I  A~'y 

r,o,: to+ ZO,- z,,'°))O,- z,p'°)) '] 
( I + p - p - 1 )  

where a = { ZT, ' ' ' ,  ZI r } r .  

The key assumption is the normality of the 
^ 

estimates fl~'s from each cluster. Hence, the number 

of observations within each cluster should be 
sufficiently large to ensure (asymptotically) the 
normality assumption. In this study, the clusters are 
PSUs which usually have sample sizes much larger 
than most longitudinal studies. Liang and Zeger (1986) 

showed that the GEE estimators fli are asymptotically 

normal so the normality assumptions needed for the 
algorithm are appropriate for our application. 

Intuitively, this two-step algorithm derives the 
overall estimate by combining the estimates from each 
individual PSU. The contributions of these individual 
estimates towards the overall estimate are weighted by 
their precision matrices (inverse of the variance). If 

Z i' s are identity matrices, the overall estimate/9 is the 

weighted average. As Stiratelli, Laird and Ware (1984) 
stated, this two-step algorithm has much to recommend 
it. It not only greatly simplifies the estimation 
procedure but can also accommodate the situation when 
directly applying the maximum likelihood estimation is 
not possible. 

Preliminary simulation showed that without any 
adjustment, the two-step algorithm would also give 
biased estimates for the fixed effects. In the two-step 
method, the bias mainly comes from the fact that the 
variance of estimates of logistic regression parameters 
is directly related to the estimates themselves. To 

remedy this problem, in equation (3), rliis replanced 

by 

Z '4 ;7 ' /n c ,= , ,  

where n~ is the sample size in PUS i, and l = 1, ..., I. 

This adjustment connects the weights of/9i only to the 

sample size in a cluster and dissociate them from the 
estimates themselves. 

6. Simulation Study 
6.1. Generating Correlated Binary Data. 

It is fairly straightforward to generate correlated 
binary variables using a random effects logistic model. 
It is more difficult to generate such variables following 
a population average model. In the latter case, the 
difficulty arises because the marginal distribution of 
these variables has to be kept in logistic form. In this 
section a method is proposed to generate correlated 
binary responses for given individual covariates, 
keeping the marginal in logistic form. 

Let i = 1 , . . .  I be index for PSUs, j = 1,.. .Ji be 

index for families, and k = 1,. . . ,K U be index for 

observations from family j. For this very simple 
situation where only family correlation considered, an 
outline of the procedure is as follows: 

(1) Calculate the corresponding probability based 

on logistic equation. For given covariates x./k and fl, 

exp(xjkfl) 

P/k - 1 + exp(xjkfl) (4) 

(2) Generate correlated normal variables. For given 

U/k = ;tt/ + cjk , 
• 

where ~t./ and ].t/, are independent for j ~: j '  and 

2), u~ ~ N(O,a~,  

where ~'jk's are independent of each other and of the 

f l i ' s  and 

~/k ~ N(0 ,  1) 

for k -  1,...,K~/. So 

2 + 1 ,  v ar(Ujk ) - cr 

c o v ~ j ~ ,  ~ , , )  - o~ 
and 

Cov(Ujk, U;k, ) -- 0 for j ~ j '  

Derive correlated normally distributed variable 
with mean zero and variance one 
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= + 1 .  

The correlation between ~k and ~k' is 

0"~ 

2 7 l+cr~ 

(3) Generate correlated binary data. Set 

where • is the CDF of the standard normal distribution 
and I is an indicator function. The resulting random 

variables Y/k and Y/k' are binary and correlated and 

Y./k is independent of ~'k' if j" ¢: j ' .  The probability 

that Y/k =1 is determined by equation (4) through the 
! 

P/k s .  So the marginal distribution of the binary 

random variables follows an ordinary logistic 
regression. The dependence of the correlation between 

Y./k and Y/k' on their covariates means that y is not the 

direct measure of this correlation. But this correlation is 
still positively related to y .  So y can be defined as the 

index of correlation, or IC in short, between Y/k and 

~k"  This dependence of the correlation between 

responses on their covariates is small as long as the 
difference of the between the expected value of the 
binary responses is not too large. To derive variables 

with between-PSU variation, fl~ is first generated 

using multivariate normal distribution and then plugged 
in equation (4). 

6.2. Simulation Results 
Since the magnitude of the between-PSU variance 

plays an important role in the consistency of the 
estimates of fixed effects (as reported by Rodriguez and 
Goldman, 1995), two between-PSU variances are 
chosen: F~, "small", the standard deviation for the 

slope being about 40% of the magnitude of the 

parameter, and F 2 , "large", the standard deviation of 

the slope being about 100% of the magnitude of the 
parameter. 

Simulation results showed that when the between 
PSU variance is small these is no bias in the estimates 
given by the two-step algorithm. In the estimates by 
ordinary logistic regression which ignores the 
hierarchical structure of the data, these is tendency of 
bias toward zero, although the magnitude of the bias is 
small. However when the between PSU variance is 
large, while the estimates from the two-step algorithm 
still remain unbiased, there is a big bias in the estimates 
from the ordinary logistic regression applied to the 

hierarchical data and the bias is toward zero. This 
illustrates that the adjustment proposed does alleviate 
the bias problem which plaques some of the estimating 
procedures for random effect logistic models. 

As a comparison of the efficiency for the 
estimation, the empirical variances of the slope 
estimates from the two-step algorithm with GEE and 
that with ordinary logistic regression are compared. The 
algorithm with GEE is more efficient when the within- 
PSU sample size is small, but this gain of the efficiency 
is less when the within-PSU sample size increases. The 
main reason for this is that the variance of the 
estimates for the fixed effect fl is a function of two 

parts: variance due to within-PSU variance and 
variance due to between-PSU variance F. GEE only 
affects the first one, the within-PSU variance, and has 
no effect on the second one. When the within-PSU 
variance dominates the between-PSU variance, using 
GEE will affect the overall variance of the estimates for 

f t .  As the within-PSU sample size increases, the 

within-PSU variance decreases, so the dominance of 
the within-PSU variance over between-PSU variance 
diminishes as a result of this. Therefore the gain of 
efficiency through GEE also vanishes. 

Simulation on two step algorithm with the PSU 

level covariates Z~'s other than identity was 

conducted, Again the estimates showed no signs of any 
bias. 

7. Conclusion and Discussion 
Model-based logistic regression analysis of survey 

data has been difficult because of two things: taking 
into account the hierarchical or nested structure of the 
data, and the nonlinear link function. Statistical 
techniques required to analyze data with this kind of 
structure have been developed relatively recently. They 
are often very complicated and beyond the easy grasp 
of researchers outside the statistical field. This makes 
the descriptive approach, which is usually based on 
very simple model specifications more appealing to 
many people. However, since observations from the 
same cluster tend to be more alike than those from 
different clusters, the basic assumptions, such as 
independence between observations, for many simple 
model specifications are likely to be violated. As a 
consequence, these "shortcut" analyses may result in 
biased estimates of the parameters. This problem is 
especially serious when the link function between the 
outcome variable and the explanatory variables is 
nonlinear. 

The model which combines the random effects 
model and population average model and the two-step 
algorithm developed in this paper provide a new 
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approach to logistic regression analysis of multistage 
stage survey data. This approach provides a way to 
model the multilevel correlation among the 
observations and avoids problem of small sample size 
at low levels of clustering, which prevents satisfactory 
estimation by applying the random effects model at this 
low level. Applying the GEE technique not only takes 
into account the correlation among the observations in 
small groups but also improves the efficiency of the 
estimation. The adjustment developed in the two-step 
algorithm eliminates the bias in estimating of the fixed 
effects that plagues in some currently available 
estimating procedures in analysis of hierarchical 
logistic regression. Also by splitting the estimation into 
two relatively simple steps, the two-step algorithm 
greatly increases the computation efficiency. 

Finally, model-based analysis eliminates some 
need for some sample design information such as the 
inclusion probability of the sample, which is necessary 
for a descriptive analysis. Thus it greatly simplifies the 
analysis in this respect. Sample design information may 
not always be available or may not be accurate. Even 
when the information is available, fully understanding 
it and using it appropriately in the analysis might not be 
feasible for many researchers without an extensive 
statistical background. 
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