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1. Introduction 
The logistic regression model is being used in 

many different areas and has become the standard 
method of analyzing models in which the dependency 
of a binary response variable is being tested on a 
number of explanatory variables. In practice, most of 
the data used in these analyses are obtained from 
surveys with complex designs, in which stratification, 
clustering and multi-stages of sampling are used to 
collect the data. There is an extensive body of literature 
on the effect of complex survey designs on the analysis 
of such data. The literature includes various methods 
of accounting for the sample design when analyzing the 
data. However, the literature on analyzing logistic 
regression models using survey data is limited. This 
paper provides a discussion on the use of replication 
(resampling) techniques in analyzing logistic models 
including the application of replication techniques to 
the score test method. Westat, Inc. has recently 
enhanced the WesVarPC software by adding analysis of 
logistic regression models with survey data using 
replication techniques. A description of logistic 
regression modeling in WesVarPC is provided. 

In simple random sampling, a logistic model is 
defined in the following way. Suppose that a response 
(dependent) variable Y can take one of the two values 0 
or 1, i.e., occurrence or nonoccurrence of an event such 
as injury in an accident. Variables of this type are often 
called binary or dichotomous variables. For 
dichotomous variables such as Y, one object is to 
develop a method for estimating P, where P is the 
probability of occurrence of an event as a function of a 
number of independent variables. It has been shown, 
theoretically and empirically, that when the dependent 
variable is dichotomous, the shape of the response 
function is frequently curvilinear. The logistic 
regression model is a curvilinear response function 
which has been found to be appropriate in many cases 
involving a binary dependent variable. This response 
function assures that the estimate of P (probability of 
occurrence of an event) is always between 0 and 1. 

Let Yi denote the observed value of Y for the i-th 
individual in the sample, and designate the 
corresponding vector of p regressor (independent) 
variables Xi,  i = 1, 2,..., n, where 

P 

X i  = ( Xo i ,  Xli,..., Xpi ). 

The dummy regressor XOi = 1 (i = 1,..., n) is included 

to provide for the estimation of an intercept. Also 
def'me the n x (p + 1) matrix of independent variables 
for the sample as X, where 

X" = (X 1, X2,..., Xn). 

Then, under the logistic regression model, the 
probability that Yi is equal to 1 is 

Pi = 1/(1 + exp(-13' xi)), (1) 

where 13'= (130,131 ..... [3p) is the vector of regression 

coefficients in the logistic model. Equation (1), can be 
written in the following way 

Yi = 1/(1 + exp(-13'Xi) ) + ei, (2) 

where e i is a random error with mean zero and variance 
Pi (1 - Pi). Refer to Kleinbaum, Kupper and 
Morgenstern (1982), pages 421-446, and Hosmer and 
Lemeshow (1989) for more information about logistic 
regression models. 

Section 2 provides a brief overview of applying 
logistic models to survey data. A discussion on the 
use of replication (resampling) techniques in analyzing 
logistic models is given in Section 3. A brief 
description of the analysis of logistic models in 
WesVarPC is given in Section 4. A summary of an 
empirical study on the application of replication 
techniques for the computation of score test is given in 
Section 5. 

2. Applying Logistic Models to Survey Data 
The use of survey data to analyze regression 

models, especially of the association between risk 
factors and covariates such as sets of characteristics and 
outcomes, has become increasingly more popular 
among data analysts. In these cases, a model is 
postulated, the parameters of the model are estimated, 
and tests of hypotheses of the fit of the model or a 
subset of the model parameters are conducted. To carry 
on such analyses, it is necessary to measure the 
precision of the estimated parameters. The sample 
design used to select survey data are usually complex, 
involving multistage sampling, clustering, and 
differential sampling probabilities for various 
subgroups in the sample. There is a body of literature 
on whether the sample weights and sample design 
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should be accounted for in model fitting. In general, 
regression modeling with survey data is accomplished 
by either using a design-based or a model-based 
approach. The material provided in this paper is solely 
related to the design-based approach in which the effect 
of the sample design on the covariance structure of the 
sample data is taken into account when fitting logistic 
models. The reader is referred to Pfeffermann (1993) 
for a survey of relevant literature focusing on the 
design-based approach. The book entitled "Model 
Assisted Survey Sampling" by Sarndal, Swenson, 
Wretman, (1992) provides a general reference for the 
model-based approach. 

The Pseudo likelihood approach to the analysis 
of logistic models utilizes the sampling weights to 
estimate the likelihood equations that would have been 
obtained in the case of a census. Let p = number of 
independent variables, and n = sample size. We def'me 
W to be the n x n diagonal matrix formed from the 
elements of the w, where w is the n x 1 vector of the 

full sample weights [Wl,W2,...,Wn] associated with the 

n observations in the sample. 

Following the notation in equation (2), the 
"weighted" maximum likelihood estimates of [3' 
denoted by b' are the solutions to the equations 

X ' W  (Y- P) : 0 (3) 

where Y denotes the vector of observed values of the 
response variable 

Y" = (Y1, Y2,..., Yn), 

and ~=[p1,P2,...,l~n ) I , , , , \  is the associated vector of 

estimated probabilities. 

The iterative method of Newton-Raphson is used 
to solve for 

b ' = (bo,bl ,b2 ,..., bp ). 

The initial parameter estimates are taken to be zeros 
unless starting values are specified. The convergence is 
obtained when the difference in -2log-likelihood 
between successive steps is less than some prespecified 
value, where the weighted estimate of the log- 
likelihood is given by 

+ 

i-1 i-1 

3. Replication Techniques for Logistic Models 
As noted earlier, it is necessary to measure the 

precision of the parameters estimated for a model when 
conducting tests of hypotheses for the fit of the model. 
Two common methods are available for estimation of 
variances when data comes from a complex sample 
design. One is linearization in which nonlinear 
estimates are approximated by linear ones for the 
purpose of variance estimation. The linear 
approximation is derived by taking the first order 
Taylor series approximation for the estimator. The 
second method is replication, in which several 
estimates of the population parameter of interest are 
derived from a number of subsamples of the original 
sample. The variability of these replicated estimates is 
used to estimate the variance of the estimator. See 
Wolter (1985) for a description of both of these 
approaches. This paper uses the replication approach. 

For logistic models, a replication approach 
computes "weighted" maximum-likelihood estimates of 
the parameters and applies the balanced repeated 
replication method (McCarthy 1969) or jackknife 
method (Wolter 1985) to estimate the sampling errors 
of the model parameters. 

Denote the replicate estimates of 13 by b(k ), 

k =  1, 2..., K. Then an estimate of the 
variance-covafiance matrix of b based on replicates is 
given by 

V~r(b) = c E (b(k) - b) (b(k) - b)' 
k 

where c is a constant that depends on the replication 
approach. 

Assuming that the vector of estimated 
coefficients, b, has approximately a multivariate normal 
sampling distribution with mean 13 and 
variance-covariance matrix Var(b), the hypothesis 

H0:D[3 = 6 versus 

HI: D[3 ~ 6 

can be tested using the statistic 

T 2 ffi ( D b -  6)' (D V~r(b) D') -1 ( D b -  6). 

If the degrees of freedom associated with V~r(b) 
is sufficiently large, the test statistic has an 
approximate chi-square distribution with d = rank (D) 
degrees of freedom. However, if the degrees of freedom 
for V~r(b) is small (<60), then T~ is distributed as a 
generalized T 2 statistic. That is, 
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df  + l - d  
Fd, df+l-d = d f  , d  

has an F distribution with d and d f  + 1 - d degrees of 
freedom, where d f  is the degrees of freedom for 
V~r(b). 

4. Analyzing Logistic Regression Models With 
Survey Data Using WesVarPC 
WesVarPC is a Windows-based software package 

developed at Westat, Inc. that computes estimates and 
replicate-based variance estimates from survey data 
collected using complex sampling and estimation 
procedures. WesVarPC reads a variety of input files 
and creates a WesVarPC file. Sampling errors are then 
estimated for different types of survey statistics. 

WesVarPC supports a wide range of complex 
sample designs, including multistage, stratified, and 
unequal probability samples. The replicate variance 
estimation method can deal with many types of 
estimation schemes, such as poststratification or ratio 
estimation. Also, WesVarPC easily computes 
estimates of variances for complex functions of 
estimates including ratios, differences of ratios and log- 
odds ratios. Tests of hypotheses for tables can be 
performed using chi-square statistics that have been 
adjusted for the complex survey design. WesVarPC 
also computes parameter estimates for linear and 
logistic regression models. Along with providing a 
test for the overall fit of the regression model, 
WesVarPC can perform tests for the significance of 
linear combinations of variables included in the linear 
or logistic model. 

The logistic model in WesVarPC computes 
estimates of the regession coefficients, the 
variance-covariance matrix of the estimated model 

parameters, and an R 2 statistic which is similar to the 
square of the multiple correlation coefficient (coefficient 
of determination) in the usual linear regession model. 
It also provides a test of the overall significance of the 
fitted logistic model, and the significance of linear 
combinations of parameters included in the model. 

As indicated above, WesVarPC computes a Wald 
F statistic for the fit of a model. The F statistic is 
dependent on the number of degrees of freedom 
associated with the variance-covariance matrix of the 
parameters, V~r(b). The F statistic becomes less 
reliable when the degrees of freedom for V~r(b) is 
small (see Thomas and Rao 1987, and Korn and 
Graubard (1990)). 

5. The Score Test for Logistic Regression 
Models 
The score test provides an alternative procedure 

for testing hypotheses about model parameters. The 
score statistic is a quadratic form based on the vector of 
partial derivatives of the log-likelihood function with 
respect to the parameters of interest, evaluated at the 
values postulated by the null hypothesis. One 
important advantage of the score test relative to the 
Wald or Likelihood Ratio tests is computational 
efficiency, arising from the fact that the score does not 
require the computation of maximum likelihood 
estimates of the model parameters in testing for overall 
model significance. 

The theoretical formulation of the score statistic 
and proof of its asymptotic equivalence to the Wald or 
Likelihood Ratio statistics under simple random 
sampling are now well established. See, for instance, 
Rao (1973), Cox and Hinkley (1974), Boos (1992), and 
references cited therein. In this section, we give a 
simple derivation of the score statistic for logistic 
regression models, and show how it can be applied to 
the analysis of complex survey data. We will then 
compare the properties of the score test with those of 
the Wald test via simulation using March 1995 U.S. 
Current Population Survey (CPS) data. 

Following the notation given in earlier sections, 
the weighted likelihood function may be written as 

L( ly) = , pW, r, (1- _ 

where 13, Y, wi, and P/ are as defined earlier and the 

product in the above equation is taken over all units i 
in the sample S [ieS}. The log-likelihood function is 

\ / 

logeL OY':i    w lo e( )+w 'O elm 
= ~ w i Y i X ~ - ~ w i l o g e ( l + e  X~fS) 

ieS i~.S 

Therefore, the (p + 1)x 1 score vector, S(13), is given 

by 

0 
S(f3) = - ~  logeL(f31Y ) = i~.s ~' wiXi(Yi  - Pi ) 

which can be written in matrix notation as 

S(13) = X' W ( Y -  P) 
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Tests of hypotheses about model parameters 
will, in general, not include the intercept parameter [3 0 . 

Thus, testing the overall fit of a model corresponds to 
testing a hypothesis about the vector of parameters of 
interest: 131, ~2 .... , [3p. If V{S([3)} denotes the 

(p + 1) x ( p + 1) covariance matrix of S(13), then the 
score statistic for testing the null hypothesis 

H o • (131 .... , [3p)-  (131°,..., [50) versus H 1 • not H o is 

given by 

-I[Ds(~0)] (4) 

where D is a matrix of zeros and ones which is defined 
so that D[3 = ([31,..,. ~p) and [3 ° --- (~0,130,..., [30p). 

Under the null hypothesis, Xs 2 converges in 

distribution to a chi-square random variable with 
d = rank (D) degrees of freedom. 

The following examines a procedure for 
implementing the score test for testing hypotheses 
about parameters of interest when fitting logistic 
regression models to survey data using 
replication-based variance estimation methods. 
Computing the weighted score vector and the replicate- 
based estimate of its covariance matrix takes account of 
the complex sample design for this test. We shall 
consider tests of hypotheses about the whole parameter 
vector, as well as hypotheses about specified subsets of 
the parameter vector, using weights developed for the 
full sample and k replicate samples, as described in 
Section 3. The score statistic for testing the overall fit 
of the model is given by equation (4), where the 
covariance matrix of the full sample score vector is 
estimated by replication methods. For ease of 
exposition, we shall consider the full sample as one of 
the replicates, with index 0. Thus we have k + 1 
replicate weights, ranging from 0 to k, 
(W~ 0) , W~ 1) .... , w}k)), where replicate weight 0 is the 

full sample weight. First, for each replicate j ,  where, 
j = 0, 1,..., k, we compute the (p + 1) x 1 score vector 
.(:)- x, so where (13°) = S(13°) is 

the full sample score vector evaluated at I 3° , W j is the 
n x n diagonal matrix whose diagonal entries are 
provided by the j-th replicate weights, 

- ,"., is the vector of probabilities under 

the null hypothesis, and 

p/o [1 + e-X~13° ]-1 - , i -  1, 2 , . . . ,  n .  

The replication-based estimated covariance matrix of the 
score vector is then computed as 

! 

is, is, (5) 
where c is as defined in Section 3. If the number of 
degrees of freedom associated with the estimated 
covariance matrix is large, then X 2 has an asymptotic 

S 

chi-square distribution with d = rank (D)degrees of 
freedom under H o . Otherwise, X 2 can be converted to 

an F-statistic by an appropriate normalization, given by 

Fs _ d f  - d + 1 X 2 .  (6) 
d f  * d  

Under the null hypothesis, F S has an asymptotic F 

distribution with d and d f -  d + 1 degrees of freedom, 
where d f  is the degrees of freedom associated with the 
estimated covariance matrix of the score vector. The 
maximum value for d f  is equal to k, the number of 
replicates. When the alternative hypothesis is true, F S 

has an asymptotic non-central F distribution with d and 
d f -  d + 1 degrees of freedom, and noncentrality 
parameter (9~) given by 

]1 

where 13 (1) is the vector of values of the model 
parameters under the alternative hypothesis. 

We now extend the score test statistic to handle 
tests of hypotheses about a given subset of 13, with a 
second subset treated as a vector of nuisance parameters. 

t 

Let [3 - ( B i ,  B~) ,  where B 1, and B 2 are subvectors of 

[3, of dimensions q and r respectively (q + r = p + 1). 
Suppose we are interested in testing the hypothesis 

H o • B 2 - B  0, while treating B 1 as a vector of 

nuisance parameters. First, for each replicate j ,  where 
j = 0, 1,..., k, we compute the maximum likelihood 

estimate r i0(j)  of B 1 given that B 2 = B  0. Let 

{rio(j)) 
~0(j) = / 1 . Next, we compute the score vector 

Bo 

sJ(~°(J ' )  - X' w J ( Y - I ) J ) ,  where S°(~°(°)) - S(~ °) 

is the full sample score vector, t ' J - ( ~ J , . . . , t ; n  j )  and 

, ,  - - 1  

_[l+e_X~13o(j)[ , / = r 1 1, 2,..., n. We then 
k ..I 

compute the replicate-based covariance matrix 
- [ I X ]  

VarlS(~°) l of the full-sample score vector using 
equation (5). The score statistic for testing the above 
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hypothesis is then given by (4), with S(~ 0) in place of 

S(130), £'{S(~°)} in place of V{S(I3°)}, and where D 

is defined so that DI3 = B 2. Under H o, Xj(2 ) 2  has an 

asymptotic chi-square distribution with d = rank (D) 
degrees of freedom. 

5.1 Simulation Study 
Using March 1995 CPS data, a simulation study 

was designed to conduct a preliminary evaluation of the 
performance of the score test for testing hypotheses 
about parameters in logistic regression models as 
compared to the Wald-F test, which is currently being 
used by WesVarPC. The CPS File used for the 
simulation study consisted of about 114,000 
observations. These observations were considered the 
entire population for the simulation (not a sample of 
the US population). 

5.1.1 The Logistic Regression Model 
For the simulation study, we used a logistic 

regression model for predicting the propensity (P/) for 

an individual to be on public assistance. The three 
auxiliary variables used in the model are X 1 (actual age 
in years); X 2 (in two categories: 1 if children are 
present in the household, and 0 otherwise); and X 3 (in 

two categories: 1 if home is owned, and 0 otherwise). 
The model is 

l°gel'il l -P/  = [~0X0i +[~IXli +1~2X2i -b~3X3i +[~4X4i-bE/ 

where X 0 = 1; X 4 = X 1 * X3; 130, 131, [~2, ~3, ~4 are 
the model parameters; and ci is the random error 
associated with the i-th sampled individual. Three 
stratification designs and two sample sizes were used in 
this simulation study. A two primary sampling unit 
(PSU) per stratum design, which included 16, 32, and 
64 strata, was used. Two hundred samples of size of 
about 1,000 and 5,000 each were selected from the 
above stratified designs, with equal numbers of records 
selected from each PSU. For instance, eight records 
were selected from each PSU in the 64 strata design for 
a total of 1,024 sampled cases. The following 
hypotheses were tested for each sample, using the 
procedures described above: 

H0(1) : (~1, ~2, ~3, ~4) = (0, 0, 0, 0) 

H0(2) : [~4 = 0 

H0(3) : (~1, ~4 )=(  0, 0) 

For each test, the score-based F statistic (Score-F), the 
Wald-F statistic, and their respective p-values were 
calculated for all 200 samples. 

5.1.2 Empirical Results 
For each sample and each set of replicate 

weights, the three hypotheses above were tested at three 
different significant levels ( a  = 0.01, 0.05, and 0.10). 
Table 1 gives a comparison of the rejection rates (the 
proportion of times Ho(i), i = 1, 2, 3, was rejected 

over repeated sampling)for the Score-F and Wald-F 
tests for testing each of the hypotheses under 
consideration. 

The hypothetical true values of the model 
parameters (([3o, 131, 132, 133, 134) = (-0.9414,-0.0282, 
-1.5877,-1.4808, 0.0098), were obtained by fitting the 
model to the entire population using PROC LOGISTIC 
in SAS. 

Based on the values of the model parameters, 
H0(1) and H0(3) are false but H0(2) is almost true. 

Thus, for H0(2), Table 1 entries provide values close to 

estimated significance levels for the various sample 
sizes. For H0(1) and H0(3), Table 1 entries are equal 

to the proportion of times a false hypothesis is rejected. 
For all three tests, both Score-F and Wald-F perform 
well with sample size of 5,120 and 62 replicates (the 
maximum degrees of freedom). In general, the two 
tests are somewhat similar in performance. 

The results obtained in the preliminary empirical 
study illustrate the potential application of score test for 
logistic models. The present findings, while quite 
informative, are certainly not conclusive. Further 
research is needed to evaluate the performance of the 
score test under various conditions and especially when 
the degrees of freedom associated with the statistic is 
small. Future research will include comparisons of the 
distribution functions of score test and Wald-F test 
statistics when the null hypothesis is not true. 
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Table 1. Proportion of times null hypothesis is rejected 

Hypothesis 
HO(1) 

H0(2) 

HO(3) 

Sample size 
1,024 

5,120 

1,024 

5,120 

1,024 

5,120 

Number of 
replicates 

16 

32 

64 

16 

32 

64 

16 

32 

64 

16 

32 

64 

16 

32 

64 

16 

32 

64 

Test statistic 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 
Score-F 
Wald-F 

0.01 
0.83 
0.83 
0.90 
0.85 
0.89 
0.89 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.01 
0.03 
0.00 
0.05 
0.00 
0.05 
0.01 
0.02 
0.03 
0.03 
0.01 
0.01 
0.38 
0.25 
0.40 
0.32 
0.37 
0.29 
0.98 
0.94 
0.98 
0.96 
0.99 
0.96 

Significance level 

0.05 
0.97 
0.93 
0.97 
0.96 
0.97 
0.95 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.01 
0.11 
0.01 
0.09 
0.00 
0.13 
0.03 
0.04 
0.06 
0.08 
0.05 
0.04 
0.63 
0.55 
0.66 
0.48 
0.63 
0.54 
1.00 
0.99 
1.00 
0.99 
1.00 
0.99 

0.10 
0.98 
0.97 
0.98 
0.98 
0.99 
0.96 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.02 
0.18 
0.02 
0.16 
0.01 
0.17 
0.09 
0.06 
0.13 
0.12 
0.09 
0.08 
0.75 
0.67 
0.77 
0.90 
0.79 
0.65 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
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