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Two types of biases may exist when estimating preva- 
lence rates from a two-stage design study: (1) verifi- 
cation bias and (2) imperfect reference bias. In this 
paper, we study the effects of both types of biases 
on the estimated prevalence rate, and derive the NIL 
estimator for the prevalence rate, adjusting for both 
biases. 

1. I N T R O D U C T I O N  

In epidemiologic research, the prevalence rate of a 
disease is often estimated with data from a two stage 
design study [1]. The first stage assesses a large sam- 
ple with a screening test. Based on performance on 
the screening test, some of the screened subjects are 
selected for a reference standard test, a more expen- 
sive clinical assessment, for diagnosis of the disease. 
Therefore, not all screened subjects have diagnoses 
of the disease. Even for those who have the diagnosis 
of the disease, the diagnosis may be wrong because 
the clinical assessment may not be 100% accurate. 

Therefore, in estimating prevalence rates of the 
disease, two common problems are (1) verification 
bias and (2) imperfect reference bias. Verification 
bias may occur if only a subset of screened subjects 
have verified disease status; and imperfect reference 
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bias may occur if an imperfect reference s tandard is 
used to establish the disease status. 

In this paper, we study the effects of both biases on 
the estimation of the prevalence rate. To emphasize 
conceptual rather than technical issues we will first 
concentrate our discussions on a simple setting. This 
simple setting assumes (1) that  the selection proba- 
bility of a patient for the clinical assessment depends 
only on his/her screening test result, (2) the screen- 
ing test and the reference standard test are condition- 
ally independence given the true disease status,  and 
(3) that the sensitivity and specificity of the imper- 
fect reference standard are known. Then, in Section 
4, we extend our method to more general settings. 

2. M E T H O D S  

Denote the screening test result, the result of an 
imperfect reference standard test, and the true dis- 
ease status of a patient by T, R, D, respectively. Let 
V be the verification indicator. Tha t  is, V = 1 if 
a patient is selected for the clinical assessment; and 
V = 0 if a patient is not selected for the clinical as- 
sessment. The variables T and R are binary. We 
never observe D, and we only observed R if V = 1. 
Let nk denote the number of subjects whose screen- 
ing test result is k. Let Uk be the number of not clin- 
ically assessed subjects whose screening test result is 
k. Let Sk and rk denote the number of subjects who 
were clinically assessed as diseased and non-diseased, 
respectively. Table 1 summarizes the observed data. 
Denote SR and SPR be the known sensitivity and 
specificity of the reference standard test, respectively. 
Let 0 and r /be  the sensitivity and specificity of the 
screening tests T. 

2.1 I N T U I T I V E  E S T I M A T O R S  

Let #(A) denote the number of elements in a set 
A, and that n = no + nl .  Since P(R,  T I D) = P ( R I  
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Table 1" Observed Data Yo 
T = I  T = O  

V=I R = I  sl so 
R=0  rl r0 

,, 

V=O ul uo 
nl S O 

D ) P ( T [ D ) ,  

provided that 

SR >_ max(  so 81 
ro + so rl + sl 

S P R > m a x (  ro , -  rl _). (2) 
r 0 + s o  r x + s l  

2.2  M L  E S T I M A T O R S  
In this section, we show that the intuitive esti- 

mators derived in the previous section are actually 
ML estimators. Whe~ we use an imperfect reference 

# ( R  = 1,T = 1) = SRS#(D = 1)+(1-SPR)(1-rt)~#(D = 0),standard to establish the true disease status D, we 
can treat D missing for all subjects. We will use 

# ( R  = 1, T = 0) = SR(1-8)#(D = 1)+(1-SPn)~#(D = 0),th e EM algorithm to derive the ML estimators. The 
# ( R  = 0, T = 1) = (1-SR)8#(D = 1)+SPR(1-~)#(D = 0),EM algorithm is a general iterative method for find- 
and ing ML estimates in the missing-data problem [3]. 

# ( T  = 0) - (1 - 8 ) # ( D  - 1) + r l#(D - 0), 

# ( T  - 1) = 0 # ( D  = 1) + (1 - 7/)#(D - 0). 

Then, solving the equations above gives us that 

8 -  # ( T  = 1 ) S P R -  # ( T  = 1 , R - 0 )  

# ( D  - I ) (SR + SPR - I )  ' 

The E step finds the conditional expectation of the 
complete data log-likelihood function, given the val- 
ues of the parameters and the observed data. The 
M step maximizes the conditional expectation of the 
log-likelihood derived from the E step. 

Under the assumption that 

P(V I T, R ,D)  - P(V  [ T ,R)  - P(V  [ T) 

# ( T  = O)SR - # ( T  - 0., R - I) 

71- # ( D  - O)(SR + SPR - I) ' 

and 

# ( D -  1) = 
# ( R  = I) - n ( l  - SPR) 

SR + SPR - I 

Under the assumption that the probability of ver- 
ifying a patient depend on only T, we have that 
P ( V  I R, T) = P ( V  I T), which implies that 

# ( R  - 1, T 1) Sl 
rl + Sl 

and that 

P(T, RID) = P ( T  ] D ) P ( R  ] D), 

the log-likelihood for the complete data that would 
be observed if all subjects have clinical assessments 
and have known true disease status is 

1(8, rl, p) = ~ D i R  i l o g  S R + Di(1 -- Ri )  l o g ( 1  -- SR)  + 

i = 1  

(1 -- D i ) a  i l o g ( 1  - S P R ) +  (1 -- D i ) ( 1  -- R i ) l o g S P  R + 

D i T  i logo + Di(1 -- T i )  l o g ( 1  -- 8)  + 

(1 -- D i ) T  i l o g ( 1  - ,7) + (1 -- D i ) ( 1  -- Ti) l o g  ,7 + 

D i l o g p  + ( t  -- Di)  l o g ( 1  -- p ) .  

and 
# ( R  1,T 0) so 

- -  = = n 0 .  
r0 + so 

Thus, the intuitive estimators for p, O, and r/are 

_ _  
m(SPR - ~ ~+~i) n 

s~ ~ +  sQ . O _ ( l _ S P a ) ,  
r l + s l  n s o + r o  n 

" o ( s  R - ,~ 
n ,-o+~0 ) 7 / -  

rl n_i+ ro n o _ ( l _ S R  ), 
r l + S l  n S o + t o  n 

s~ ~ - ( I  - SPa) s l  9_£ + r o + s o  n ~) __ rl +81 n 

SR + SPR - 1 
(1) 

Let (8(t), rl(t),p(t)) be the current values of (8, ~7,P) 
after t cycles of the EM algorithm. Let p(t)(.) be the 
conditional probability given the observed data and 
the current values of (8, 77, p) - (8(t), w(t), p(t)). Af- 
ter some algebraic manipulation, we obtain the next 
estimates for (0,77,p)" 

, 7 ( t +  1)  = 
Po(tl ~t)) + Ul p(t)(s _. 0 I T -= I) r l ( 1  -- ) )  + a1(1 -- P 1 

E 1  p ( t ) )  + s j (1  -- p( t )~  + u j p ( t ) ( D  _ 0 I T - -  j ) '  
j = 0 " J ( 1 - -  0 j  l j  " 

,(,+~)_ ~,,'o~'? + . ~ ' ?  ÷o1,'(')(~,-~ IT-1) 
E I r j P  (t) + , j P ~ )  Jr u j p ( t ) ( D  = 1 I T = j ) '  

j = O  Oj 
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E 1 , . . p ( t )  4" s i P  ( t )  4" u j P ( t ) ( D  = 1 I T - - j )  
p ( t + l )  = . / =0  "~ Oj l i  

w h e r e  

d ' ?  = 

40 ) - 

p(t )  
01 -- 

P(oo ) = 

S a a ( t ) p ( t )  

S a e ( t ) v ( t )  + ( I  - S P R ) ( I  - n ( t ) ) ( 1  - p( t ) )  

S a ( l  _ e ( t ) ) p ( t )  

S a ( I  -- a ( t ) ) p ( t )  + ( I  - S P a ) n ( t ) ( 1  - p ( t ) )  

( i  - S a ) e ( t ) p ( t )  

(i - s a ) e ( t ) p  ( t )  + S P a ( 1  - n ( t ) ) ( 1  - p ( t ) )  ' 

(i - s a ) ( 1  - a ( t ) ) p  ( t )  

(1 -- SR)(I -- 8 ( t ) ) p  ( t )  + SPRrI(t)(1 - p(t)) ' 

( I  - a ( t ) ) p ( t )  
P( t ) (D = I I T = O) = 

(1  - a ( t ) ) r , ( t )  + . ( t ) ( ,  _ p ( t ) )  ' 

# ( t ) p ( t )  
P(t)(D = I I T -- I) = 

o ( t ) p  ( t )  + Ci - . ( t ) ) ( 1  - p C t ) )  

If we take our intuitive estimates as our initial esti- 
mates for 8,ri, and p, then 

P ( O ) ( D  = 1 I S = 1, T = 1) = 

" i  } SR(SPR -- r l  +~1  

~ (  S R + SP R -- 1) 

P ( O ) (  D = X l s - x, T - - O )  - 

P ( O ) ( D  = 1 I S = O, T = 1) = 

P ( O ) ( D  = I I S = O, T = O) = 

P(O)(D = l i t  = O) = 

P ( O ) ( D  = 1 I T = 1) = 

SR(SP R -- rO~.~aO ) 
sO 

rO+JO (SR + SPa - 1) 

rl 
(1 -- SFt)(SPR -- .l+a I ) 

"I (s a + sP R - i) 
rl+a I 

( ~ - s n ) ( s P a - . - ~  ) 

"Q (S R + SP R - I) 
, 'O+sO 

rO 
SP R - rO+j 0 

S R + S P  R - 1 

S P R  - rl r l d - a  1 

S R + S P  R - 1 

After some calculations, we show that 0 (1) - 0 (°), 
7/(1) - 77 (°), and p(1) _ p(0). Thus, the EM algorithm 
converges after 1 iteration. We have shown that the 
intuitive estimators defined by (1) are the ML esti- 
mators for (8, r/,p). 

If there were no verification bias, an unbiased esti- 
mator for p, correcting for imperfect reference stan- 
dard bias is 

sl+so - ( P S R  - 1) 
P 2  --- s l  + s o - F r o W r l  

S R  + S P R -  1 (3) 

If there were no imperfect reference standard bias, 
the ML estimator for p, correcting for verification 
bias is [4] 

p3 81 nl 8o no 
= ÷ (4) 

r l -FS l  n ro-Fso n 

If we ignore both verification bias and imperfect ref- 
erence bias, the resulting estimate for p is 

s0 + s z  
= . ( 5 )  

ro + rl  + so + sl 

3. A R E A L  E X A M P L E  
In this section, we study effects of both verifica- 

tion bias and imperfect reference standard bias on 
the estimated prevalence rate in a real example. This 
example comes from a study of dementia (Hall et al. 

(1996)[2]). This study used a two-stage design. In 
the first stage, a screening test is used on all sub- 
jects in the study sample. Based on the results of 
the screening test, some of subjects are selected for 
clinical assessment in the second stage. One of goals 
in the study is to estimate the prevalence rate of de- 
mentia. To illustrate our methods, we used a subset 
of 75 years old Indianapolis residents. Table 2 sum- 
maries the observed data. 

Table 2: Observed Data 
T = I  T = 0  

V = I  R = I  46 6 
R=0  63 110 

V=O 53 624 
162 740 

When the sensitivity and specificity of the the im- 
perfect reference s tandard are known, the estimator 
given by equation(I)  is the ML estimator of p. Thus, 
we may study the effects of verification and imper- 
fect reference biases on the estimated prevalence by 
comparing the estimator in (3), derived ignoring ver- 
ification bias, the estimator in (4), derived ignoring 
imperfect reference s tandard bias, and the estima- 
tor in (5), derived ignoring both biases with the ML 
estimator, correcting for both biases. 

To see the effects of the specificity and sensitivity 
of the imperfect reference s tandard on the estimated 
prevalence rates, we plot four different estimators of 
p against the values of sensitivity and specificity of 
the reference standard,  respectively. Figures 1 to 4 
summarize the results. 

FIGURES 1 AND 4 GO HERE 

From Figures 1 to 4, we conclude that  verification 
bias has a bigger effect than imperfect reference bias 
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Table 3" The observed data  with X = g 
Disorder diagnosis 
T 
V = I  

V = O  
Total 

S - 1  
S = O  

Screening Tes t ,  T 
1 2 . . .  K 

81g 82g "" • 8K~ 

rig r2g • • • rKq 
Ulg U2g • " " UKg 

rt lg l12g " • " n K g  

on the estimated prevalence rate. If both sensitivity 
and specificity of the imperfect reference standard 
are high, we can obtain a reasonable estimator for 
the prevalence rate by only correcting for verification 
bias. However, when the sensitivity and specificity of 
the imperfect reference standard are not high, then 
both biases have big effects on the estimated the 
prevalence rate. 
4. AN EXTENSION 

So far, we have assumed that  we know the sensi- 
tivity and specificity of the imperfect reference test 
and that  the probability of selection for clinical as- 
sessment depends on only the screening test. In this 
section, we extend our results to the setting whether 
some other observed discrete covariates X also influ- 
ence the probability of selection for clinical assess- 
ment and that we may not know the sensitivity and 
specificity of the imperfect reference standard. 

Let nig denote the number of subjects with T = i 
and X = g. Let ui9 be the number of subjects with 
V = 0, T = i, and X = g, s i9 be the number of 
subjects with V = 1, T = i, S = 1, and X = g, and 
ri9 be the number of subjects with V = 1, T = i, 
S = 0, and X = g. Table 3 illustrates the layout of 
the data. 

Let us assume that  the X takes a value from 1 
to G. Since P ( V , T , R , D  [ X )  = P ( V  I T, X ) P ( T  I 
D,  X ) P ( R  [ D, X ) P ( D  I X),  the number of unknown 
parameters is 3 G K + G .  However, the degrees of free- 
dom our data can offer is only G ( 3 K -  1). Therefore, 
the likelihood with no constraint on the parameters 
is over-parameterized. The number of inestimable 
parameters is 2G. Thus, to find the ML estimator of 
p, we need to put the constraints on the remaining 
parameters.  We consider two possibilities. 

1. We assume that  SRg - P ( R -  1 I D - 1 , X  = 
g) and SPn9 = P ( R  - 0 l  D = 0, X - g) are 
known ( for example, Sng - SPn9  = 1). 

2. We assume that  P ( T  = k I D = m , X  = g) 
akin a n d K > 3 .  

Under the constraint (1), the number of parameters  
is equal to the degrees of freedom. Under the con- 
straint (2), the number of parameters  doesn't  exceed 
the degree of freedom. 
4.1 M L  E S T I M A T O R S  U N D E R  C O N -  
S T R A I N T  (1) 

In this subsection, we derive the ML estimator for 
the prevalence rate p under the constraint (1). Since 

# ( R  = 1, T = k I X = g )  = S R w P ( T  = k I D = 1, X - -  W ) ~ ( D  = 1 I X = g )  

and 

+ ( 1  - -  S P R w ) P ( T  = k I D = O, X = g ) # # ( D  - -  0 I X = g )  

#(a = O,T = k I X =g) = 

(I -- SRg)P(T = k I D = I, X = g)#(D = 1 1 X = g)+ 

S P R g P ( T  = k I D = O, X = W ) # . ( D  = 0 I X = g ) ,  

# ( T  = k I X = g )  = P ( T  = k I D = 1, X - "  g ) ~ # ( D  = 1 I X = g )  

+ P ( T  = k I D = O, X = g ) # ( m  = 0 I x = g ) ,  

#(a = I I X = g) = SRg#(D = I I X = g)+(1--SPRg)~(D = 0 I X = g). 

and 

# ( n  = 0 1 X = g) = ( I - S R g ) # ( D  = I I X = g ) + S P R g # ( D  = 0 1 X = g). 

After some algebraic manipulation, we get an intu- 
itive estimator for the prevalence rate as 

c ~ ,'~, ~ - ( t - S P R g )  : E 72..._~g k=l 8kg-t"rkg ng 

9=1 n SPn9  + Sng - 1 

provided that 

SRg > m a z l < k < K (  8 k g  ) ,  
8kg Jr" rkg  

SPRg > rnaxl<k<K ( rkg ). 
8kg q- rkg  

Using the EM algorithm as used in Section 2, we 
may show that  the estimator for p above is also the 
ML estimator. 
4.2 M L  E S T I M A T O R S  U N D E R  C O N -  
S T R A I N T  (2) 

Define 

O~km = P ( T -  k i D  - m ) ,  

and 

~mg 

~jkg 

= P ( R  = l[ D = m , X  = g), 

= P ( V -  j I T -  k , X -  g). 
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The complete-data log-likelihood is 

G ng  K 

g=l  i = l  j,l,m=O,1 k= l  

I[vig=j]I[Ria=l]I[Dia=m] log ,'~jkgOLkm#lmgPmg. 
Let (a(t),fl(t),p (t)) be the current values of (a, f~,p) 

after t cycles of the EM algorithm. Let p(t)(.) be the 
conditional probability given the observed data and 
the current values of (a ,# ,p)  = (a(t),~(t),p(t)). Af- 
ter some algebraic manipulation, we obtain the next 
estimates for (a, #, p): 

a(t+l) = 

k,v~ 

g_.l Skg "l" rkgP(g~O k "~" u k g W 2 ~  k 

w ( t )  E G  K P(¢) "l" "kgP(me)lOk "F Ukg r n l k g  g--1Zk--1 $kg m l l k g  g 

~ ( t + 1 )  = 
l rng 

p(t+l) = mz 

where 

p ( t )  + Ukg W 2 ) o k  z I c K = I  (Pkg mlOkg g 

F, K 2 w(,, akgP + r k P ) "b u k k--'l l kg  g lOgk g rn lkg  

Z p(t) p(t) K (Skg + Ukg ) k=l rn l l k g  ~ lOkg  

akg  4" rk  "{" tale k--1 m l l k g  g rn 10kg g kg  

21 w(,, akgP + . k g P  "l" Ukg k----1 I k g  Okg r n l k g  

ng  

(t) _ p ( t ) ( D  _ r n  I V - 1  R - O , T -  k , X  - g) 
l O k g  - -  ~ 

and 

lvV~--' -P(t)(D-m,IV-1 T -  k X 
k g  ~ ~ = g )  " 

We iterate this process until the estimates converge. 
The convergent values &, ~, and i5 are the ML esti- 
mates for a, 13, and p. Although the output of the 
EM algorithm does not provide a direct estimate for 
the asymptotic variance a of 0, four approaches are 
available to estimate a. The first approach is to cal- 
culate the likelihood function based on the observed 
data. The second approach is to use the Missing In- 
formation Principle: 

Observed Information = Complete Information- 

Missing Information. 

The third approach is to use simulation. When it 
is difficult to compute the Missing Information, we 
can use simulation to approximate it. The fourth 
approach is to use EM iterates. 
5. D I S C U S S I O N  

In this paper, we have studied the effects of both 
verification and imperfect reference biases on the es- 
timated prevalence rate. Our example suggests that 
if the sensitivity and specificity of the imperfect refer- 
ence standard are high, then we only need to correct 
for verification bias in estimation of the prevalence 
rate. However, if the sensitivity and specificity of 
the imperfect reference standard are not high, then 
we need to correct for both biases. Under some as- 
sumptions, we derive the ML estimator for the preva- 
lence rate, correcting for both biases. Since it is much 
more complicated and involves more assumptions to 
correct for both biases than to correct for only verifi- 
cation bias, we recommend to concentrate on correct- 
ing for verification bias in a two-stage design study 
when the accuracy of the imperfect reference stan- 
dard is reasonable high. Only when the assumption 
of the high accuracy of the imperfect reference stan- 
dard is questionable, we recommend to use the more 
complicated procedures to estimate the prevalence 
rate. 
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