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In survey sampling, rounding and bounding errors 
often occur when reporting from memory. The errors 
could be the result of the gradual deterioration of 
memory or could also be influenced by the reporters' 
characteristics or social desires. A great deal of 
literature about the effects of memory related factors on 
response have appeared since Mahalanobis reported his 
findings (Mahalanobis, 1946; Neter & Waksberg, 1964; 
Sudman & Bradburn, 1973; Huttenlocher, Hedges, & 
Bradburn, 1990). Researchers in the field of Psychology 
are mainly concerned with how rounding and bounding 
errors occur when information was stated from memory. 
Many models about response and theories dealing with 
memory were proposed: the underlying form of 
representation, the pattern of information loss over time, 
the estimation processes of the events in response, etc. 
How data with rounding and bounding errors is used in 
statistical analysis is nevertheless an issue of interest. 
Some studies have been done inferring for individual 
cases via multiple imputation (Heitjan & Rubin, 1990); 
yet, this would not certify the yielding of an aggregate 
distribution that is consistent with that of population. 

This paper focuses on obtaining unbiased information 
from data with rounding and bounding errors and 
providing empirical distribution of true populations. The 
goal is to adjust the frequency of data with small mean 
square errors (MSE). Since the true population is 
generally unknown, studies usually turn to examining 
the consistency of the statistics between the smoothed 
data and the assumptions of a true distribution. 

For this purpose, it is necessary to first detect such 
errors, and then make the proper data adjustments to 
probabilities of the actual occurrences of events. 
Neglecting to make these adjustments could lead to the 
wrong conclusions; nonetheless, such errors in data are 
overlooked in many applications. 

studied the pregnancy experiences of women who had 
lost their infants. See Figure l a. Similar problems can 
be found in the variable of the number of pounds lost 
during a pregnancy in NMIHS. 

Medical knowledge shows that the change in weight 
of women after pregnancy observes a smooth continuous 
curve with one peak; however, the data shows extremely 
large counts at 5 and 10 pounds. These rounding errors, 
a systematic bias in response, are clearly shown in the 
data. Therefore, the distribution of the observed data 
does not represent the true distribution of weight gained 
during pregnancy. Also, due to the large counts at 5 and 
10 pounds, the data may appear to have periodic circles 
of 5 and 10; but they are not real periodic intervals. So 
difference operator has no effect in eliminating them. 

Such errors could be caused by memory flaws or lack 
of aided recall during the survey interview. Furthermore, 
we have reason to believe that, for cases with rounding 
errors, the systematic bias is also a forward bias. The 
reported number of pounds gained were rounded to the 
lower bound of 5's or 10's. One explanation for the 
forward bias is that being overweight is socially 
undesirable in America. This is supported by the fact of 
increased percentages of conventional arithmetic 
prototypes as the weights in the intervals increase, see 
Table 1.1. 

Table 1.1. The proportions of observed responses 
for prototypes in observed data 

Ranges % of conventional 
in Ibs arithmetic prototypes 

% of unaltered 
response 

0-9 0.395 0.605 
10-19 0.590 0.410 
20-29 0.633 0.367 
30-39 0.717 0.283 
40-49 0.818 0.182 
50-59 0.842 0.158 
60-69 0.867 0.133 

1. Bounding and Rounding Errors in Survey Data, 
Two Examples: 

When reporting events from memory, rounding and 
bounding errors can occur depending upon the different 
types of events that are being reported, such as age, 
weight, elapsed time, etc. 

a. One example is about reporting the amount of 
weight gained during a pregnancy in the National 
Maternal and Infant Health Survey (NMIHS), which 

b. Second example. In 1993 National Study of Post- 
secondary Faculty (NSOPF-93), the variables about the 
allocation of the total work time, X05C37-X08C37, 
have been found the rounding and bounding errors in 
response. Among them, X05C37 was about the 
percentage of time spent in teaching in the Fall of 1992. 

c. Some results in study of response errors 
Response bias could be caused by the effects of 
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memory deterioration or by the influence of the 
reporters' characteristics and the impact of social 
desirability about the questions asked. Many 
psychologists and statisticians have made interesting 
discoveries in this topic. 

When reporting events from memory, the accuracy of 
reporting depends on what has been encoded in the 
recollection, and on the recall process that yields the 
image of recollection. The psychology of memory 
shows that the linkage of one event with others plays an 
important role in remembering and recalling events. 

Because of the physical structure of the brain, the 
linkage among events becomes weaker as time elapsed. 
Then reporting errors would occur in two possible 
situations: either (1) forgetting the event or (2) being 
influenced by reference episodes on the recall process. 

In the latter case, the recollection process is also an 
estimation process. Whether or not the linkage is proper, 
rounding and bounding errors could still occur; 
however, when the proper linkage of the event is 
replaced by inaccurate reference, errors arise which 
could cause serious bias in the distribution of events, 
which are either temporal or non-time related. 

For temporal events, research has found that the 
reported time of an event's occurrence tends to have a 
forward bias, so events are reported as occurring more 
recently than they when actually occurred (Huttenlocher, 
Hedges, and Bradburn, 1990). Such phenomena is called 
compression of time or telescoping. One explanation is 
that, when a recent event is taken as a reference by a 
respondent, whether consciously or not, the time interval 
between the present and when an event truly occurred 
would be remembered to be shorter than it actually was. 

For the non-time related event, the respondent could 
inaccurately remember the scale of an event and place 
bounds as reference episodes on the recall process. A 
rounding error occurs when the scale of an event shrinks 
to the nearest bound. And a bounding error occurs when 
a bound is put as an upper bound or lower bound, then 
a border bias would occur. 

The effects of rounding and bounding errors is the 
introduction of uncertainties in data along with the those 
associated with random error from sampling procedure. 
They introduce systematic bias in estimation. One of our 
interests is to detect such errors and make data 
adjustments to the distribution of actual occurrences of 
events in a population. 

d. A statistical model for representation with 
rounding and bounding errors 

By psychological analysis (Hedges & Bradburn, 
1990), the model of responses with rounding and 
bounding errors consists of a bounding process and two 
response processes. 

The bounding process can be expressed by a doubly 
truncated normal distribution: 

¢#(Xi[ it, o) 
if O<Xi_<70 

f(XiI I~, o) = (I)(b) - (I)(a) ' 

0 , if x < 0 V x>70; 

where ~0(Xi[ li, o) = exp(-(X i - li)2/2o2)1 2 ~ o  is a 
density function of normal distribution, the parameters 
in the normal distribution functions are defined as 

b -  (70-11)/o, and a =- l l /O .  
The first response process yields unaltered data which 

is almost identical to the values in memory: 

P(il a, 13) : 4~((i + 0.5 - ~t)/o) -@((i - 0 .5  - ~t)o). 
~(b) - ~(a) 

The second response process yields arithmetic 
prototypes: 

P(5il ~, 13, c) = @((5i + 5c - it)/o) -~ ( (5 i  - 5c - it)/o). 
(DO)) -~ (a )  

The observed data yields from mixtures of two response 
processes: 

Yi : Y ~1 (p' =w) + (1 - y) ~2(it :w)  

where ~l(it=w) forms the distribution defined in the 

first response p r o c e s s ,  and ~2(ll=W) forms the 

distribution defined by the second response process. The 

coefficient ~, forms an exponential distribution 
(Sudman, 1973), and the empirical distribution for 
weight gained in NMIHS is showed in Table 1.1. 

The statistical model of response processes is useful 
in explaining and analyzing the phenomena of rounding 
and bounding errors. However, the function of the 
model in restoration of true distribution is limited. 

2. Approaches for the adjustment of data with 
rounding errors 

The procedure of data adjustment consists two steps: 
the adjustment of outlier counts and smoothing 
approaches. We will demonstrate the effects of 
adjustments through the example of weight gained 
during a pregnancy in NMIHS. 

In this example, based on medical knowledge, we 
assume the weight gained of pregnant women forms a 
smooth continuous curve with one peak. From medical 
literature (Ash, 1989), we find that the mean increase 
ranges from 23.6 to 33.5 pounds; generally a mean 
weight increase total of about 27.5 pounds is considered 
normal through out a pregnancy (Rossner, 1995). 

a. The adjustment of outlier counts 
Figure l a shows that the count for respondents who 

gained 0 pounds is unusually large: 78, which looks like 
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an outlier. There are two explanations for it. First, there 
must be some respondents who lost weight yet put 0 for 
the question of weight gained. On the questionnaire, two 
questions: asking the amount of weight gained and 
weight lost were put together; but there was no 
instruction for women who lost weight to put a missing 
code on the question of weight gained. Second, zero is 
a special point which has dual rounding effects. Some 
women who gained less than 10 pounds would round 
the weight gained to 0, and some who lost less than 10 
pounds would also round the weight gained to 0. 
Considering these factors, the estimated count of 0 for 
women who gained weight is put down as 17 in the 
adjustment. 

In the data, we also found more counts clustered at 
10's than 5's, so it seems that there were two periods in 
the data. One explanation is that some women rounded 
the weight gained to the lower 10's and omitted the 
lower 5's. To clarify the procedure of smoothing, we 
presume that very few cases skipped the nearest lower 
10's and were rounded the value to next lower 1 O's (e.g. 
33 is rounded to 20 instead of 30); the same assumption 
goes for the 5's as well. Before smoothing, we adjusted 
some counts at 10's to the 5's above them. We assume 
the chance for respondents to round to 10's declines 
when the single digit of the pounds gained increases. 
Therefore, as the trend is increasing, the adjusted counts 

at 10d and 10d+5 are set ~'loa "- Xloa - .75 51oa and 

Xlod+5 =" Xxod+5 + 0"75 61oa" Whereas, Xloa - XlOd - " 2 5  610a 

and ~'loa+s -Xxoa÷5 + 0.25 61o a as the trend decreasing. 
For the results of ascertainment, see Figure lb. 

b. The s m o o t h i n g  approaches  
In smoothing, several approaches are used to adjust 

the rounding and bounding errors in the variable of 
weight gained in NMIHS. 

i. W e i g h t e d  average  
i+2 

~i = ~ WkXk, for i = 0,1, 2, ..., n, 
k=i-2 

where w i = (wi_ v wi_ 1, w i, wi+l, wi÷2) is the vector of 
weights for moving average. In Figure 2a, 

w i = (0.2, 0.2, 0.2, 0.2, 0.2). In NMIHS example, the 

normal weights, w i = (0.094, 0.234, 0.344, 0.234, 0.094), 

do not demonstrate advantages. 
Weighted average is usually the first step of 

smoothing. Other smoothing approaches are applied to 
the output data of the moving average approach. 

ii. Probabi l i ty  mode l  
For the weight gained example in NMIHS, the 

distribution of the number of pounds gained is skewed 
to the left, like Gamma distribution. If Gamma 
distribution, 

Orxr- 1 e -0x 
ff x >0, 

f(x) - r(r) ' 

0 , if x < 0 ,  
is taken as the theoretical frequency distribution, we 

shall use moment estimates, 8 = ~/#2 and f = ~2/~2, 
based on observational curves to estimate the 
parameters. The fitted probability distribution does not 
appear suitable, especially at lower end. However, 
truncated Gamma distribution gives a reasonably smooth 
curve; see Figure 5a. 

iii. Local  regress ion model  
Instead of fitting a curve throughout the range of the 

independent variable's values by regular regression, 
local regression calculates the best fitting linear 
regression model to those observations in a 
neighborhood of each selected value of independent 
variable. The fitted curve is spanned by the a series of 
such fitted values. 

In the weight gained example in NMIHS, each value 
of the number of pounds gained will have a fitted count 
by a series of quadratic polynomials: 

2 
Yi = a + [~lXi + [~2Xi + 8 i .  

In fitting local regression models, the smoothing 
parameter equals 0.53 and degree is 2. And observations 
are assigned neighborhood weights which are normally 
distributed. 

The curve, in Figure 6a, shows a good fit. 

iv. Wave le t s  smooth  approach  
One of the applications of Wavelet expansions is 

smoothing data. In the smooth procedure of noisy 
sampled data (Donoho, 1995), the noise added to signals 
is filtered through wavelet shrinkage with small MSE. 
Wavelet expansions have similar convergence properties 
as Fourier series. The bases of wavelet transformation 
are orthonormal bases of various space. Additionally, 
wavelet bases are designed to give simultaneous time 
frequency localization information, and nonlinear spatial 
adaptive methods for noisy data. 

In smoothing data with rounding and bounding errors, 
a multi-level shrink procedure is used to reduce the 
fluctuation in signals. The coefficients of wavelets in 
both smooth and un-smooth vectors are shrunk to the 
means of the vectors separately at different levels of 
discrete orthogonal wavelet transforms. The discrete 
wavelet transform operates upon a data vector with 
length of an integer power of two. In NMIHS, the 
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range, of gained weight, considered was from 0 to 63, 

i.e. N=64=26. This constraint could cause a loss of 
effective range of data, though there was no such 
problem in NMIHS example. 

Multi-level shrink procedure aims to restore a 
population distribution through the adjustment of the 
frequency of data with small MSE. Usually, the true 
distribution is unknown, then the criteria becomes 
examining whether the data after wavelet smoothing is 
consistent with the assumptions of the true distribution. 

The approach of multi-level shrinkage: 
a) Discrete wavelet transform data with rounding and 

bounding errors: w -  6ay, where vector y consists of 

raw data, vector w, wavelet coefficients, has 2 J elements, 

and for Wj, k, j=0, 1,..., J-l; k=0, 1, ..., 2 j-1;the 

remaining element is labeled as w_l,0; also in 
J-1 

t~--i__I'lAioj, the t~j is the wavelet transform matrix at 

level j plus the Aj is the position transform matrix at 

level j. Since tois non-singular, y = toqw. 

b) Shrink the wavelet coefficients of the original data 
and the 'mother-function' to their means of the 
coefficients separately. 

The wavelet coefficients shrinkage and the reverse 

transform can be expressed in matrix form ~r = Tw, 
J-1 

where T II -1 -1 = ~S_l_jAs_l_jTs_l_ J. 
j=0 

J-1 
Let Wj_p = ( 17 -1 -1 )w, and ~s-l-jAj-14 Ts_l_p j-p 

-1 -1 
Wj_p = os_l_pAs_a_pTS_l_pWsq_p, p=l, 2 .... , J-1. 
Shrinkage matrix Tj_l. p is defined as 

Tj_l_p, 0 0 

Tj_I_ p ~_ ] 0 Tj_l_p, 2 0 , where  

o o Ij_~_p3 

Tj_l_p,l, Tj_l_p,2, and identity Ij_l_p, 3 have orders of  2 J'I'p, 2 J" 

P 
l-p, and ~[~ 2 J-s. If shrinkage is necessary, Tj.1_p, 1 equals 

s=l 

ajq-p,1 + (IJ-a-pa - %-1-p,1) diag(PJ-l-p~)diag(wj-l-pa)~ 
otherwise I. Similarly, if shrinkage is needed, Tj_l.p, 2 
equals 

iZj_l_p, 2 + (ij_l_p, 2 _ iZj_l_p,2) diag(ixs_l_p,2)diag(ws_ l_p,~) 4; 

otherwise I. Diagonal matrix aj_a_p,lhas elements 

between 0 and 1 , vector wj_ l_p~thas elements Jw',k(J= 

0, 1,..., J-l-p; k=0, 1, ..., 2 j-l) ,  the elements of 

vectorlxj_a_p, 1 equal the mean of l'wj_~_p, 1. Similarly 

for the definitions of as_a_p,2, ws_ 1_p,2, IXsq-p~. 
Figure 7b shows a curve smoothed by local regression 

and wavelet aaproach. 

3. The comparison of different approaches 
Although the true distribution of weight gained in 

NMIHS is unknown, medical knowledge shows that the 
change in weight of women after pregnancy forms a 
smooth continuous curve with one peak. Table 3.1. 
shows some of the statistics between the adjusted data 
and the conclusions from some medical literatures. 

Table 3.1. The comparison of different approaches 
in NMIHS data 

(By medical literature: mean = 27.5) 

Bias Smoothness 

(1) -1.52 N/A 
(2) -1.05 poor 
(3) -0.57 good 
(4) -2.63 good 
(5) 1.46 good 
(6) 2.33 middle 
(7) 1.63 good 

Table 3.2. The comparison of different approaches 
in simulation 

(Population mean=24.57) 

Bias Z 2 

(1) -1.56 1.21 
(2) 0.44 1.37 
(3) -0.09 143.9 
(4) -1.22 14.61 
(5) -0.09 18.47 
(6) 1.30 45.48 
(7) 1.07 59.43 

Computer simulation also provides a way to assess 
different approaches of adjustment. First, we create a 
data set of known distributions; a Gamma distribution in 
our simulation. Then based on the statistical model for 
representation with rounding and bounding errors in 
1.d., we generate a set of data with rounding and 
bounding errors. Finally, we apply different smoothing 
approaches to the data. Table 3.2. shows statistics of 

bias and X 2 when compared with the original 
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distribution. In Tables 3.1 and 3•2, the different 
approaches of adjustment are: (2) moving average, (3) 
Gamma distribution, (4) truncated Gamma distribution, 
(5) local regression, (6) wavelet, (7) wavelet+local 
regression: and (1) raw data with rounding and 
boundin,, errors. 

Consistent with the conclusions in Table 3.1., the 
moving average is the basic step of smoothing. Local 
regression gives the best results while wavelet shrinkage 
improves the adjustment from moving average results. 
The probability model could work very well, but it 
depends on specific data. 
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Figure 6a: Distri. of Weight Gained 
Approach: Local Regression (S+m5xl +loc) 
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Figure 2a: Distri. of Weight Gained 
Approach: Moving Average (S+m5xl )  
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Figure 7b: Distri. of Weight Gained 
Approach: Wavelet+Local Regression 

Figure 5a: Distri. of Weight Gained 
Approach: Truncated Gamma distribution 
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