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1. Introduction 
With most surveys there is always some item 

nonresponse. One way of dealing with item nonre- 
sponse is to include imputations for the missing 
data. This makes it easy to compute appropriate 
population estimates. However, the variance will be 
underestimated in the presence of imputation. This 
follows from the main assumption with design 
based estimation; the only random variable is the 
variable specifying which units are in sample. 
When an imputation is generated from a sample, 
the imputation is not known given the unit requir- 
ing imputation. However, since it is assumed that 
the imputed value is known (i.e., it has no variabil- 
ity), standard variance estimation can not properly 
reflect the imputation variance. 

A number of methodologies have been proposed 
to estimate imputation variance. Multiple imputa- 
tion (Rubin, 1978), a modified jacknife (Rao, 1992) 
and a model assisted methodology (Siirndal, 1990) 
are some of the approaches that have been pro- 
posed. Rao's and Siirndal's methodologies require 
special software to estimate the variance. Rubin's 
methodology requires the computation of the vari- 
ance estimate associated with the average of the 
multiple imputation estimates. With respect to ad- 
ditional software requirements, the multiple impu- 
tation variance estimate, although not as compli- 
cated as the other methods, is still more compli- 
cated then standard variance estimation. 

The methodology proposed in this paper is a 
mixture of the methodologies described above. 
Like multiple imputation, two potential imputations 
are assigned to each nonrespondent. The difference 
between these values is a residual that is added to 
appropriate data elements to reflect the imputation 
variance. The residual term differs from the one 
used in the modified jacknife, in that the modified 
jacknife residual introduces the variability replicate 
by replicate, while here the variability is introduced 
to the actual data elements. Once the residuals have 
been added, standard replication programs can 
compute the total variance. The questions this pa- 
per addresses are: 1) when will this process appro- 
priately measure the total variance; and 2) when the 

process is not appropriate, what must be added to 
provide appropriate estimates. 

A simulation study, modeled after NCES's 
Schools and Staffing Survey (SASS), which has a 
complex sample design, will demonstrate the pro- 
posed procedures. A nearest neighbor imputation 
will be used. The nonresponse will be modeled as- 
suming unequal nonresponse rates per cell and that 
larger units are more likely to be nonrespondents. 
2. Imputations 

The nearest neighbor imputations used in this 
paper are done within imputation cells, after the 
schools have been sorted by the number of student 
per school. The imputation cells are state/school 
level/urbanicity. There are three school levels - 
elementary, secondary and combined schools. 
There are three levels of urbanicity- central city, 
urban fringe/large town and rural/small town. After 
the file is sorted, it is accessed sequentially using 
the nearest responding school as the donor for a 
nonresponding school. Two imputations will be 
determined for each nonrespondent. One where the 
file is sorted in ascending order and another where 
the file is sorted in descending order. A random 
selection is used to determine which imputation is 

used in the estimate of interest (33.). 

3. Definitions 
r is the set of responding units 

nr is the set of nonresponding units 

3.1 Terms defining the imputation and residual 

..~ [Yk if k ~ r 

Yk = LYklIk + Yk2(1 - - I k )  ifk ~nr 

I k represents an independent selection within each 

unit k with probability of .5 for a value of 1, 

and 0 otherwise 
Y k is the response from unit k 

Y kl is the nearest neighbor imputation in ascending 

order 

Yk2 is the nearest neighbor imputation in descending 

order 
)3. = ~ wk.~ k , the main estimate of interest 

kes 

w k is the sampling weight for unit k 

s is a probability sample of units 
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= ~_. w k y  k , the es t imate  wi th  complete response  
kes 

I 0 ifk e r  

dk R = l f / j k 2  --yjkl i fk en r  andYkl is used in)3. 

/[_)3jk 1 _33jk2 ifk en r  andYk2 is used in)3. 

where: 

Jk is a unit independently and randomly selected 

from {j ]j ~ nr and within k's imputation cell}. 

The selection is done proportional to the wj's. 

In addition, R will be used to represent the selec- 

tion of unit Jk. 
d "  = X 

k ~s 

3.2 Terms used in section 4 

[0 i fk e r  

dk i-T = lYmk2 --Ymkl i fk ~nr and i = 1 

LYmkl --Ymk2 i fk en r  and i = 2 

m k is defined like Jk above, independently for 

i=  1 and2 .  

T is used to represent the m k selection. 

= = - Y l i  
k E s  

Yk i fk ~r  

.vk~ = Yk i if k e nr and i = 1 

LYk2 if k e nr and i = 2 

= wkYk,, 
k~_s 

.,~o =1/2(.)31 +..)32) 

3.3 Terms used in section 5 

ro ifk e r  
/ 

dk = [Yk2 - Ykl if k e nr and Ykl is used in)3o 

!LYkl - Yk2 if k ~ nr and Yk2 is used in)3 

y~, is the term subtracted in d k 

.~' = Z wkY'k 
kes  

;l = E w J, 
kes  

4. Measuring the Imputation Variance 
The goal of this paper is to present a methodol- 

ogy which measures the imputation variance using 
standard replication variance software packages, in 
a simple manner. One way of doing this is adding 

an independent residual term (d~ R ) to the data ele- 

ments (yk) ,  so that an appropriate amount of im- 

putation variance is added. The estimate ()3°) is 

transformed into I 7 = )3 + d R. An appropriate con- 

stant is added to the d~R's, so that I 7 = )3.. Now, 
^ 

the question is when does V(Y)appropriately 
^ 

measure the true variance. When V(Y)is not ap- 
propriate, what must be done to make it appropri- 

ate. The first step is to compute V(I)). 

4.1 Computation of Variance of t 3 

Let f = Z wk (Yk + dk R ) =fJ, + ~t R . 
kes 

V ( ~  = V E ( ~  + E V(Y), (1) 

where: 1 represents the selection of the sample s 
and 2 represents the imputation selection 
of Ik and residual selection R. 

4.2 Computation of V E ( ~  
1 2 

d r has been normalized to equal zero 

Looking at the right hand term first: 

1/4 V03 , +dl r )  = 1/4 V()31 +)3rl -)3 +)3-)3 r )  

= 1 /4[V0~ 1 ) + V03~' 1 - )3)+ V03 - )3ffl ) 

+ 2 cov03~ - 33,)3-)3~1)], since cov()~l ,d l  T) = 0 
1 

= 1/4[V@I -03T - .)3)) + V(.,~ - .pT ) (2) 

+ 2 cov03fl -)3,)3)], assuming )3 r is distributed as)31 
1 

Likewise, 

1/4 V@21 -I" dT)= 1/4[V@2 -03~  -)3)) + V@- .p~ )  

+ 2  cov0   - (3) 
1 

Combining 2 and 3 gives: 
^ 

V { (Y)  = V03) + V@ - y. ) + 2 cov(y. - )3, ~), (4) 

assuming that )3 r and)3r2 are distributed as )~2 ; 

and f ir  and )~"2 are distributed as )~1 ;. 

COV(y + )~1 -- f iT ,  )~ + Y2 -- )~"2 ) and 

cov03 - )3r,)3 - )3r ) are zero by the independence 

in the T selection 
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4.3 Computation of V(I 7) 
2 

V ppz is  t h e  v a r i a n c e  a s s o c i a t e d  w i t h  probability 
2 

proportionate to size sampling with replac- 

ement. The size is the wk's for k e nr within 

each imputation cell. 

4.4 Computation of V(I )) 
Putting 1, 4 and 5 together gives: 

V(I )) = V0 3) + V0 3 - .~. ) + 2 COl v(.~ . - )3, 33) 

+ E V(f / . ) 'k" E V ppz (~l R ) 
1 2  1 2 

= + + 2 c o v ( y .  - 

+ E V ppz (~l R ) 
1 2 

As formulated by S~rndal (1994), vO 3) is the 

variance assuming no nonresponse and V03 -)3. ) 

is the imputation variance. The sum of these com- 
ponents equals the total variance, assuming the 

covO 3, 33- )3. ) = 0. The simulation done in Sfirndal 

(1994), using nearest neighbor imputation, indi- 
cates that the covariance term is small and can be 
approximated by zero. 

2 cov(y. - ~,.f) and E W ppz (~1 R ) are terms not 
1 2 

included in the estimate of the true variance. There 
are two ways of handling these terms. The first is to 

estimate the terms and subtract them from V(Y). 
The second way is realizing that the only non-zero 
values in these terms comes from nonrespondents 
and if the item response rate is relatively high, 
these terms should be small and can be ignored. 
5. Computation of c6v(fi. - )3,)3) 

Since cov(fi. - )3,)3) requires Yk for k e nr ,  it can 

not be computed with the given sample. However, 

it can be approximated using d k. If 

dk = Yk2 -Ykl,  and given how d k is formed, Yk2 

is the nearest neighbor imputation for Ykl" There- 

fore, d k can be viewed as the difference between 

the nearest neighbor imputation for a known value 
- 

and the known value. Since d k , in terms of the 

nearest neighbor imputation, is close to unit k,  the 

covariance might be approximated by cov(d,)3'). 

6. Computation of V ppz (~ R ) 
2 

E VPPZ (vlR) is estimated from a sample by 
1 2 

computing V ppz (~ R ) for that sample. This is done 
2 

by either using an exact formula (see Cochran, 
1977) or by replication given a set of replicate 
weights designed for the conditional variance. For 
this report the exact formula will be used. 
7. Simulations 

In order to determine how well the proposed im- 
putations work, a simulation study is performed for 
two variations of the proposed variance methodol- 
ogy, using four states within the SASS sample de- 
sign and performing 5,000 simulations. 

For each simulation sample, a nearest neighbor 

imputation (.vk) is performed on the selected sam- 

ple of nonrespondents. Three populations of nonre- 
spondents with 5%, 15% and 30% nonresponse will 
be generated and compared. 

The simulation estimates are based on the design 
and collection variables that can be found on the 
flame. In this way, estimates for any selected sam- 
ple, as well as, estimates of the true variance, can 
be computed. 

7.1 Population of Nonrespondents 
In order to do the analysis, a population of non- 

respondents must be defined. A school k is chosen 
to be a member of the nonrespondent population by 

independently selecting k, proportional to p~VR. 

pfR is determined to obtain an expected X% un- 

weighted nonresponse rate in s. 

k ~c 

Pk is the probability of selecting k in s 

c is an imputation cell 

N ~R is the expected number of nonrespondents in c 

N~ R =(en~r~NtUn)/(~en~r~! 

en~ is the expected sample size in c (i. e., ~ p k ) 
k ~c 

r~ is the relative rate of nonresponse in c 

(i. e., 2 for central city schools, 1 otherwise) 

Nt uR is the expected number of nonrespondents 

required for the analysis in stratum l 

g NR =(~-'~en¢)x(X/100) 
cel 
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It is easy to verify: 1) the expected nonresponse 
rate for s will be X%; 2) the relative rate of nonre- 
sponse in central city cells is twice that of other 
cells; and 3) larger schools, as measured by Pk, 

will have a higher probability of being selected as 
nonrespondents. 

7.2 Simulation Sample Design 
The Schools and Staff'mg Survey (SASS) is a 

stratified probability proportionate to size sample of 
elementary, secondary and combined schools. The 
selection is done systematically using the square 
root of the number of teachers per school as the 
measure of size. State by school level cells def'me 
the stratification. Before selection, schools are 
sorted to provide a good geographic distribution. 
Estimates are designed to provide state estimates. 

In order to assure unbiased variance estimation 
using half-sample replication, the simulation design 
has been slightly altered. Each state/school level 
stratum has been split into a number of strata so 
that exactly two schools are selected within each 
stratum, while maintaining the original sample size. 
Another modification is that the selection within 
stratum is done with replacement. 

7.3 Estimates 
Three estimates per state are computed: 

f/e. -" E S k P k e ;  Y m  -" E S k P l o n ;  and  
k~s  k~s  

)3h = E Sk Pgh. 
kEs 

S k is the known number of students in school k 

Pke is the proportion of the students in school k 

in grades pre- kindergarten to 6 

Pkm is the proportion of the students in school k 

in grades 7 to 9 

Pkh is the proportion of the students in school k 

in grades 10 to 12 

It is assumed that S k is known for all k and that 

only the p ' s  require collection. Therefore, when k 

requires imputation, a nearest neighbor donor's 

p will be applied to S k . This is a common SASS 

imputation that can be duplicated from the flame. 

7.4 Simulated Variance Estimates 

All variances below, except for Vr03.)and 

V ppz (~R), are estimated using a fully balanced 
2 

half-sample replication variance estimator 
(Wolter, 1985). 

The four variance estimates computed within 
each sample and averaged across samples are: 

l)ec (I 2') = I)(I2') - 2 c6v(.~. -y,y)-g2PPZ(d R ) 

vO 3) is the variance estimate when all sample 

cases respond 

I203 . ) is the variance estimate of )3. 

The following estimates can not be computed 
from a single sample. However, they can be com- 
puted in the simulation setting and are used for 
comparison purposes. The first is the variance esti- 
mate using a true estimate of the covariance and the 
second is an estimate of the true variance. 

I"~TC ( ~  = W ( ~  - 2 cov(.~,  - )~, )~) - W ppz (e l  R ) 

n 
Vr 03.) = 1 / n E ( p . , - . ~ . s )  2 

s=l 

)3osand .~os are the value of)3. for the sth simulation 

and the average of the 33°~, respectively. 
8. Analysis Statistics 

To evaluate the imputation methodology relative 
bias of the estimated standard error (RB) and cov- 

erage rates ( C t and C m) are computed. 

V i (I 3) is one of the variance estimates def'med above 

C t is the coverage rate testing whether the true 

estimate with complete response is in the 95% 

confidence interval 
C m is the coverage rate testing whether the average 

of the simulated estimates (~o,) is in the 95% 

confidence interval 
Since the estimates with imputation are biased, 

the levels for C t are unknown. One however, ex- 

pects them to be smaller than 95%. Since Cm 

should be closer to 95%, it is used for comparison. 
9. Results 

Tables 1-3 provide results for the populations of 
nonrespondents, 30%, 15% and 5%, respectively. 

By comparing C t and C m for I~03.), it can be 

seen that the bias in )3,  relative to the coverage 

rates, is small. The only exception is state 24's )3 h 

in table 1, where the coverage rates differ by 9 
points (90-81). 

The half-sample coverage rates (C, 's for I~03) ) 

are usually less than 95%. Since C t for I?03) pro- 

vides the coverage rate with complete response, it 
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will be assumed that the best imputation coverage 
rate, instead of being the one closest to 95%, will 
be the coverage rate coming from the procedure 

that gets closest to the Ct's for I703). 
From table 1, it can be seen that when the nonre- 

sponse rate is high /~ec (Y) is superior to I? R (Y). 
This is true for both relative bias and coverage 

rates. /~Ec(Y) has better coverage rates 11 times, 

while /?R(~ is better only once; /?EC(~ has 

smaller relative biases 9 times, while /~R(~ is 

better only 3 times. Therefore, /?EC(~ should be 
used when the item nonresponse rate is high. 

When the nonresponse rate is moderate in size, 

tables 2 show that /~R ( ~  and /~Ec (Y) are compa- 

rable with respect to coverage rates. /?Ec(Y) is 

better or equal to /?R (Y) 7 times, while /~R ( ~  is 

also better or equal to /~Ec(Y) 7 times. With re- 

spect to relative bias, /~R ( ~  is slightly better than 

/?EC ( ~"  /?R ( ~  has smaller or equal relative biases 

8 times, compared to /~EC ( ~  being better or equal 
5 times. Hence, when computation simplicity is 

important, /?R (Y) can be used. However, it may 

still be safer to use /?Ec (Y). 

When the nonresponse rate is low, table 3 shows 

that l?ec(~ has better coverage rates than /?R (I?') • 

/?EC ( ~  is better or equal to /~R (f') 10 times, while 

/?R ( ~  is better or equal to l?Ec ( ~  7 times. How- 

ever, /~R(Y) has smaller relative biases. /?R(~ is 

better or equal 9 times, while l?ec (I)) is better or 
equal 4 times. This probably means that it is safe to 

assume the terms subtracted in /~Ec (Y)are close to 

zero and /~R (Y) can safely be used to estimate the 

total variance. However, since ffEC(~ has better 
coverage rates, it should still be considered. 

Tables 1-3 shows that/~Ec ( ~  and l~rc (Y) work 
equally well for relative biases. This means that for 

estimating the total variance, c6v(d,)3') is a good 

approximation for cov(.~. - )3,)3). 
10. Conclusions 

For the design and imputations simulated, 

/~ec (Y) should be used when the item nonresponse 

rate is high, although /~R(~ is still an improve- 

ment over I703 . ) .  When the item response rate is 

moderate or low /?R (f') provides good results and 
given its simplicity, can be used to estimate the to- 
tal variance. 

Table - 1 Relative Bias (RB) and Coverage Rates ( C r and C m ) for Population with 30% Nonresponse 

30% Nonresponse Percent RB (C r ) Percent RB ( C " )  

State Estimate I~(~ ) g(f;,, ) g(ff;,, ) NTC (fr) NEC (f/r) NR (fr) 
i i i i 

Ye 0 (94) -13 (90) -13 (90) 0 (91) 9 (94) 2 (93) 

Ym 1 (93) -25 (81) -25 (83) -3 (90) 9 (93) -3 (90) 

)3 h 1 (91) -28 (80) -28 (81) -11 (85) -5 (89) - 14 (86) 
• • • m 

)~e 1 (94/ -28 (83) -28 (83) 2 (94) 0 ( 9 4 )  -13 (89) 

)3" " 0 (94) -29 (82) i -29 (82) i (93) 0 (93) -14 (88) 

33h . 1 (94) -15 (88)" -15 (89) 3 (94) -1 (93), -7 (91) 

Ye 1 (91) -22 (85) -22 (85) -7 (90) -5 (91) -13 (88) 
• , ,  , | 

10 33,, 0 (92) -26 (83) -26 (83) -6 (91) -3 (91) -13 (88) 
• . . o 

)3 h 1 (87) -31 (72) -31 (73) -1 (88) -10 (83) -21 (77) 
m • m u 

.~e -1 (94) -30 (82) -30 (81) -3 (93) -1 (93) -15 (88) 

24 33 0 (93) -29 (81) -29 (81) -2 (93) 2 (94) -13 (88) 
• • | 

)3 h 0 (93) -13 (81) -13 (90) 2 (93) 15 (96) 2 (93) 
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Table - 2 Relative Bias (RB) and Coverage Rates ( C r and C," ) for Population with 15% Nonresponse 

15% Nonresponse Percent RB ( C r ) Percent RB ( C ~ )  

State Estimate I~03 ) I~03 . ) l~(j3. ) l~rc ( ~  l~Ec ( ~  I) s ( ~  
| • • 

)~e 0 (94) -6 ( 9 2 )  -6 (92) 2 (93) 5 (95) 1 (94) 

2 i  33," 1 (93) -9 (89) ~ -9 (91) 2 (92) 8 (93) 0 (92) 

)3 h 1 (91) -1 (91) -1 (92) 2 (91) 9 (93) 3 (92) 

)3e 1 (94) 4 (94) 2 (94) -4 (92) -10 (90) -10 (91) 

9 .tim 0 (94) -11 (89) -11 (90) 6 (95) 4 (94) -4 (92) 

.fih 1 (94) -7 (92) -7 (92) 7 (95) 3 (94) -2 (93) 

)3 e 1 (91) -9 (89) -9 (90) 2 (92) 3 (93) -4 (91) 

10 )3," 0 (92) -10 (89) -10 (91) 1 (93) 1 (94) -5 (92) 

)3 h -1 (87) -10 (82) , -10 (86) 7 (90) -3 (86) -9 (86) 

Ye -1 (94) - 14 (90) - 14 (90) 7 (94) 8 (94) -4 (92) 

24 )3 i 0 (93) -13 (90) -13 (90) 8 (95) 11 (95) -1 (93) 

• .fih ! 0 (93) -5 (92)" -5 (91) 5 (93) 5 (93) 0 (93) 

Table - 3 Relative Bias (RB) and Coverage Rates ( C r and C," ) for Population with 5% Nonresponse 

State Estimate I~0 3 ) l)(~. ) 
| • 

Ye 0 (94) 
2 )3," 1(93) 

)3 h 1(91) 
l l 

)3 e 1(94) 

)3," 0 (94) 

)3 h 1 (94) 
| | 

)3 e 1 (91) 

10 )3,. 0 (92) 

.fib -1 (87) 
| 

)3, -1 (94) 

24 )3," 0 (93) -5 (90) 

.fih 0 (93) 

Percent RB (C m ) 

-4 ( 9 2 )  -4 (93) -1 (94) -1 (94) 

-7 (88) ~ -7 (91) 11 (95) 8 (93) 

-6 (88) -6 (90) -6 (87) 3 (91) 
| 

-3 (93) -3 (93) 6 (95) 5 (95) 

-5 (92) -5 (92) 2 (94) 3 (94) 

-1 (94) -1 (94) 0 (93) 0 (93) 
| 

-2 (91) -2 (91) 5 (92) 2 (91) 

-1 (92) -1 (92) 2 (92) 2 (93) 

-2 ( 8 7 )  -2 (87) -2 (88) -2 (87) 
| 

-7 (91) -7 (92) 1 (95) 1 (94) 

-5 (92) 4 (94) 4 (93) 

1 (93) 1 (93) 1 (93) 2 (93) 

 (rb 
-2 (93) 

0 (92) 

-2 (91) 

-1 (94) 

-2 (93) 

-1 (93) 

-1 (91) 

0 (92) 

-2 (87) 

-4 (93) 

-2 (92) 

1 (93) 
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