
PREDICTING BIRTHS IN THE CURRENT EMPLOYMENT STATISTICS SURVEY 

Steve Woodruff, Bureau of Labor Statistics 
2 Massachusetts Ave. N.E., Suite 4985, Washington D.C. 20212 

KEY WORDS: Birth and Death Process, 
Maximum Likelihood Estimation 
1) Introduction 

The Current Employment Statistics survey is 
a monthly survey of about 400,000 business 
establishments. It is used to estimate total national 
non-farm employment along with several other 
less important economic statistics. The universe 
for this survey (and sample) is constantly changing 
due to establishments going out of business and 
others starting up. The effect of these "births" and 
"deaths" remains an important source of non- 
sampling error. 

This problem of births and deaths was studied 
by, Lent and Grezsiak, (1985). The operational 
conclusions of their work was that births and 
deaths tend to cancel and that the effect of these on 
estimation was minimal. The sample automatically 
picks up deaths, they report zero or just stop 
reporting although, in this case, nonrespondents 
must still be separated from deaths. Births can go 
unnoticed for extended periods of time (up to a 
year) between sample replenishments. With 
implementation of random sampling and possibly 
rotation sampling, the effect of births and deaths 
can be measured and these measurements used to 
improve the accuracy of the estimates. 

The strata in this survey are industry/size- 
class groups. Employment in these strata may be 
shrinking or growing at different rates and in 
different directions. By observing births and 
deaths in the immediate past for each stratum, it is 
possible to estimate the "infinitesimal" birth and 
death rates for a Markov process that 
describes this birth and death behavior. This 
Markov model is used to predict the number of 
births for the current estimation period. 

Modeling the number of establishments in the 
sampling frame, known in the Bureau as the 
Universe Data Base (UDB), as the realization of 
a birth and death process is a useful means of 
predicting population size when actual numbers of 

births is unknown. 
ARIMA models were also fitted to the data on 

these Birth/Death processes. Autoregressive 
models within ARIMA seemed to provide the best 
fit of the various Time Series techniques. These 
models were used to forecast the number of 
reporting units in an estimation cell and these 
forecasts compared to the birth/death forecasts. 
2) A Markov Birth and Death Process 

For a sampling stratum, let X(t) be the total 
number of establishments in that stratum for month 
t. X(t) can be thought of as a stochastic process as 
each month, business establishments migrate to 
other strata or go out of business and others start 
up or migrate into the stratum. Karlin (1973, Ch 
7), outlines several "Birth and Death Processes". 
One possible candidate and a method of finding 
it's moments is outlined next. 

Let X(t) be a stationary Markov Process: 
P(X(t+h)eAI X(t)EB) = P(X(h)EAI X(0)EB) V t, 
and let P~.j (h) - P ( X  (h) = jl P(0) = i).  Let the 

transition probabilities satisfy the following 
conditions where ,~, and  IA~ are positive numbers" 

P (h) = )~.h + o(h) = P(X(h) = i + llX(0) = i) 
i , i+l t 

as h $ O , i  >0  

P (h)=#ih+o(h)  as h$O, i>l  
i , i -1  

e (h)-l-(/q.i +It i )h+o(h) as h,l,O, i>O 
i,i 

P (01 = t~ij 
i , j  

where ~5 is the kronecker-5 (*) 
Let M(t) = E[X(t)], be the expected value of 

X(t) under the stochastic structure just described 
and V(t) be the variance of X(t), (both assuming 
X(O)=M(O) is known). For a stochastic process 
called Linear Growth with Immigration, the 
infinitesimal birth rate when the population 
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contains n members is" ~ - n X + a  and the 

infinitesimal death rate is" 12 n - n l A  where a>0, 

L>0, and Ix>0. 

M(t) and V(t) are derived by solving the "forward 
Kolmogorov differential equations" which are 
themselves derived from (*), the prime denotes 
derivative with respect to t; these equations are: 
p '  

io(t) =- ~oPio (t) + #1Pil (t) 
! 

Pij(t) = Z j _  1Pi, j _  l ( t ) - ( Z j  + l.tj)Pij(t) + 

l'tj + lP',j + l(t) 

for j > 1 

When X(0) = i then be definition of expected 
value, M(t) is: 

O O  

M(t - 

Differentiate both sides of this equation and 
substitute the forward Kolmogorov differential 
equations to get the first order linear differential 
equation in M(t): 

M' (t)=a +(~,-].t)M(t), M(O)=X(O)=i. 
The solution of this is: 

a (~-/l)t 1}+ M(O)e (x-~)t M(t)= ~ - / . t  {e - 

for L,~l.t and 
M ( t ) = a t + M ( 0 )  for k---~ 
Using the same technique, E(X(t) 2) can be 

derived and this used to find V(t). The result 
is: 

V(t) - 1 I'l 2 ( X - / l ) 2  {(M(0)(X2 - ) + aX)eE(X-~)' 

- [ ( X  + / / ) a  + M(0)(/~ 2 -/./2)]e('1"-~)' + a/./} 

for X ~  and 

V(t ) -a~ t t2+2M(0)~t+a t  for K - I t  
M(t) gives the expected value of X(t) given 

M(0), ~, It, and a. The mean, M(t), will be used to 
predict X(t) given X(t-m) is known, m>0. In this 
case the prediction for X(t) is M(m) given 
M(0)=X(t-m). 

X(t) = X(t-m) + (b(t)-d(t)) where b(t) is the 
number of births between months t-m and t and 
d(t) is the number of deaths in that same interval. 

Then b(t) = X(t) - X(t-m) + d(t). Since X(t-m) 
and d(t) are known, predicting X(t) is equivalent 
to predicting b(t). 

If in addition to the above assumptions about 
{X(t)}, the {X(t)} are normally distributed (neither 
independent or identical ), the likelihood function 
for this Markov process, {X(t)}, is: 

k 1 ( X ( i ) -  mi)  2 
L -  . .~ ~/2xv E x p ( -  ) where 

"= i 2Vi 

m i and v i are M(1) and V(1) evaluated with 

M(0) = X(i-1) for i=1,2 ....... k. That is, m i = 

a {e(~._~0 _ 1} + X( i -  1)e (~'-~t) and 
Z,-lt 

1 v~ = { (X (i - 1)(A, 2 - #2) + a&)eE(Z-~,) (~_p)2 

- [ ( X  + I.t)a + X ( i -  1)(X 2 - ,//2)]e(~'-~) + ap} 

for i= 1,2,3 ........ k and ~ ~: ].t. 

For k=~t, 
m, = a + X ( i - 1 )  and 

v~ = ab/+ 2 X ( i -  1)/./+ a 

The terms in L are the conditional densities of 
X(i) given the outcome of X(i-1) for i= 1,2 ....... k. 
L(X(I),X(2),X(3), ........ ,X(k)) is the joint density 
of (X(1);X(2),X(3) .......... X(k)) for this Markov 
process. Finding the values of ~, It, and a which 
maximize this likelihood function is done by 
computer rather than algebraic manipulation. 
Using historical data for 31 months (Apr 1990 to 
Apr 1993) in each of 10 industries in Iowa, the 
values of ~, It, and a that maximize this likelihood 
were found. 

This initial testing indicated that the relatively 
simple expressions for first and second moments 
when I.t = ~, may be most appropriate, with the 
common value of ~. and ~ of about: .02. 

When L = ~t, the problem reduces to 
estimating "a". 
3) ARIMA Modeling and Other  Alternatives 

In addition to the MLE for "a" described 
above, three other estimators are tested" a 
regression estimator, a-r, a simple slope estimator, 

a n, and an ARIMA based estimator, a AR. Let a m 
denote the maximum likelihood estimator of "a" 
(maximizes L). 
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n n 

~ i X ( i )  - M ( 0 ) ~ i  
ar=" i = l  n i = l  is the value of a 

i=l 
n 

that minimizes: Z ( X ( i ) -  a i -  M(0))  2 . 
i=l 

X ( n ) -  X(1) 
n = n -  1 is the average month-to- 

month change from month 1 to month n. 

In spite of good estimates for the mean 
month-to-month change, the variation around this 
mean of the realized change is large enough to 
make predictions of the change for any particular 
month very problematic. 

The correlations between the three estimates 
of "a" are all about .9 This implies that little is to 
be gained by using a composite estimator (with 
optimal weights only a variance reduction of about 
10% and actual weights would necessarily be only 
approximately optimal).. 

The Bureau may be sampling for births and 
estimating birth employment periodically. Let yb 
denote this proposed the sample estimate of birth 
employment. Let fib -- fib-d +nd and let 

Xb -- f ibAEt-k  be the estimate of birth 
employment projected from the historical data. 
These two estimators are stochastically 
independent and there respective variances are 

A 

available (estimable). V ( y  b) is estimated from 
the sampling distribution. 

A 

V(x b ) - A-E2_ k V(nb_ d ), and 

V(fib-d) = V(ka) = k2[a/.2k 2 + 2AEt_klJk + 
ak] 
k=3 in case births are estimated for a quarter at a 
time and updated from the last quarter UDB 
employment figures. 
The composite estimator for birth employment is" 

YbV(Xb)+ XbV(yb) 
= ,, ,, . and the 

Cb V(Xb) + V(Yb) 

variance of this composite estimator is" 

V ( C b )  -- 
[Q(x b )]2 V(y b ) + [~'(Y b )]2 V(Xb ) 

[V(Xb) + ~r(yb)]2 
and this is estimated with 

" V(Xb )V(Yb ) < t V(Xb ) The 
V(CD)--'~r(XD- )+~'(YD- ) -- V(YD- ) " 
variance of the composite estimator is minimized 

A 

when V ( X b ) -  V ( y  b) and is half their common 
value. 

The Time Series programs that were used to 
fit ARIMA models, test them, and predict the 
industry sizes (number of reporting units) from a 
fitted model for this study was done using S-PLUS 
software, Venables and Ripley (1994), on a PC. 
As was noted above, when birth and death 
processes were used to model this problem, the 
noise in these stochastic processes overwhelmed 
the signal. The same was true when ARIMA 
models were fitted to the same data. 

AR(1) to AR(3) processes seemed to best 
describe the behavior of the data as measured by 
the Akaike Information Criteria. The 
Autoregression coefficients were estimated via 
maximum likelihood assuming a Gaussian 
distribution. The ARIMA estimates of "a" 
denoted a AR (or multiples of "a" as tabulated in 
the table above) appear uncorrelated with the other 
estimates. This fact suggests that a composite of 
the ARIMA estimates and one of the other three 
may give an improved estimate of "a". 
4) An Empirical Study 

Historical data for Iowa from SICs 16, 23, 24, 
25, 28, 30, 53, 63, 73, and 75 for 37 months 
(March 91 to March 94) was used to test the three 
estimators 6a (half year ahead projections of SIC 
growth in number of reporting units). The MLE 
was generally best (possibly because it tends to be 
more conservative, smaller) and is based on a more 
specific stochastic description of birth and death 
processes than the other predictions. For these six 
month ahead projections, data for the first 31 
months was used to estimate change between 
month 31 and month 37. These projections are 
given below in Table 1. 
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Table 1. Six month ahead changes for four predictors and the observed change. 

SIC---) 
Est,l, 

an 6.1 1.1 3.1 2.2 -2.4 3.1 -3.6 0 

a.r 616 2.1 4.1 3.5 -1.3 3.2 -.7 1.1 

10.3 .4 4.5 1.7 .1 2.9 0 0 A 

am 
~-AR -13 0 -1 -1 4 -3 3 -1.5 

change -24 -6 7 1 3 -3 0 2 

random sampling and 
Table la.  Root MSEs (across SICs) of Six month necessary adjunct to 
ahead changes (smallest in bold). These come studied in this paper. 
from Table 1, root of average of ([change row] - 
[predictor row]) 2. 
MSE ~ All SICs W/O SIC 16 

Est $ 
A 

aAR 
A a 

m 

8.13 

11.31 

A a 
n 

7.75 

3.37 

10.43 4.12 
r 

10.37 "'4.34 

SIC 16 is highly seasonal and the ARIMA 
predictor did a much better job of picking up this 
seasonality than the other methods as shown in 
Table l a. When SIC 16 was removed (second 
column of Table l a, the MLE was the best method. 

These estimated changes in number of 
reporting units must be translated into change in 
employment. Since births and deaths generally 
predominate in the smaller size classes, it would 
give biased estimates of employment change to 
simply multiply average reporting unit 
employment in an SIC by the estimated change in 
the number of reporting units. The historical data 
can also be used to determine month-to-month 
change in employment as well as month-to-month 
change in the number of reporting units. The ratio 
of the one sequence to the other then estimates the 
change in employment per unit change in reporting 
units. Some weighted average of these ratios can 
be multiplied by the projected change in number of 
reporting units to estimate projected change in 
employment. 
5) Conclusions 

It may be futile to try to predict changes in 
number of reporting units in an estimation cell 
based on past numbers of births and deaths. A 

75 

3.6 

4.3 

4.1 

-6.5 

3 

estimation 

2.7 

3.5 

4.5 

-11 

7 

plan is a 
the indirect techniques 
One current plan is to 

sample for births on a "just in time" basis. Look 
for births between flame refinements and include 
them in the estimation process in a more timely 
fashion than is now occurring. At present, the 
effect of births is only accounted for during annual 
benchmark revisions. We propose getting birth 
employment by sampling new Unemployment 
Insurance accounts and screening these to remove 
pre existing establishments while asking new 
establishments for their employment. 

The indirect techniques studied here may be 
useful in a composite estimator where the other 
component is a direct sample based estimator for 
birth employment .  The MLE of "a" that is 
derived from the Birth-Death process seems to be 
better (except in highly seasonal industries) than 
the other alternatives considered: the regression 
estimates, naive estimates, and the Time Series 
estimates. The MLE can be improved if 
seasonality is first removed from the historical 
series before "a" is estimated, then this estimate of 
"a" is used to predict the 6-month ahead 
nonseasonal component of the time series, and 
then the seasonal component added back to get the 
final prediction. 
References 
Grzesiak T. J.and Lent J. (1988) Estimating 
Business Birth Employment in the Current 
Employment Statistics Program, Proceeding of the 
American Statistical Association, Section on 
Survey Research Methods. 
Karlin Samuel (1973). A First Course in 
Stochastic Processes, Academic Press. 
Venables W. N. and Ripley B. D. (1994). Modern 
Applied Statistics with S-Plus, Springer-Verlag. 

362 


