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Abstract 
Using a hierarchical model, we estimate the overweight 

prevalence for U.S. adults using NHANES III data. We 
provide a model-based justification for the use of the 
statistical weights for estimation through subsampling. We 
compare our model-based estimates with design-based 
estimates at the national level and obtain agreement. Also, 
we display the model-based prevalence estimate by state. 

1. Introduction 
There is a continuing need to assess health status, health 

practices and health resources at both the national and 
subnational level. Estimates of these health items help 
determine the demand for health care and the access 
individuals have to it. Although the NCHS personal 
interview surveys can provide much of this information at 
the national level, little can be provided for states and 
counties because of excessive field costs. The need for 
subnational health statistics exists, however, because health 
and health care characteristics are known to vary, 
geographically. Also, health care planning often takes place 
at the state and local level. 

One alternative approach for producing subnational 
estimates has been to, effectively, increase the sample size 
by utilizing models defined across the subnational areas 
( e.g., see Ghosh and Rao, 1994). A challenge has been to 
use models realistic enough to produce accurate estimates. 
Towards this end, hierarchical models (models which 
include geographic variation among rates) have been 
adapted to small area estimation. With the availability of 
Markov Chain Monte-Carlo (MCMC) methods, estimates 
(and estimates of precision) can be made that account for all 
model errors. Given current resources, model-based 
estimates can be made for subnational levels. At a 
minimum, a measure of the geographic variability of health 
characteristics can be determined in order to decide which 
health variables should be included in future surveys for 
subnational statistics. 

In this paper we present a methodology for making 
subnational estimates using hierarchical models that take 
sample selection into account. We illustrate the methodology 
by estimating the adult overweight prevalence by state using 
data from NHANES III. The methodology is general and is 
especially useful for producing subnational estimates which, 
at a national level, may coincide with design-based 
estimates. 

1.1 NttANES m :  Survey Design 
NI-iANES 111 is a stratified, multi-level design that was 

conducted during the years 1988-1994 in two phases (phase 
1:1988-91 and phase 2: 1991-94). Sampled persons provide 
health and dietary information through a questionnaire and 
also through a physical exam (including labwork) and a 
dental exam. The resulting sample of approximately 40,000 
persons was selected to represent the civilian, non- 
institutional population of the United States and provide 
national characteristics and nutrition status for the entire 
population and a number of age, race and ethnic subgroups. 

Although not excluded from the target sample, small 
numbers of Black and Mexican-American persons were 
included in previous NHANES. Therefore, reliable 
estimates of their health and nutritional status could not be 
obtained for their subgroups. To resolve this problem, 
NHANES III was designed to include a large sample of 
these two largest minority groups of the U.S. population. 

1.2 Overweight prevalence in U.S. 
Overweight is associated with a number of adverse 

health outcomes including mortality (Troiano et al . ,  1996) 
and has become an increasing problem in the U.S. 
Kuczmarski et al. (1994) documented the recent increased 
prevalence of overweight in the U.S. adult population. 
Overweight is typically defined in terms of body mass index 
03MI) which is defined by 

BMI = Weight/Height 2 (1) 

When BMI is expressed in the units kg/m 2, overweight 
is defined as > 27,8 for men and > 27.3 for women. These 
are the sex-specific 85th percentile of BMI for men and 
women aged 20 through 29 from NHANES II (1976-80). 

2. Estimation Methodology 
In this section, we give a general method for estimating 

prevalence at a subnational level and specify the model that 
we used to make state estimates for overweight prevalence. 

2.1 Description of Finite Population 
We define: 
• i: County Indicator, i =1 ..... H 
• d: characteristics of individual (i.e., age by race by sex by 
phase classes) 
• j: Individual ID, nested within county and characteristic 
"Yidj: A characteristic of interest for individual, i,d,j. 

Of interest, are estimates of the finite population mean for 
individual characteristics defined by groupings of 'd',  for 
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local areas defined by county, groupings. That is, 
N,a 

Ou) = F, F_, EY~a a./ E F_, Aria (2) 
ieL deD j= 1 ieL deD 

where L indexes a particular collection of counties (e.g., all 
counties in a specific state), D is the set of specific 
subgroups of interest (e.g., all females regardless of age or 
race) and Nid the total civilian, non-institutional household 
population in county i, subgroup d. The subgroups, d, are 
defined by a cross classification of the following four 
discrete variables: 
,gender 
• race/ethnicity (white non-Hispanic, black non-Hispanic, 
and Mexican-American) 
• phase (1988-91, 1991-94) 
• age categories (20-24, 25-29 ..... 75-79, 80+) 

2.2 The Population Model 
Recall that Yidj denotes the status for individual j in 

group d in county i where i =1 ..... H and j=l ..... Mid. In this 
paper, Yidj =1 denotes overweight status as determined by 
BMI and Yiaj=0 denotes either normal or underweight. 
Within county i and conditional on the p ia, the 5(a j are 
assumed to be independent Bernoulli random variables with: 

Pr(Y,¢= l lP,a ) =Pia, J=l ..... 1M (3) 

Since there will often be counties with little or no data in 
subgroup, d, a model expressing the similarities between 
areas could improve estimation. We use a special case of the 
Generalized Linear Mixed Model (GLMM) as specified in 
Breslow and Clayton (1993) with a logit link: 

lo gi t {P icl } : x_[a~a + z4~  ' (4) 

where the parameters ~ and fii denote the fixed and random 

effects respectively with 
11_ ~N(0,P) (5) 

where, conditional on P, the &'s are independent. The 
vectors x_;a and z a denote the explanatory variables of the 

fixed and random components of the model, respectively. 
These variables must be known for all counties and groups 
for which a sample is selected or a prediction made. 

By specifying P=0, this model reduces to a Logistic 
regression model. However, using GLMM, P remains 
unspecified and can be estimated from the data. 

2.3 Overweight Status Model 
Each of the 156 subgroups d is defined by one of the 6 

possible combinations of race and gender and one of the 26 
possible combinations of age and phase. We represent this 
as d=d(c,a) where c labels the race/gender and "a" labels the 
age/phase. We found the following specification of the 
model (4)-(5) adequate for overweight status analysis: 

logit{Pia } =o~ a + [3i¢ (6) 
t where d=d(c,a) and ~_.i-([3il .... ,[3,6 ) , where the six 

components correspond to the race/gender categories. 

2.4 Estimation 
Letting y, denote the sampled data, we use a Bayesian 

approach to make inference about OLD. The posterior mean 

of 0u), E(0u)3~s), and the posterior variance of OLD, 

V(Ou)Iy_s) , are used. These moments can be shown to be 

(see, e.g. Malec et al. 1993) 

E E y ,.+EE . ' {Nia- ia}E(PialY_.s) 
E(0ml .e  )_ ieL (ias>s ieL dd) 

E ENid 
1eL deD 

(7) 

and 

~_, {Na-n~a}E{Pia(1-P~a)lY-s} *I{ ~ {Na-n'a}PiaiY--s) 
V(0L~I,~ )_ ,.d 

(~2 ~)~ i,d 
(8) 

where the sums in (8) are over LxD. We determine (7) and 
(8) numerically using the method described in section 4. 

3. Sampling Adjustment for Modeling 
In complex surveys, there is a general concern that 

ignoring the selection of a sample may produce erroneous 
inferences (see, e.g. Scott, 1977). In principle, incorrect 
analyses can be avoided by specifying a model that accounts 
for sample selection (e.g., see Krieger and Pfeffermann 
(1992)). However, for heavily oversampled designs such as 
the NHANES III, the level of effort needed to model the effect 
of the design on each outcome may be great. The approach 
taken here is to choose a subsample that is free of the 
limitations of the original sample to guarantee that the design 
does not cause a selection bias. In particular, a subsample is 
selected so that the overall selection probability, given 
samples of fixed size, is equal. 

For this application, inference is conditional on 
demographic characteristics. Hence, subsampling adjustment 
is only needed within demographic groups. In addition, a 
subsampling adjustment to eliminate correlation due to PSU 
selection is not needed because it is modeled by GLMM. 
Here, we assume that the observation within PSUs are 
independent. In another context, a more comprehensive 
subsampling adjustment is used by Hinkins et al. (1994), who 
subsample to obtain a complete SRS from an (originally) 
stratified sample. 

The next two sections provide a justification for our use 
of the weights in the modeling process. 

3.1 Implementation 
We define a subsample, within each age, race/ethnicity, 

gender, and phase cell, d, as follows: Given that the initial 
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sample ofuffats: 1"1 ..... r, c S  a were selected with marginal 

probabilities: g ..... g We could select a 

subsample: Sd2C_Sa with marginal probabilities: 

-1 

. g r  i r i f f s  d . 
g q -  -1 " max j 

j~se 
For a fixed sample size the overall marginal selection 
probability that riCSd2 is independent of g ri 

We can now apply the population model outlined in (3)- 
(5) to Sd2- From (3), define 

fl,  Yia)[Pid) =P~* (1 -Pid) 1 -Y'¢ (9) 

The density of subsampled measurements ~,={YidJ and the 
random-effect parameter fi=(fii ..... ~H ) given ~=( ~ P) and 

G~ is: 

d idjeSd2 

where 

This can be specified in terms of S a as: 

1-[ (fly,, r) 
ia)e s 

(10) 

with ~_=(bidj) and g*= (xi4) , where 

Prob(6i4=llg ,  ) * = gia)" • (11) 

Given Ys and _6, the posterior distribution of ~=(D-,~) is 

(12) 
,fi)-- (A ,,fi dg_ 

where f(~) denotes the prior distribution of ~. By selecting 
a single subsample, Sd2 , we can obtain the conditional 

mean of functions of f2 such as Pia (as needed in (7)) using 
(12). 

If the marginal selections probabilites of the original 
sample are different, a subsample may be much smaller than 
the original. We can rectify some of the inefficiency by 
using (11) to create a marginal likelihood: 

fOZs, ~_ ~_) = ~ Prob(6_[ ~_*) fly,,D_l ~,6_) (13) 

and carrying out the inference specified in (7) and (8). 

3.2 Approximate Results 
Using (13) requires extensive computation such as using 

an additional data-augmentation scheme. As an 

approximation, we replaced the sample indicators in (1 O) by 
their expected value, giving the approximate density 

J ~  s,~-t ~ , ~ * )  - H (fQvia)iPid))nJ¢ j ,(~[ I") (14) 
idje S 

We make inference about 0 w by replacing (10) with (14). 

The density, I-I fld'idj Pia) , specified by (3) is in the 
idje S 

exponential family with sufficient statistics ({x~a},{~a}), 
hid 

where mid= Eyi4.. The approximate density, 
j=l 

ia)e s 

sufficient statistics 

rt id 

, is also in the exponential family with 

hid 

( { n i d } , { m i d } )  , where mid= ZTr, ia). Yidj 
j--1 

and rtid=Y~g;a).. The closure under sampling adjustment of the 
j=l 

logistic distribution generalizes to the exponential family 
including the normal model. If the original sample selection 
is noninformative, a measure of the loss of information due to 

the sampling adjustment is ~,nid/~_,nid. 
i,d i,d 

Our estimation methodology appears related to Folsom 
and Liu (1994), who make small area estimates using a 
survey weighted empirical-Bayes model. However, their 
model assumes that the variances are proportional to the 
inverse of the sample weights, while our methodology does 
not require this assumption. 

4. Inferential Methodology 
A Bayesian analysis requires the specification of a prior 

distribution for (~, P). To insure that the sample information 
dominates the inference, we used an overdispersed prior 
distribution. In particular, we choose the conditional density 
of alp to be constant and an inverse Wishart distribution for 
P with one degree of freedom and mean=k I6x 6. This prior is 
dominated by the data but seems to avoid problems with use 
of vague priors in hierarchical models (Berger (1985, Sec. 
4.6.2)). 

Since the posterior moments of 0t~ are nonlinear 

functions of ~, and the distribution f(~[y,) cannot be 
expressed in a simple form, numerical evaluation is needed. 
We used the MCMC methodology to generate R sets of, 
parameters, {~_(°:r =1 .... ,R} from the posterior distribution 

and evaluate p(d ) for each r. 

We used block-at-a-time Metropolis-Hastings algorithm 
(Hastings, 1970, Chib and Greenberg, 1995) to generate one 
long run of the chain. The modes and Hessians were searched 
at each iteration to determine the candidate-generating 
densities of 1) and a_g_. Conditionally P was sampled directly 
from its inverse Wishart distribution. We also used CODA 
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software (Best et al., 1995) to perform the output analysis 
and convergence diagnosis for the chain. 

4.1 Selecting County Covariates 
We arrived at the model specified by (6) after first 

evaluating whether county covariates could explain some of 
the variation of prevalence rates. We selected county level 
variables to be included in x_ and z of (4) with a fixed effect 
model that included demographic information and county- 
level covariates from the Area Resource File (1989). We 
used the model 

logit{pia } :x_~fi + w_~n (15) 

where w i is a vector of 30 county level covariates that were 
thought by subject matter specialists to be related to 
overweight and ~1 denotes the associated parameter vector. 
We give typical examples of county covariates: 
• Education (fractions with educ <9 years or college grad) 
• Economic (unemployment and poverty rate, home value) 
• Demographic (percent rural and urban, pop. density) 
• Labor force (fraction in construction, manufacturing, etc) 
• Health care (number of physicians, hospitals, beds, etc. per 
capita) 

The county covariates were dominated by the 
demographic variables so we included only a random 
component in the model (4). The addition of all the county 
covariates to the demographic ones only increased the R 2 
from 0.056 to 0.059. 

5. Estimation Results 
We illustrate the calculations using two choices of L and 

D from (2). In section 5.1, we show the estimates made at 
the national level for demographic subgroups. We compare 
our model-based estimates with design-based estimates to 
justify our claim that the results may coincide at a national 
level. In section 5.2, we show our estimates for all adults 
within the 50 states and D. C. 

5.1 National Estimates by Demographic Subgroups 
In this section we compare model and design-based 

estimates for 78 demographic categories. 1 Based on 
NHANES III phase 1, Kuczmarski et al. (1994) show that 
the overweight prevalence is highest for ethnic (Black non- 
Hispanic and Mexican-American) females. 

We used the BMI values for all adults (20 and over) who 
were examined in a Mobile Examination Center (MEC). Of 
the 16,573 adults who were examined in a MEC, 16,523 
had values for both height and weight -- hence BMI. We 
used all these values for estimation. We used standard 
expansion estimators to estimate the overweight prevalence 

1The accuracy of the design-based estimates 
may not meet NCHS publication standards since we used 
5-year age categories. 

for all 78 demographic categories using the MEC 
examination weights (Mohadjer et al. (1996)). 

For the model-based estimates, we approximated the 
selection probabilities of Section 3.1 by the inverse of the 
MEC examination weights. For both phases, we used the 
1990 Census counts as an approximation to Arid in equations 
(7) and (8). We used SAS IML (1995) for thecalculations 
and 1200 iterations of the Gibbs sampler. The values shown 
were obtained for the prior distribution with k = 104~ We used 
sensitivity analysis to insure that our prior was overdispersed. 

We compare the design and model-based estimates in 
Figure 1 for one of the six race/gender categories. The results 
of figure 1 are typical of the other categories. The model- 
based estimates tracked the design-based estimates well for 
all categories and all ages. We take the results as verification 
that our model-based estimates may match the design-based 
estimates at a national level. 

5.2 State Estimates 
We computed the overweight prevalence estimate by state 

and show the results in figure 2. The figure shows the 
following: 
• Relatively small range (.32 to .40) 
• North/South difference (reflecting difference in minority 
population) 

Figure 3 shows the estimated coefficient of variation (CV) 
by state plotted against the square root of the number of adults 
in sample. All the CVs meet the NCHS publication standard 
of 30%. 

Since the proportions do not exhibit much variation, the 
CVs are approximately proportional to the state standard 
deviations. If state data is preferentially used for state 
estimation, one would expect an inverse relationship. This 
relationship appears to be approximately correct. The only 
outlier is Alaska, which appears to have a larger variance. 
This may be because of its small population and because it 
was treated as a single county, -- due to data limitations. 

Acknowledgments 
We want to thank Dr. Kurt Maurer for helpful comments 

and direction. 

References 
1. Berger, J. O. (1985), Statistical Decision Theory and 
Bayesian Analysis (2nd Ed.), Springer-Verlag, New York. 
2. Best, N., CoMes, M. K. and Vines, K. (1995), CODA: 
Convergence Diagnosis and Output Analysis Software for 
Gibbs Sampling Output, Version 0.30, MRC Biostatistics 
Unit, Cambridge. 
3. Breslow, N. E. and Clayton, D.G. (1993), "Approximate 

Inference in Generalized Linear Mixed Models," Journal of 
the American Statistical Association, 88, 9-25. 
4. Chib, S. and Greenberg E. (1995), "Understanding the 
Metropolis-Hastings Algorithm," The American Statistician, 

329 



49, 327-335. 
5. Folsom, R. E. and Liu, J. (1994), "Small Area Estimation 
for the National Household Survey of Drug Abuse," 
Proceedings of the American Association Survey 
Methodology Section, 565-569. 
6. Ghosh, M., and Rao J.N.K. (1994), "Small Area 
Estimation: An Appraisal," Statistical Science, 9, 55-93. 
7. Hastings, W. K. (1970), "Monte Carlo Sampling Methods 
Using Markov Chains and Their Applications," 
Biometrika, 57, 97-109. 
8. Hinkins, S., Oh, H.L. and Scheuren, F. (1994), "Inverse 
Sampling Design Algorithms," 1994 Proceedings of the 
American Statistical Association Survey Methodology 
Section, 626-631. 
9. Krieger, A. and Pfeffermann, D. (1992) "Maximum 
Likelihood Estimation from Complex Sample Surveys", 
Survey Methodology, 18, No 2, 225-239. 
10. Kuczmarski, R. J., Flegal, K. M., Campbell, S. M. and 
Johnson, C+ L. (1994), "Increasing Prevalence of 
Overweight Among US Adults: The National Health and 
Examination Surveys, 1960 to 1991," Journal of the 
American Medical Association, 272 No. 3,205-211. 

11. Malec, D., Sedransk, J. and Tompkins, L. (1993), 
"Bayesian Predictive Inference for Small Areas for Binary 
Variables in the National Health Interview Survey," In Case 
Studies in Bayesian Statistics, editors: Gatsonis, C., Hodges, 
J. S., Kass, R. E. and Singpurwalla, N. D., Springer-Verlag, 
New York, pp. 377-389. 
12. Mohadjer, L., Montaquila, J., Waksberg, J., Bell, B., 
James, P., Flores-Cervantes, I. and Montes, M. (1996), 
"National Health and Nutrition Examination Survey III: 
Weighting and Estimation Methodology," Westat Inc., 
Rockville, MD. 
13. SAS IML Software: Usage and Reference Manual 
(1995), Ver 6, SAS Institute, Cary, N.C. 
14. Scott, A.J. (1977) "On the Problem of Randomization in 
Survey Sampling", Sankhya, 39, Series C, Pt.1, 1-9. 
15+ Troiano, R. P., Frongillo, E. A. Jr., Sobal, J. and Levitsky, 
D.A. (1996) "The relationship between body weight and 
mortality: a quantitative analysis combining information from 
existing studies, International Journal of Obesity, 20, 63-75. 
16. U.S. Department of Health and Human Services (1989), 
"The Area Resource File (ARF) System", ODAM Report No. 
7-89. 

P e r c e n t  
O v e r w g t .  

To -t 

,ol 
J 

30 -I 
I ' ' ' 

2 0 - 2 4  

' I . . . .  I . . . .  I . . . .  

2 5 - 2 9  3 0 3 4  3 5 - 3 9  40,  

~ n  nd M del B d E tim te of O v e r w e i g h t  F igure  1. D e s  a o - ase  s a s 
P e r c e n t a g e  for lack ( n o n - H i s p a n i c )  F e m a l e s  using N H A N E S  ill 

<> <> <> Model -Based I 
* * *  Design-Based I 

I ' ' ' ' I ' ' ' ' I ' ' ' ' I . . . .  I . . . .  I . . . .  I . . . .  I ' ' ' ' 

4 0 - 4 4  4 6 - 4 9  5 0 - 5 4  5 6 - 6 9  6 0 - 6 4  6 5 - 8 9  7 0 - 7 4  7 5 - 7 9  > ( 

A g e  C a t e g o r y  

\ 

330 



Figure 2 Proportion Overweight 
1 adults 

. ; . . . . , . ,  . : . . . . . . . .v.v.... .  • ......................v.v..... 

. " : "  

~ ......... ii: . 
• ~~.-'.; ~~,:.,,'~ ~ ~i.'.'. ~ 

if'If 

Figure Adult Overweight Prevalence Coefficient of Variation vs. 
3Square Root of State Sample Size for NHANES III 
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