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ABSTRACT: In agricultural economic policy anal- 
yses, data of interest such as long-run averages of 
soil lost to erosion or chemicals leached to ground- 
water are not available due to high monitoring costs. 
Hence, computer simulation models are used to de- 
scribe the corresponding physical processes of soil 
erosion and chemical movement in soils. These mod- 
els are site-specific, as they depend on topography, 
soil properties, weather, management practices, etc. 
It is impractical to run a simulation model for all 
sites in a region of interest because input informa- 
tion is not available and computing resources are not 
adequate. Instead, the model is run for a subsam- 
ple of the points drawn in the National Resources 
Inventory (NRI), a stratified two-stage area sample 
of the nonfederal lands in the United States. Re- 
searchers then typically fit a regression "metamodel" 
to the results of this computer simulation experi- 
ment, and finally the fitted metamodel is used on 
all NRI points to obtain estimates at regional levels 
(e.g., hydrologic regions, counties, etc.) We formu- 
late this metamodel estimation problem in terms of 
two-phase regression estimation and develop a vari- 
ance estimation strategy. 

1 Introduction 

1.1 Policy analysis 

Agricultural activity has significant impacts on the 
environment. Control of nonpoint pollution from 
agricultural practices and source reduction of agri- 
cultural pollutants for water quality and ecosys- 
tem protection are increasingly debated policy goals 
(e.g., US EPA, 1992). These debates need to draw 
from informed evaluation of the environmental im- 
pact of different agricultural policies, so that policy 
makers can base their decisions on objective and re- 
liable information. 

Ideally, environmental monitoring would provide 
policy makers with the needed information. Eval- 

uation of sustainable agricultural practices would, 
however, require environmental monitoring of such 
scale as to make it practically impossible. Suppose 
that environmental impact is quantified via some re- 
sponse (that may not be observable) such as chem- 
ical leaching into the groundwater, soil erosion, or 
nitrogen runoff. Denote the true value of the re- 
sponse under a given policy at site k E U by (I)k, 
where U is some region of interest, such as a state. 
Monitoring of the response would need to be carried 
out at sites representative of the many possible corn- 
binations of inputs that affect the response. Inputs 
may be of at least two different types: (1) factors 
that are subject to change via policy (such as tillage 
practices, type and amount of chemical used, crops 
and crop rotations), and (2) covariates that, while 
not susceptible to policy, still have an effect on the 
response (soil characteristics, weather, and topogra- 
phy). We denote by wok and z0k, respectively, the 
vector of factors and the vector of covariates. Fur- 
ther, we can partition Z0k into V0k and u0k, where 
V0k represents a vector of observed inputs at site k 
and u0k represents a vector of unobserved but im- 
puted inputs (such as weather, which is recorded at 
a nearby monitoring station but not at every site k). 

1.2 Computer simulation models  

Because environmental monitoring is very expen- 
sive and time consuming, policy makers interested 
in evaluating potential environmental impacts from 
the application of different agricultural policies are 
increasingly relying on data generated by mathe- 
matical simulation models, such as those developed 
by the US Environmental Protection Agency (EPA) 
and the US Department of Agriculture (USDA). Ex- 
amples of simulation models for physical processes 
include the Water Quality and Erosion Productivity 
Impact Calculator (EPIC-WQ) model, (Williams et 
al., 1988), the Risk of Unsaturated/Saturated Trans- 
port and Transformation of Chemical Concentra- 
tions (RUSTIC) system, (Dean et hi., 1989), and the 
Surface Transport and Agricultural Runoff of Pesti- 
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cides fo r  Exposure As se s smen t  (STREAM) model 
(Donigian et al., 1986). For a site k with input vari- 
ables I , , I x0k -- {Wok , v0k , u0k), these physical process 
models produce an estimated response denoted by 
~Pk. 

While much more economical than monitoring, 
these simulation models are practical for site-specific 
problems only (Evans and Myers, 1990; Carriquiry 
et al., 1996). To use these field-scale models for re- 
gional assessments requires that the simulations be 
run for the area-wide distribution of soils, crop rota- 
tions, chemicals in use, and management practices. 
For example, almost 75,000 runs would be needed to 
cover a study area consisting of the Corn Belt and 
the Great Lakes states of the United States (Bouza- 
her et al., 1993). Furthermore, to compare different 
policies with regard to their potential environmen- 
tal impacts, the simulation runs would need to be 
repeated for all combinations of factors used in the 
baseline evaluation. 

1.3 Computer  simulation experi- 
ments 

Instead of running the process models for every 
possible site in the region of interest, a better ap- 
proach is to design a computer simulation experi- 
ment (Bouzaher et al., 1993; Lakshminarayan et al., 
1995; Carriquiry et al., 1996). A computer simula- 
tion experiment in this context consists of running 
the simulation model at a probability sample s C U 
of sites in the region of interest, in which every site 
has a known, positive probability of inclusion in the 
sample (e.g., S~irndal et al., 1992). Under proba- 
bility sampling, unbiased estimators of population 
parameters such as means and totals can be formed 
without appealing to any assumed statistical model. 

In the United States, examples of large-scale prob- 
ability samples which may be of interest in policy 
evaluations include the National Resources Inven- 
tory (NRI), conducted by the Natural Resources 
Conservation Service of the USDA; the Forest In- 
ventory and Analysis program (FIA) of the For- 
est Service of the USDA; agricultural chemical use 
and other surveys conducted by the National Agri- 
cultural Statistics Services of USDA; and the En- 
vironmental Monitoring and Assessment Program 
(EMAP) administered by the US Environmental 
Protection Agency. 

We focus on the NRI in this paper because of its 
usefulness as input to process models such as EPIC- 
WQ, which forms the basis of our Monte Carlo ex- 
periment in section 3. The NRI is a stratified two- 
stage area sample used to collect detailed informa- 

tion on the status, condition, and trends of natu- 
ral resources on the nonfederal lands in the United 
States. NRI data items, collected by a combina- 
tion of remote sensing and ground observation, in- 
clude soil characteristics, land use, agricultural prac- 
tices, erosion measures, and so on. This survey, the 
largest of its kind, is based on approximately 300,000 
primary sampling units (PSUs) and about 800,000 
points, and is updated every five years (Goebel and 
Baker, 1982). 

In the first stage of sampling, the region of in- 
terest, U, is divided into PSUs U/ (i = 1 , . . . ,  NI), 
which consist of tracts of land of varying sizes, but 
are usually 160-acre square quarter sections. The 
PSUs are further grouped into strata UIh (h = 
1, . . .  ,H),  which are sub-county-level geographic 
subdivisions. A simple random sample sih of size 
nlh is drawn from the Nzh PSUs in stratum h. The 
first- and second-order inclusion probabilities are de- 
noted rrii and 7rii j for i, j E Ux. 

In the second stage, a sample of ni points, si, 
is selected within PSU Ui (i E SZh, h = 1 , . . . , H )  
according to a restricted randomization procedure 
with first- and second-order inclusion probabilities 
7rkli, and 7rkzli for k , l  E Ui. The point sample from 
stratum h is Sh = (-Jie8~h Si and the final point sample 
is s - UhH=lsh, where n8 is the size of s. Combining 
the first-order inclusion probabilities over the two 
stages give rk - -  7 r l i T r k l i ,  for k E Ui. 

1.4 M e t a m o d e l s  

For environmental impact assessment at the regional 
level, the use of complex process simulation models 
such as EPIC-WQ, RUSTIC, or STREAM presents 
at least two major drawbacks: (1) The models pro- 
duce site-specific, deterministic point forecasts, and 
(2) Computations at each site require a significant 
amount of time and effort, and furthermore, need to 
be repeated for each different policy scenario under 
consideration. Both drawbacks can be simultane- 
ously addressed by replacing the complex simulation 
model with a simpler metamodel. 

A metamodel is a predictive model explaining the 
input-output relationship of the computer simula- 
tion model (Kleijnen, 1987; Bouzaher et al., 1993). 
These metamodels are used to "fill in the gaps"; 
that is, to predict a response value at those sites 
where the process model was not run. Also, "what 
if?" questions asked by policy makers can be eas- 
ily and rapidly answered using the metamodels, by 
predicting the value of the response at any location 
when policy scenarios change. A partial list of ap- 
plications of metamodels estimated from simulated 
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data  includes Taub and Burns (1991), Dillaha and 
Gale (1992), Bernardo et al. (1993), Bouzaher et al. 
(1993), and Lakshminarayan et al. (1995). 

2 Analysis 

2.1 Two-phase sampling 

A computer simulation experiment consists of runs 
of the computer simulation model at specified points 
k E U with inputs x0k. If auxiliary information X0k 
is available from a probability sample s such as the 
NRI, then it is natural  to choose k E s. However, 
runs of the computer simulation model are expen- 
sive, so it is often impractical to run the model for 
all k E s. Instead, the model is run for a subsam- 
ple r C s, drawn according to a probability sam- 
pling design with first-order inclusion probabilities 
7rkls = P[k E r ls] and second-order inclusion prob- 
abilities rkll, = P[k E r, l E r ls]. 

It is worth noting that  the design for the sample 
r may have s t ra ta  and PSUs different from those 
of the original sample. In particular, the points in 
the original sample may be restratified on the basis 
of the auxiliary vector; e.g., into cropland and non- 
cropland points. We will refer to the original s trata 
as des ign  s t ra ta .  

2.2 Metamodel estimation 

We describe the case of a linear metamodel.  Let 
x~ - ( u ~ ,  v~,, w~) denote the vector of inputs to the 
metamodel ,  where uk is a subvector of U0k, vk is 
a subvector of v0k, and wk is a subvector of wok. 
Denote the output  of the metamodel  by 

f k  - f (xk)  - x~3, 

for fl an unknown vector of parameters. The pre- 
diction errors that  arise from using the metamodel  
in place of the simulation model are ~k  -- f k .  Since 
there is in fact a true model, the metamodel  is al- 
most certainly misspecified, and hence gives biased 
predictions. Nevertheless, we model the prediction 
errors ~k  - f k  as uncorrelated zero-mean random 
variables with variance 0.~ to allow for possible het- 
eroskedasticity in the fit; i.e., a model, ~, that  relates 
~Pk to Xk for all k E U, is specified as 

E ~ [ p k ] -  x ~ ,  Var¢(~k) -- 0.~, Cov~(pk, ~t) -- 0, 

where the functional form of 0.k ~ is known. 
If ~k were observed for all k E U, we could com- 

pute the best linear unbiased estimator (BLUE) of 

x), xk k E Xk~,Ok 
B u -  0.2 key 0.~ 

If ~k were observed for all k E s, we could compute 
the weighted estimate of the BLUE 

Xk x~ xk ~'k 
2 2, Bs - rrk 0.k ~rk 0.k 

and obtain the residuals Eks -- ~k - x ~ B , ,  k E s. 
Since ~k is observed only for k E r C s, compute 

n r  ~ 
XkX~¢ Xk ~ k  

0-2 7rk Trkls k 7rk Trkls0.~ 

and residuals ekr --  ~k  - - x ~ B r  --  ~ k  - ] k ,  k E r. 

2.3 Two-phase regression estimation 

We are interested in O - ~ u  Ok, but as this is un- 
available we work with/9 = ~-~u ~Pk. Through appro- 
priate choice of ~k, /9 may be, for example, a spatial 
average, a domain total, or the proportion of sites in 
the region with values above some threshold. 

Given the fitted metamodel,  we use the two-phase 
regression estimator (e.g., Sgrndal et al., 1992, chap- 
ter 9): 

Or = + 
kEs 7rk kE 7rkTrkls 

- - -  ~ - [ -  ~ -  

7r'k 7r k Tr k l s 

~rk Trkl. 7rk ] 

-"  & + 5 ,  

(B,-Br) 

where 0. is a hypothetical est imator which could be 
computed given ~k, k E s. It follows that  the esti- 
mation error is 

~r - 0  - & - o + a  

Irk kEU 

+ E zrk 7rkTrkls kEs 
+ 5. (1) 

The first term is the phase one error, which would 
be incurred even if the simulation model was run 
for all k E s. The phase one error is unbiased for 
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zero. The second term is the phase two error, in- 
curred because the metamodel is used in place of the 
computer simulation model. The phase two error is 
exactly unbiased for zero, even if  the metamodel is 
completely misspecified. If the metamodel has good 
predictive ability, then the {Ek,} are small and the 
variance of the phase two error is small. 

The remaining term, ([, is the product of two fac- 
tors, one being an unbiased estimator of zero, the 
other being an approximately unbiased estimator of 
zero. Hence (i is close to zero with high probability 
and is of smaller order than 0., and so 

even under metamodel misspecification, an impor- 
tant consideration when results from environmental 
studies may be controversial. 

2.4 Variance approximation 

Ignoring 6 in (1), the approximate variance of/}r is 
given by 

A V ( ~ r ) -  Var (E [~, I s ] ) +  E [Var (~, Is)] - V1 + V2 

where V1 is the variance due to the first phase 
sampling and V2 is due to the second phase sam- 
pling. Let ti - ~'~k~V~ Tk, A l i j  -- 7rlij - -  7 r i i T r i j  and 
Aklli - -  r k l l i -  rrkli7rll i. Then 

H 

h 7rli h=l 

where 

and 

Also, 

Y l h  - -  E ~ u , h  A I i j  - ~  

W l t i  - -  E E u i A k l l i  ~ ~  

ti tj 

?rli 7rIj 

½ - E  

~Pk ~t 
7rkli 7rill 

where Aklls -- 7rklls -- 7rklsTrlls. 

E~_, E~,_ ] 
7r'k 7r k l s 7r l Tr l l s 

2.5 Variance es t imat ion 

E s t i m a t i o n  of  V1 

If ~Ok was observed for k 6 s, a possible estimator of 
V1 (e.g., S~irndal et al., 1992, p. 139) would be 

H 

¢1.- 
h=l 

where 

n l h  ( tiTr thor) 2 
tYlh* -- E ,  - -  - - -  

n l h  --  1 , h ~rli n l h  

with {i~ - E , ,~k /~ rk l i  and th~ -- E , , h f i " / T r u "  

Expanding the square in the expression for I)lh,, 

i n ,  - -  
n l h  --  1 ",h "i ~k ~t 

n l h  ?rk 7rl 

When simple random sampling is used in the first 
stage, 

] H Vlh 
E f/l,  - E 1 -  ~ I h / N , h  + VlSSU 

h=l 

and V1. would thus be a conservative estimator of 
V1. Since we only observe ~k for k 6 r we cannot 
use 111., but one suggested approach is to use an 

estimator tYlr such that E [l>lr Is] - I>1.. 
t _  , ,8  

If rrktls > 0 for all k&l 6 s, one estimator of 
V1, based on familiar Horvitz-Thompson estimation 
principles, is 

where 

rl , H T  ,h - -  

H 
- 

h=l 

E 1 ~k ~t n I h  E E  
n l h  - -  1 ~,h 

- 1 

n i  h h 7rktls 7rk 7rl 

with ri  - r (q si  and rh - -  U i e s t h  r i .  Clearly 

Despite the fact that ~rl,HT has the desired ex- 
pected value conditioned upon the first-phase sam- 
ple s, it can result in negative estimates, especially 
when H is large in combination with small sample 
sizes in the two stages of the first phase, as is the case 
for the 1992 NRI. Simulation studies indicate that 
the problem may be severe even after adding 1>2, the 
estimator of V2, in order to obtain an estimate of the 
total variance V1 + V2. For these circumstances, we 
suggest an alternative estimator of V1 which borrows 
strength from the regression estimators of the PSU 
and stratum totals. Let 

7rli i 7r k 7rk 7rkl s 
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and 

7rli 
$1h  

where ]k -- x~B,.. The alternative estimator is 

H 

h=l 

where 

ir /rl'reg'h n l h  -- 1 7rli n l h  
8Ih 

Ak___~/Is ekr ezr V" V 'V"  

1 Aktl8 ] 
+ - - E E ~ h  . . . .  e~: e,r . 

rtlh 7rklls 7rk Trkls 7rlrrlls 

A related approach which does not rely on regression 
estimation is given in Kott (1990). 

To justify ?l,reg, note  that E [ih~ Is] 2 

• while 
Lrrii Is (Trill 

E [ i ~ l s ]  " i ~ r + V a r ( i h ~ l S )  

and 

Since 

[E 
and 

- ~,r and 

I s] 
mklls ekr Elf I ] 
- - -  " Var (ih, Is) 

E r h  7rklls 7rk Trkj s 7rlTrl[ s 

- - -  s " Var Is , 
E E r ,  7rktls lrk~kJ., 7rtrrtls \Tr l i  

it follows that  

Under conditions for which a regression estimator 
outperforms the usual Horvitz-Thompson estimator 

^ 

in terms of lower variability, we expect Vl,~eg to per- 
form well; see section 3. 

Remark: The variance estimators above are based 
on the assumption that nlh > 1 for all h. When the 
design is such that  nlh -- 1 for one or more h, the 
technique of collapsed strata may be used. In doing 
so, a positive bias is induced. In applications where 
the stratification is imposed mainly because of ad- 
ministrative reasons, this problem is of less concern 
than when a strong stratification effect is present. 

Estimation of V2 

An approximately unbiased estimator of V2, the 
component of the variance due to the second phase 
of randomization, is given by 

A m____J.~ ek~ et~ 

3 M o n t e  Carlo  resu l t s  

To assess the performance of the two-phase regres- 
sion estimator and the associated variance estima- 
tors in the setting of a realistic computer simula- 
tion experiment, we selected as the first-phase sam- 
ple s the set of all NRI points in Missouri which 
were classified as cropland in 1992. The first- 
phase sample remained fixed throughout this Monte 
Carlo experiment. The sample s was restratified 
on the basis of groups of Major Land Resource Ar- 
eas (MLRAs), which are geographical units defined 
on the basis of soil and land cover characteristics. 
The values ~'k were simulated from a general lin- 
ear model which approximates the erosion output 
of EPIC-WQ in tons/hectare/year (Lakshminarayan 
and Babcock, 1996); this single simulated realization 
of {~Pk } remained fixed in the experiment. An addi- 
tional study variable, ~klk~{Charito n County}, was 
used to estimate the total for a particular small do- 
main. 

For each replication i - 1 , . . .  , 1000 of the experi- 
ment, the second-phase sample r was constructed by 
independently drawing 10% simple random samples 
without replacement from each MLRA group. A lin- 
ear metamodel was fitted via weighted least squares 
using a subset of the available regressors. Predictors 
for each study variable were then constructed. 

The two-phase regression estimator 0r and the 
variance estimators VI,HT, Vl,reg, ~'2, VHT = 
~/rl,HT + V2 and Ureg - ~/rl,reg + V2 were calcu- 
lated for each replication and each study variable. 
Table 1 reports simulation biases and root mean 
squared errors (RMSEs) for the above estimators, 

computed relative to the estimands E [0. J sl ,  VI., 
L J 

fzl,, VarMc(0, I s) " Var(0, Is), V1, + VarMc(0, Is) 
and 1)'1, + VarMc(0r Is), respectively, where "MC" 
stands for "Monte Carlo." Thus, these simulation 
results are all conditional on s. Table 1 also reports 
the percentage of negative variance estimates. 

For both study variables, the regression-type vari- 
ance estimators dominate the Horvitz-Thompson 
variance estimators in terms of RMSE and percent- 
age of negative estimates. 
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Estimator 
Total, 0~ 

/'I , H T  
^ 

l , r e g  
^ 

V2 
? H T  

"Domain  
Total, 0r 

/rl , H T 

/rl , r e g 
^ 

V2 

? r  e g 

Bias 
-2.0e+3 
-2.3e+7 
4.1e+6 

1.0e+7 
-1.3e+7 
1.4e+7 

-3.7e+1 

-4.0e+6 

-8.7e+5 
-7.1e+5 
-4.7e+6 

-1.6e+6 

RMSE % < 0 

5.5e+4 - -  
6.8e+8 1.6 
2.2e+8 0.0 

3.9e+8 0.0 
8.3e+8 0.0 
5.3e+8 0.0 

8.3e+3 - -  

4.4e+7 25.8 
1.8e+7 8.7 
4.4e+7 0.0 
5.9e+7 4.5 

4.3e+7 0.0 

Table 1: Biases and root mean squared errors (RM- 
SEs) for two-phase regression estimation of the re- 
gional total, a smMl domain total, and the associated 
variances. Also reported is the percentage of nega- 
tive variance estimates. Values are based on 1000 
simulated draws of a stratified simple random sam- 
ple, r, from Missouri cropland points, s, in the 1992 
NRI  sample. 
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