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Abstract :  Imputat ion is a popular method of han- 
dling item nonresponse. With common methods of 
imputation, though, the usual variance formulae un- 
derstate the variance of estimates. This paper pro- 
poses that  items be imputed from distributions more 
diffuse than those of the real data, thereby compen- 
sating for the underestimation of variance by the 
usual formulae. The impact on covariances is con- 
sidered in the design of the method. The method 
is intended for use by data analysts applying tech- 
niques based on first and second moments of means 
only. 

1. I n t r o d u c t i o n  

Most surveys have item nonresponse no mat te r  
how well planned they may be. These missing data  
become a problem when it comes time to analyze 
the dataset. There are three main methods for deal- 
ing with item-level missing data: (i) delete complete 
cases whenever there are missing data  for any vari- 
able being analyzed, (ii) delete cases but only as nec- 
essary for a particular family of estimates, and (iii) 
impute ('T-tll in values for") the missing data. Meth- 
ods (i) and (ii) are still widely used in the social and 
behavioral sciences. Method (iii), though, has been 
demonstrated to be superior in previous research 
(Chan and Dunn, 1972; Beale and Little, 1975; Kim 
and Curry, 1977; Little, 1988; and Bello, 1995). 

The problems with methods (i) and (ii) are not 
hard to ascertain. Method (i) may result in a sub- 
stantial loss of cases, especially when many variables 
a re  being analyzed. The cases retained, moreover, 
may not be representative of those deleted, resulting 
in a bias. Method (ii) has the problems of method (i) 
but to a lesser degree. It has the serious additional 
problem of inconsistencies in the values of estimates. 
For instance, if x is being analyzed in conjunction 
with y, then the estimated mean of x will be based 
on cases where neither x nor y is missing. If, in an- 
other analysis, x is analyzed in conjunction with z 
instead, the estimated mean of x will in general be 
based on different cases so we get two different es- 
t imates of the same quantity. These inconsistencies 
can be very conflming to careful readers, resulting in 
a loss of confidence in the research. 

Method (iii), called the imputation technique, 
solves the problems alluded to above. After imputa- 

tion, one can use complete data methods of analysis 
without any need to discard cases. Another advan- 
tage is that the data can be imputed '~n house," 
thus bringing the additional knowledge of the data 
collection people to bear on the missing data prob- 
lem. This is not to say that imputation does not 
have its own drawbacks. Chief among these is the 
underestimation of standard errors this happens 
essentially because the amount of "real" data is less 
than it appears to be. Although the reason is less 
obvious, covariance estimates undergo shrinkage to- 
ward zero (i. e., attenuation). These matters will be 
treated in more detail subsequently. 

For general discussion of imputation, we recom- 
mend Kalton (1983), Kalton and Kasprzyk (1986), 
and Rubin (1987). 

The outline of this paper is as follows: Section 1 
is this introduction. In Section 2 we discuss the one- 
variable case. The section consists of a subsection on 
the problems with the traditional approach followed 
by a subsection on the alternative approach. Sec- 
tion 3 expands the coverage to the many-variable 
case and, in particular, to the difficult problem of 
covariances. In the last section we make some final 
remarks. 

2. The  One Variable  Case  

2.1 P r o b l e m s  w i t h  the  Tradi t ional  Ap- 
proach 

We begin by assuming the sample has been di- 
vided into groups of observations called imputation 
classes (Kalton, 1983, p. 67). Within each imputa- 
tion class, we assume for now that  the responding 
units for item y are a random subsample of all sam- 
pled units. Let the sample size in the imputation 
class be n with r responding and m = n -  r missing. 
We can number the units so tha t  units i = 1, 2 , . . . ,  r 
responded to item y and units i - r + 1 , . . . ,  n did 
not. The best estimate (in many respects) of the 
mean of y within the imputation class is 

_ 1 r 
_ .. Z y i  Y~ r 

i - - 1  

and the best estimate of the variance of the mean is 

2 _ _  1 r 

- 1 1  
i - - 1  
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For simplicity we are ignoring the sample weights in 
this discussion, but they could be incorporated. A 
finite population correction could also be included. 

It is tempting to impute the missing values by 
yr- In fact, this choice has good 'ffirst order" prop- 

n 
erties in that  ~ Y~i=l yi = fir. On the other hand, 

n 

1 2 ( y  i _~, . )2  
n ( n -  1) i--1 

1 r 

= n ( n  - 11  - 
iX ' - - - - -  

_ r ( r - 1 )  2 

-- n(n _ l)  S~,  

so the variance of the mean will be underestimated. 
This perhaps should not be surprising in that  we 
have chosen to impute the value that  minimizes the 
variance expression. 

To combat the problem of underestimation of 
variances, imputation methods have been proposed 
that  at tempt to impute values drawn from the dis- 
tribution of the observed y's. Although an improve- 
ment on mean imputation, this approach is also 
doomed to failure when it comes to estimation of 
variances as we shall see. If the imputed yr+ 1 , . . . ,  y ,  
are distributed like the observed y l , . . .  ,y r, then 

1 y ~ -  E_ E_ E 
n---V i=r+l Yi -- Yr so that  ~ = yr where = denotes 

1 n "equal in expected value" and ~ - ~ ~-~i=1 yi is the 
overall sample mean (in the imputation class). So, 
like mean imputation, the '~irst order" properties of 
these methods are good. Furthermore, 

r n 

1 2 ( y  i_~r)2__E 1 2 ( y  i _ ~ ) 2  
r - 1  n - 1  " 

i = 1  i = 1  

The variance of the mean is estimated by 

n 

n ( n - 1)x-'iL11(Y = 
~)2 

E 1 n - l ~ (  
-- n ( n - 1 )  r - 1  Y i - ~ r )  2 

i = 1  

_ r 2 
- -  r/, 8 ~ .  

The variance of the mean is still underestimated al- 
though not so badly as with mean imputation. The 
problem is that the variance formulae are designed 
for n "real" observations, not r < n observations 
and m = n -  r imputed values. 

What, then, can be done? One promising ap- 
proach is to alter the variance formula used (Rao 
and Shao, 1992; S/irndal, 1992; Fay, 1996b; and Rao, 

1996) but impute only once. Another idea, multiple 
imputation, makes use of several imputations to try 
to capture the missing variance component in vari- 
ance estimates when missing data are present (Ru- 
bin, 1978, 1996; and Fay, 19921. Fay (19963)and 
Kaufinan (19961 investigate methods that  are mix- 
tures of these two approaches. The challenge is to 
find a method that  is reasonably appealing to social 
science analysts who are inclined to delete cases to 
avoid the complications caused by missing data. 

We consider in this paper single (as opposed 
to multiple) imputation methods that  are intended 
for use with the standard variance formulae. The 
imputed values will be more dispersed that  the ob- 
served values. Clearly this method will not work 
for estimating all features of the distribution; for 
example, it is not suited for estimating percentiles 
or histograms. But many statistical procedures de- 
pend on only the first two moments of the distribu- 
tion (e.g. estimating means, totals, and functions 
thereof), and it is for these procedures the imputa- 
tion method is intended. 

2 . 2  T h e  A l t e r n a t i v e  A p p r o a c h  

Let us try to find imputed values yr+l,. . .  ,Yn 
so that  

- y% (2.1) 

and 
n 

n ( n -  11 E ( Y i - f l ) 2 - -  
i - -1  

r 

r ( r -  1)/~1 ( y i - ~ ) 2 . . =  (2.2) 

Let 

and 

r 

r 
i --1 

D2__ 1_ 
m _ 

i-----r+l 

Then D 2 and D 2 are respectively the average 
squared deviation of the observed and imputed val- 
ues about their (common) mean. Rewriting (2.2) in 
terms of D 2 and D 2,  we have 

1 ( r D 2 + m D 2 ) _  1 
n ( n -  1-------~ r -  1D2" (2.3) 

Simplifying (2.3), we get 

D 2 _ n + r - 1  
r -  1 D2" (2"4/ 

There are many solutions to (2.1) and (2.4), but, if 
m - n -  r is even, there is one particularly simple 
solution: 

/ + 1 y i -- ~=l= %In r - -  

r - - 1  V 
Dr f o r i - - r + l , . . . , n ,  (2.5) 
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where m / 2  imputed values have the + sign and m / 2  
have the - sign. Note that  if m is small so that  
r ~ n then (2.5) reduces to yi ~ ~ + v ~ D ~  for i = 
r + 1 , . . . ,  n; that  is, the distance of an imputed value 
from the mean is about v ~  times the root mean 
squared deviation of the observed values. If m 
r ~ n / 2 ,  representing a large amount of imputation, 
we have yi ~ y 4- x/~D~ for i = r + 1 , . . . ,  n; in this 
case the distance of an imputed value from the mean 
is about V~ times the root mean squared deviation 
of the observed values. Certainly the imputed values 
are much more dispersed than the observed values. 

A result like (2.5), but with a finite population 
correction, was obtained by Lanke (1983) and dis- 
cussed by Sedransk (1985). 

It ought to be mentioned that  these imputed 
values will not generally satisfy the edit checks that  
the observed values had to satisfy, nor even neces- 
sarily be feasible values. But if the signs of the de- 
viations from the mean of the imputed values are 
assigned randomly (or according to an appropriate 
pattern), the chance an estimated mean over a rea- 
sonably large domain will be outside the variables's 
range will be very small. 

3.  T h e  M a n y  V a r i a b l e  C a s e  

Of course, in major surveys we almost always 
have many variables available to use as covariates 
but themselves having missing values. Let us begin 
with the simplest such case. 

3.1 T w o  Var iab les :  S a m e  U n i t s  w i t h  Miss-  
ing  Values  

We assume again the sample has been divided 
into imputation classes. Within the imputation 
class, suppose the responding units for items x and 
y are a random subsample of all sampled units. We 
further suppose in this subsection that  x and y are 
observed for the same units and missing for the same 
units. Let the sample size in the imputation class 
be n with r units responding to the two items and 
m -- n -  r missing the two items. We number the 
units so that  units i - 1, 2 , . . . ,  r responded to items 
x and y whereas units i - r + 1 , . . . ,  n did not. 

We seek to impute so that  the means of x and y 
1 r within the imputation class are ~r - 7 ~-~i=1 xi and 

-- T" 
y~ = ! Y~i=l yi. We also want r 

2 
8 ~  

__ 1 n 

- n ( n  - 1) ( x i  - .~)2 
"_.. 

T" 

__ __ 1 Z ( x i -  ;~)2 and 
r ( r -  1) i=l 

n 
2 _ _  1 ~ ( Y i  _ _ ~ ) 2  

S O = n ( n _ l )  i= 1 

r 

_ _ 1 Z ( y  i _~)2.  
r ( r -  1) i=1 

Lastly, we would like to preserve the correlation of 
the means: 

1 ElL1 (x i  -- ffc)(yi -- ~1) 
P~'v -- n ( n -  1) s~s~ 

1 ElLa (Xi -- ~c)(yi -- if) 
- -  ° 

r ( r -  1) s~s~ 

Let 

1 
D2,~ = _ Z ( x i  _ :~)2, 

r 
i=1  

D2 _1 ~ (  v,r - r y i - 9 )  2, and 
i=1  

1 
_- 

r 
i--1 

We concentrate first on the case m -- 4, that  is, 
four pairs of missing values. Let &j - x~+j - • and 
~j = y~+j - ff for j - 1, 2, 3, 4 denote the differences 
of the missing values from the appropriate mean. 
Then, by the argument used to get (2.4), we have 

Yl "+" Y2 -[- 93  -~" 94 - -  0,  

= 4 +r-lr-1 
+ + + _ 4 n  + r - 1 

r -  1 Dy,~, and 

~1~1  + ~ 2 ~ 2  
n + r - 1  

-~" x3Y3  "~- x4Y4  : 4 C x  y r .  
r - 1  ' '  

To solve, let's t ry the trigonometric substitutions 

&l = - x 3  - 1 2 n + r _ l r - l D x , r s i n 0 ,  

r 

2 n + r -  1 
X2 - - - - - X 4  - -  r - 1  Dx~costg, 

~)1 = - - ~ ) 3  - -  1 2  n +r- l r  - 1Du,r cos 0, 

/ 

and 

- ~ / 2  n + r - 1 
92 ~ y 4  r - 1 Dy, r ~fin O. 

One can verify that  all equations are satisfied pro- 
vided that  

Dx,,.Du,r (sin0 cos0 + cos0 sin 0) 

= Dx, , .Dy, , . f fm(8 + 0 )  

--" C X , ~ t ,  r • 
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S o  

+ 0 = arcsin Dx,rDy,~ 

It is easy to check tha t  the argument  of the arcsin 
function is at  most 1 in absolute value so ~ + 0  is well 
defined. So long as the constraint on their sum is 
satisfied, 8 and 0 may take on a range of values, each 
corresponding to a solution to the original equations. 

Now let 's tu rn  to the harder case (because it is 
less symmetric): m - 3. The equations for this case 
are 

+ g + = 

;~ lYl  "~" x 2 Y 2  "4- &a~a - 

01 

01 

3 n + r - 1  2 
r - 1 D=,~, 

3 n + r -  1 D2 and 
r - 1 y,r 

n + r - - 1  
3 C~y~.  

r - 1  ' '  

A particular solution, obtained through the use of 
substitutions and a careful examination of the solu- 
tion to certain quadratic equations, is given by 

~)1 - -  

Y3 - -  

I n + r - 1  
- ~ _  1) D~,r, 

2 n + r -  1 
r -  1 Dx,r~ 

- 

/ 3 ( n  + r - 1 )  l) C2 ) 
2 2 + V  1 Dy,~, 

Dx,~Dy,r 

~ / 2 n + r - 1  (Cx ' y '~ )  and 
r -  1 D~,~ ' 

- 9 1  - 92. 

The cases m > 4 are easier and can be handled 
in a variety of ways. For example, one way to t reat  
m - 5, al though probably not the best way, is to set 
x5 - ~)5 = 0 and then apply the solution for m = 4. 

For m -- 1 and m - 2, no exact solutions can 
be obtained. If the correlation between ~ and ~ is 
important ,  we recommend dealing with m = 1 or 
m -- 2 by making a random choice among the solu- 
tions for m - 3 or m = 4. 

3.2 Two Variables: O n l y  O n e  V a r i a b l e  
Missing 

Within each imputa t ion class, suppose now tha t  
i tem x is observed for all n units. I tem y, on the 

other hand, is missing for m >_ 1 units and observed 
for the other r - n -  m units. We assume the miss- 
ing y's are missing at random but  not necessarily 
missing completely at random; tha t  is, the missing- 
ness may depend on the observed x's and y's. The 
units are numbered so tha t  units i -- 1, 2 , . . . ,  r re- 
sponded to i tem y whereas units i - r + 1 , . . . ,  n did 
not. 

This situation introduces an impor tant  new fea- 
ture: It is no longer appropriate  to assume tha t  ~r 
is the "best" estimate of the populat ion mean of the 
y's. We can do bet ter  by making use of the x 's  cor- 
responding to the missing y's. 

Consider 

Yi ei = - - ,  i -  1 , . . . ,  n. 
Xi 

We shall explore the assumption tha t  the ei are a 
random sample, independent of the x's, within the 
imputat ion class. This assumption is reasonable in 
many circumstances and the reasoning can be ex- 
tended to other situations. 

We can apply the results of Subsection 2.2 to 
impute the "missing" ei (i - r + 1 , . . . ,  n) to satisfy: 

e - -  gr =-- -- el ,  a n d  
r 

i - 1  

2 __ s 2 = 1 ~ 1  ( se ~ -- r(r  - 1 )  e i -~ . )2 .  
..~. 

From the imputed el, we get imputed yi by yi - xiei. 

3.3 More General Situations 

We have discussed but  a small subset of the mul- 
t i tude of missing data  situations tha t  arise in prac- 
tice. In this subsection we shall just  briefly touch 
upon three aspects needing more serious investiga- 
tion. 

1. We have only considered imputing one or two 
variables, but  there will almost always be more 
than  that ,  often hundreds. If there are k vari- 
ables to be imputed,  the number  of pairwise cor- 
relations to consider is (~) - k ( k - 1 ) / 2 .  Clearly 
we will reach a point where the equations for the 
correlations cannot be solved exactly. At least 
two ways of t reat ing this problem come to mind. 

(a) The variables can be divided into blocks 
of variables thought  to be closely related. 
We can then t ry  to control only for the 
correlations between variables within the 
same block. The presumption is tha t  this 
will account for most  of the correlation. 
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(b) As an alternative to trying to control cer- 
tain correlations exactly, we might only 
seek to control them on average by ran- 
domizing among solutions to the equations 
for the correlations. A related idea would 
be to seek approximate solutions that min- 
imize the distance (based on some distance 
function) to the solutions of the individual 
equations. 

2. Even for two variables, we have only considered 
the two simplest patterns of missingness for the 
data: either only one of two variables has miss- 
ing values, or the two variables have missing 
values for the same units. The hope, of course, 
is that we can solve more general problems by 
an iterative procedure, perhaps first imputing 
values when one variable is missing but not the 
other, then the reverse, and finally when both 
are missing. 

3. We have treated imputation within imputation 
classes, implicitly assuming that the imputation 
will have good properties for means and vari- 
ances and correlations of means across impu- 
tation classes. If the data for each imputation 
class are (at least approximately) independent 
from each other, then the assumption is justi- 
fied. Otherwise, the results presented here can 
be extended, but only if we know what the vari- 
ances and correlations of the means of the ob- 
served values across imputation classes should 
be. 

4. F ina l  C o m m e n t  

Deletion of cases Still seems to be the most com- 
mon way that data analysts in the social and behav- 
ioral sciences cope with item nonresponse. There is 
therefore value in searching for techniques for han- 
dling missing data that are easy to use yet have de- 
sirable statistical properties. 

This paper is just a beginning exploration of an 
approach to imputation that makes use of imputed 
values distributed more diffusely than the observed 
data. The approach is not intended for all statisti- 
cal applications, only those based on the first two 
moments of means. For many problems we hope it 
will develop into a reliable technique not requiring 
multiple imputations or special variance formulae. 
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