
EVALUATION OF PROC IMPUTE AND SCHAFER'S IMPUTATION SOFTWARE

Mingxiu Hu, Sameena Salvucci, Stanley Weng, Synectics, and Michael P. Cohen, NCES
Mingxiu Hu, Synectics for Mgmt Decision Inc., 3030 Clarendon Blvd, Arlington, VA 22201

KEY WORDS: Imputation methods, Missing data,
Software evaluation

I. INTRODUCTION. The problem of missing data
commonly exists in surveys conducted by the National
Center for Education Statistics (NCES). These missing
values not only mean less efficient estimates because of
the reduced size of the data base but also that standard
complete-data methods can not be immediately used to
analyze the data. Moreover, possible biases exist because
the respondents are often systematically different from
the nonrespondents; of particular concern, these biases
are difficult to eliminate since the precise reasons for non-
response are usually not known.

Imputation is one of the most popular ways to reduce
the impact of missing values. A number of imputation
software packages have been developed recently. We
implemented and evaluated two advanced imputation
software products, Proc Impute (PC version 2.0, 1991)
and Schafer's Multiple Imputation Software (version 2.0,
1995), under a PC DOS or Windows environment. The
original version of Proc Impute, created by the American
Institute for Research (AIR), is a SAS procedure run on
a JCL mainframe, but the recent version is a stand-alone
Fortran program run under a DOS environment. It is a
regression-based algorithm and is believed to be more
general and to produce more accurate results than a stan-
dard "hot deck" procedure. This software also allows a
user to generate multiple imputations, but the results may
not be "proper" in the sense of Rubin's definition (Rubin,
1987). On the other hand, Schafer's Multiple Imputation
Software, created by Dr. Schafer of Pennsylvania State
University, is designed for a multiple imputation purpose.
This software consists of three independent parts. The
first part uses a multivariate normal model to perform
imputations for continuous variables; the second part uses
a saturated multinomial model and a constrained loglinear
model to perform imputations for categorical variables;
and the third part uses restricted and unrestricted general
location models to perform imputations for mixed
variables. This paper presents the evaluation of the first
part, and the evaluations of the other two parts are under
way.

Sections II and III of this paper present the detailed
evaluations of Proc Impute and Schafer's Multiple Imp-
utation Software, respectively. Section IV describes a
simulation study which compares the two imputation
algorithms in terms of average imputation error and mean
bias. Some discussions are given in section V.

II. EVALUATION OF PROC IMPUTE. In this
section, we first briefly describes the statistical algorithms
used in this software, and then present our evaluations of
the software in terms of its usability/performance under
a PC 586 environment, its suitability for generating
multiple imputations, and its adaptability to different
NCES surveys.

ALGORITHM. Proc Impute is a regression-based
distributional estimation procedure that is believed to be
more general and to produce more accurate results than a
standard "hot deck" procedure. Basically, this procedure
assumes that relations among variables are constant for
observed cases and missing cases, and considers each
variable on the file in turn as a "target" variable whose
missing values are to be filled in and uses information on
other variables to minimize the error in imputing each
"target" variable. For each "target" variable, regression
analysis is used to find the best combination of predictors.
Once the regression models are constructed and reg-
ression values are computed for all cases (both missing
cases and observed cases), Proc Impute partitions the
range of regression values into subsets. All cases in a
given subset that are missing the target variable then are
imputed with weighted averages of two values drawn
from that regression function value subset and an adjacent
subset with probability proportional to the distribution of
reported values for that variable within these two subsets.
The weighted average value is rounded to an integer if the
integer flag is set for the target variable. The basic
assumption of this algorithm is that within these homo-
geneous subsets, the missing value cases will have the
same target value distribution as the cases with reported
values on the target variable.

After all missing values have been imputed for a case,
the case is written to the output file with all of the missing
values filled in. Missing data flags are also created and set
for each variable with a value of "I" corresponding to
imputed values, "R" for real values, and "A" for skip
missing values.

EVALUATION. Our evaluation is based on runs
conducted on the NCES data set "1993 National Survey
of Postsecondary Faculty" (NSOPF), which contains
about 12,000 cases and 400 variables. The runs were
performed in a Pentium (586) environment--90 MHZ
clock speed, 16 megabytes of memory, and 600 mega-
bytes of hard disk space. We focus on the following six
questions (1)- (6) in our evaluation.

(1) How many runs would it take to impute all vari-

ables in a survey?

287

Proc Impute is a regression-based algorithm. In our
experience, it can effectively incorporate no more than 30
variables into any one regression model. Therefore, any
"large" data set must be partitioned into subsets contain-
ing no more than 30 variables each before being pro-
cessed by Proc Impute.

Given those considerations, how many runs does it
take to impute all variables in a survey? In short, one run
is all that is required to impute all missing values (for all
variables) in any survey. However, in the case of "large"
data sets, one run would consist of the following steps:

(i) First, the analyst must partition the variables into
subsets. Let's use the NSOPF data set as an example. If
the strategy is to merely use "adjacent" variables in the
regression models, then the analyst would partition the
NSOPF data set into about 14 (i.e., 400/30 = 13.3)
subsets. If the strategy is to use key predictor variables
(e.g., sex, race, and region) in every regression model,
then the analyst would divide the NSOPF data set into 15
(i.e., 397/27= 14.7) subsets. Obviously, how much the
regression models are customized determines not only the
number of subsets to be processed by Proc Impute, but
also the amount of time devoted to the overall imputation
process (see question (5) below).

(ii) Second, an ASCII data file must be created for
each subset of variables (i.e., for each regression model).

(iii) The third step involves running Proc Impute on
each data subset. To perform an imputation, a control file
must be constructed. Fortunately, one can specify all of
the regression models in the same control file, and run
Proc Impute on the entire data set as a single batch job.

(iv) The final step in the process is combining the
output (imputed) files into a single file that contains both
the original and the imputed values for all variables, with
flags indicating imputed values.

In one sentence, Proc Impute will impute all missing
values in any data (sub)set that is specified in the control
file in one run (as a batch job), while the amount of pre-
and post-processing of a given data file is dependent upon
the size of the file, the number of variables in the file, the
relationships among the variables, etc.

(2) Can Proc Impute handle all types of variables (i. e.,
continuous, ordinal, and categorical)correctly?

Proc Impute will only process "numerical" data. Any
"character" variables in the data set must be either re-
coded to "numeric" or removed from the data set. Once
the data set holds the proper coding, each variable will
have a continuous, an ordinal, or a categorical (dichoto-
mous or polytomous) distribution. Then Proc Impute can
be used to process all the variables in the data set. It
should be noted that Proc Impute uses a regression-based
algorithm, and assumes that each variable is continuous
with normal residuals and homogeneous variance. It is
very rare for all the variables to satisfy these conditions.

A linear regression that is run on the variables which
violate the distribution or variance assumptions often
yields high probabilities of generating "out-of-range"
predictions. However, in attempts to avoid imputing
"out-of-range" values, Proc Impute uses knowledge about
conditional frequency distributions along with its
regression algorithm when imputing missing values.

Therefore, for continuous, ordinal, or dichotomous
categorical variables, Proc Impute requires no special pre-
or post-processing, and the imputed values for all such
variables are reasonable--reasonable in the sense that the
imputed values both fall within the range of the observed
values and mimic the distributional properties of the
observed values. However, polytomous categorical
variables are potentially troublesome to Proc Impute. For
each polytomous variable, the analyst needs to create an
appropriate number of dummy (0/1) variables, and then
run Proc Impute on the dummy variables. Proc Impute
handles the dummy variables in the same fashion that it
handles dichotomous variables. Since Proc Impute does
not understand that the dummy variables are grouped as
sets of variables, the imputed values may be meaning-
less~; however, since the dummy variables in any set
representing a given polytomous variable are highly
correlated, that should rarely happen. Fewer than four
percent of the imputed values of our "reconstructed"
polytomous variables were bad. In such cases "hot-deck"
method may be appropriate to impute for those bad cases.

(3) How much special processing is required to
handle skip patterns ?

It is very convenient to handle skip patterns with the
most recent version of Proc Impute. An analyst only
needs to set the skip missing values to ".A" for a SAS
data file or "A" for an ASCII data file; then Proc Impute
will know not to impute any value for these missing cases
and output a skip flag "A" for each of them.

(4) How much memory and disk space are needed?
The amount of required disk space is predominantly

a function of the size of your data file and the number of
sets of multiple imputations. It requires about 480 Kb
conventional memory to run Proc Impute. With a 586
Pentium PC (16 Mb of total memory and 636 Kb
conventional memory), we did not experience memory
problems after we removed some programs to generate
488 Kb free conventional memory for Proc Impute.
Considering the rate of technological developments, we
do not foresee future difficulties.

lit may be the case that more than one of the (n-l)
dummy variables, which represent an n-category poly-
tomous variable, will be imputed with the value "1 "--this
would indicate that the original polytomous variable case
assumes multiple categories simultaneously!

288

(5) How fast is it?
For the actual imputation processing, speed is not a

serious issue. For the NSOPF survey, a run with 12,000
cases and 30 variables (one subset) took less than 20
minutes--this translates into a processing time of less than
280 minutes if the entire data set was run as a batch job (a
total of 14 subsets). However, an analyst will devote his/
her major processing time to pre- and post-imputation file
management, such as changing "character" variables to
"numeric" variables and/or removing them, creating
ASCII data files, constructing the control file, partitioning
a large data set into subsets, creating dummy variables for
polytomous variables, recoding skip patterns to ".A",
combining the output (imputed) subsets into one overall
completed file, etc.

(6) Does Proc Impute perform "proper" imputations
in the sense of Rubin? I f not, can Proc Impute be adapted
to perform multiple imputations?

Multiple imputation involves imputing each missing
value multiple times. Hence, in performing a multiple
imputation, one creates multiple files of complete data,
wherein each of the multiple data files has a different set
of imputed values. Once the multiple files have been
constructed, the analyst should replicate all subsequent
analyses by using the information from all of the multiple
files to assess the impact of random variation (of missing
values) on statistical inferences.

Rubin's Proper Multiple Imputation (PMI) criteria are
based on the asymptotic properties of the multiple imput-
ation statistics; hence, the concept of"proper" imputation
is exclusively suitable to multiple imputation approaches.
Since Proc Impute uses a single imputation procedure
based upon a (non-Bayesian) distributional estimation,
Proc Impute cannot meet Rubin's criteria for "proper"
imputation. However, it is the case that Proc Impute is
designed to assess the impact of random variation (of
missing values) on statistical inferences.

Even though the two methods cannot be compared in
the "proper" sense, we can still examine the criteria for
the optimalities of these two methods--the randomization-
valid inferences for PMI are based on the concept of the
central limit theorem whereas the distributional estima-
tion method employed in Proc Impute is based on the
Pitman Closeness criterion 2.

One can use the most recent version of Proc Impute to
generate multiple imputations via the option "multiple=

2 For an estimation problem with parameter space O, an
estimator 6~ is said to be Pitman closer (to O) than 62, if,
for every 0cO, Po(16, (x)-01<16= (x)-01)>0.5. This cri-
terion is called Pitman closeness or Pitman nearness or

Pitman domination.

n" in the control file, where n is the number of imput-
ations for each missing value. Then the question arises:
"as the number of imputations increases, do these sets of
imputed values adhere to Rubin's PMI criteria?" The

answer depends on the data. Proc Impute uses regression
to find the optimal combination of predictors. If the
involved errors agree with the Gauss-Markov assumption
then the least-squares estimator gives an optimal fit of the
observations to theoretical models. It would not be
difficult to verify that multiple imputations generated by
Proc Impute are "proper", since both the observed "com-
bination of predictors" and the observed "distribution of
the cases in the range" would converge to the true
"combination of predictors" and the true "distribution in
the range", respectively. It should also be noted that the
average of n estimators based on the n sets of imputed
data is asymptotically unbiased (conditionally on the
observed data) if the multiple imputation procedure is
randomization-valid (Rubin, 1987, p. 116).

Since the design and structure of Proc Impute are
fixed, it would not be easy to incorporate Rubin's
strategies into the program.

III. EVALUATION OF SCHAFER'S MULTIPLE
IMPUTATION SOFTWARE. Schafer's multiple
imputation software consists of three independent parts
which perform imputations for continuous variables,
categorical variables, and mixed variables, respectively.
This section only presents the evaluation of the first part
for continuous variables, and the evaluations of the other
two parts are under way. From now on, when we use the
term "Schafer's software", we always refer to the first
part, not the other two. Next, we will first briefly describe
the algorithm used in Schafer's software, and then present
our evaluation of the software.

ALGORITHM. Suppose that the random vector X =
(X~, X2, ... Xp) has a multivariate normal distribution
N(ltt,Y~), and the prior distributions for ltt and ~ are
multivariate normal and normal-inverted Wishart, respec-
tively. Then the posterior distributions for ltt and ~ are
also multivariate normal and normal-inverted Wishart
(Schafer, 1995). It is also assumed that the missing values
occur at random (MAR).

First, the software uses the EM algorithm (Dempster,
Laird, and Rubin, 1977; Little and Rubin, 1987) to find
the Maximum Likelihood Estimates (MLE) of ltt and ~,
which are usually used as the starting values in the
iterative simulation step. Then, the software applies the
iterative simulation method to simulate one or more
iterations of a single Markov chain (Schafer, 1995). Each
iteration consists of a random imputation of the missing
data drawn from multivariate normal distribution with
current parameter values (I-step), followed by a random

289

i

draw from the posterior distributions of the parameters,
multivariate normal distribution for ~t and normal-
inverted Wishart distribution for ~, given the observed
data and the imputed data (P-step).

EVALUATION. All evaluations are based on runs
conducted on the NCES data set "Administrator Compo-
nent of 1990-91 School and Staffing Survey" (SASS.AC).
These runs were performed in a Pentera (486) environ-
ment--90 MHZ clock speed, 16 MB of memory, and 520
MB of hard disk space. Our evaluation focuses on the
following six questions (1)-(6).

(1) How many runs would it take to impute all conti-
nuous variables in a survey?

Schafer's software is run under an S-PLUS environ-
ment. Due to the limit of the dynamic memory in S-PLUS
for Windows, a large data set must be partitioned into
subsets. The partition strategy is to put variables with
high correlations and close scales into the same subset.
This strategy makes the convergence criteria in the itera-
tive methods easier to set up and very likely produces
more accurate results. The number of variables in each
subset depends on the number of cases, while we do not
recommend more than 30 variables in any subset. For
example, in the SASS.AC data set which has 56
continuous variables and 9907 observations, it can be
divided into two subsets with 28 variables apiece.

After we have partitioned the data set into subsets and
read each subset into a data matrix, the following runs are
required to impute the variables for each subset:

(i) Call function prelim.norm to perform prelimin-
ary data manipulations;

(ii) Call function em.norm to find the MLE for the
incomplete data set using the EM algorithm. It returns a
vector of parameter estimators which can be used as
starting values of parameters for the simulation function
"da.norm".

(iii) Call function da.norm to simulate one or more
iterations of a single Markov chain. It draws parameter
estimates from their posterior distributions.

(iv) Call function imp.norm to impute the missing
values of the data matrix under a user-supplied value of
the parameter (e.g. the result of "da.norm") and return a
matrix of complete data.

Functions da.norm and imp.norm can be called
multiple times to generate multiple imputations.

(2) How much special processing & required to
handle skip patterns?

It is very easy to handle skips with this software.
Suppose that "NA" represents the real missing values,
"999" stands for the valid skips, and X is the data matrix;
then the following four statements can be used to handle
the skip patterns:

(i) Record positions of valid skips: pos_(X==999)
(ii) Set the valid skips as missing: X[pos]_NA

(iii) Impute all the holes (real missing and skips)
(iv) Remove imputed values for skips: Xlposl _999

Step (iii) is the imputation step. The other three steps that
are used to handle valid skips will take less than one
minute for each subset.

(3) How much memory and disk space would be
required?

The amount of required memory and disk space
depends on the size of the data matrix. We can run the
software for a data set with 12,000 cases and 30 variables
in a 486 PC environment. When either the number of
cases increases to 15,000 (with 30 variables) or the
number of variables increases to 50 (with 12,000 cases),
the program runs out of dynamic memory. Therefore, in
the case of a "large" data set, we must divide the data set
into several subsets and run the software on one subset at
a time. We experienced that the second run was hung up
when we made two runs of Schafer's software in the same
S session. It is advisable to quit an S session in which a
user has run Schafer's software on a subset with over
10,000 cases and 25 variables, and then enter another S
session to run the software on another subset.

(4) How fast is it?
The imputation processing time depends on the size of

the data matrix and the steps of iterations specified in
functions "em.norm" and "da.norm". Usually, 25 iterative
steps will generate quite stable results. For the SASS.AC
data, a run with 9,907 cases, 30 variables (a subset) and
25 iterative steps took less than 10 minutes. However, an
analyst will devote more time to pre- and post-imputation
file-management, such as recoding variables, partitioning
a large data set into subsets before imputation, merging
imputed subsets into one overall completed file, etc.

(5) How well documented is the software? Is it
difficult to use?

Installation instructions provided by Schafer's soft-
ware are for UNIX workstations and some are not appli-
cable to a PC system. For a PC environment, we first
need a WATCOM FORTRAN 77 compiler (WATCOM
International Corporation, 1993) to compile the Fortran
source files of the software, and then follow the install-
ation instructions (2)-(4) provided by the software. Some
errors about storage mode have to be corrected before the
Fortran source files can be successfully compiled. Some
minor modifications on the random generators of the
software are also required to make the simulation
functions (e.g., da.norm, imp.norm) work. After making
all necessary modifications and correctly installing the
software, the software is very easy to use if the user is
familiar with S language.

How well documented is the software? By and large,
the software is well documented, and the algorithms for
the software are especially well developed. However, as
Dr. Schafer said, this software is at its early stage and

290

improvement will be made to it. And, as stated above,
some modifications to the software are required to make
the software work on a PC Windows environment. More-
over, this software does not supply many error messages,
so if something does not seem to work, it's largely up to
the user to figure out why.

(6) Can the software be adapted to interface easily
with SAS?

The immediate answer to this question is "no"+
Schafer's software is written in S language and run under
an S-PLUS environment, and S-PLUS and SAS can not
interface with each other. However, with the help of the
software DBMS/COPY (Conceptual Software, Inc. 1994),
it is very easy to make transformations between SAS data
files and S-PLUS data matrices so that one can use
Schafer's software to impute the data under an S-PLUS
environment and analyze the imputed data under a SAS
environment. We may use the S-PLUS "File" pull-down
menu to import and/or export SAS data files from within
S-PLUS for Windows 3.3+ In order to use this tool, we
need to add a statement "DBMSCOPY=C:\DBMSCOPY ''
to the S-PLUS initial file "SPLUS.INI" if DBMS/COPY
is installed on the C directory.

When we use DBMS/COPY to transfer a SAS data file
to an S-PLUS data frame, say X, X has "list mode", but
Schafer's software requires "single mode" of X. Two S-
PLUS statements 'X_as.matrix(X)' and 'storage.mode(X)
_"single"' can transfer X from "list mode" to "single
mode" so that we can apply Schafer's software to it.

IV. A SIMULATION STUDY. We simulate three
types of data sets: independent normal data, correlated
normal data and independent contaminated data. Each
data set has 8 variables (X,-Xs) and 2000 cases. The first
7 variables have about 10% missing values apiece and the
8th variable has no missing value. Three types of missing
mechanisms are considered: (M 1) X is randomly missing;
(M2) X is missing when Z< c and corr(X, Z)=0.6; and
(M3) X is missing when Z< c and corr(X, Z)=0.9. We
compare Proc Impute and Schafer's software in terms of
average imputing error and mean bias. The average
imputing error is defined as v/[~](Ii-Ri)2/m], where I~ and
1~. are imputed values and real values, respectively, and m
is the number of missing values. Mean bias is obtained by
subtracting the true mean from the imputed sample mean.

For the independent normal data, neither Proc Impute
nor Schafer's software can correct the mean bias caused
by the missing values, and the two methods have similar
performance in terms of imputing error and mean bias.
This is what we expect since the variables in the model
provide little information for each other to predict the
missing values in this case. So we omit the detailed
simulation results for this type of data set and present
those for the correlated normal data and independent

contaminated data in Figure 1 and 2.
For the correlated normal data, Figure 1 (a) shows that

Schafer's software has smaller average imputing errors
for all 7 variables with missing values for all three types
of missing mechanisms. Figure 2(a) shows that, for M 1,
the two imputed mean biases and the unimputed mean
bias are all close to zero, while, for M2, both imputation
methods have tremendously improved the mean bias, and
Schafer's software is slightly better than Proc Impute+
We have similar results for M3 which do not show in
figure 2(a).

For the independent contaminated data, Figure l(b)
shows that Proc Impute is better than Schafer's software
for some variables, but it is the other way around for the
others in terms of average imputing error (in the scale of
Oc, the complete sample standard error). Proc Impute has
worse stability of performance. Figure 2(b) shows that, in
case of M1, both imputation methods worsen the mean
bias since the model assumptions are not satisfied and the
data are independent. For M2, it seems that none of the
three mean estimators has any advantage over the others.

Figure 1. Comparison of the software in terms of imput-
ing error via simulation with 2000 cases and 8 variables

(a) correlated normal data (cor(Xi, Xj)=0. l*li-jl)

1.5

.E ~!iiii::i:?iiiiii::;i~ii~i;:~i:i:ii!~+::+~::~::~i~i~iiiiiii+;i~iii::iiiiii~i~iii~i~i~iii~iiii~:iiiiiN+!ii~iiii:i!i;iii!iiiii~i:iiiiiii~iiiii~i~i~iii?i~i~:~,~:~:~:~i~i~ii~iii:i~?~:~i~:~i~i~+~i~:~i~i~:~ii~!::+~ii:~i:~i~:: !
,, 0 • 9 ~:isi+~i~ii::~ii+i~+iii+:i+;+ii++;~i~i~+i~i+~+i~+~i+ii~i~!+i~+ii~iii~i++i++++~+~++i~+i+i~+i+!~i~i+~i~i~+ii+iiii~:i~i!ii:~i~i:~+ii~i!!i+i+ii~ii+~ii+i~i~ii+ii~i~i~ii+ii; I

; o. ~ ~+~++~++~+++~+~+i++~+~+++++i+++~+i+++++~+++++~++++++;~+~+~i++~++~+++~++~+++~i+i++++~+++~++++~i+++~+++++~+~+i+!+i++++++++i++~++:+~+++++++i++++ ~ : : ~ ::::::::::::::::::::::::::::::: :~:~::::::

= "i+;ii+ii ii iii: i!iiiii ii i l

. ~ ~:;:;:~::: ::::::::::::::::::::::::::: :: ::!::~::+~7

0.5 i,,i!!++:i:+:,,i,+~+::!::!~+iiiiii;::!i,i!
<

0.3 : , + , , , ,

1 2 3 4 5 6 7

(b) contaminated data (90% normal & 10% Cauchy)

3.5

,-. 3

',' 2.5

2

E 1.5

m 1

• 0.5 ,,=::

0

~ii~iiiii!!i!~ii!iiiiiiiiiiiiiiiiiiii!~iiiiiiiiiiiiiiiiiiii!iii!i!iiii

I

1 2 3 4 5 6 7

~_. Schafer (M1)
I - - - o - - - Schafer (M2)

- . l , - . - Schafer (M3)
t

= Proclmp(M1)]
- - - I ~ - - Proclmp(M2)
- - I--- Proclmp(IVl3) i

291

Figure 2. Comparison of the software in terms of mean
bias via simulation with 2000 cases and 8 variables

(a) correlated normal data (cor(Xi, X~)=0. l*li-jl)

0.14

0.12

0.1

0.08
i~ 0.06

0.04

0.02

0

-0.02

(b) contaminated data (90% normal & 10% Cauchy)

0 . 4
i~iiiiii~i iiil ii~ii!~iiiiii~ii!iii~iii~iii~iii~iii~i!iiii~!!i~iii~iii~!i~iiiUi~iii~iiiiii iiii!!iiiiiiii!i~i iiiii!iii!iiiiiiiiiiiiiiiiiiiiii!iiiii!!iii !i!ii ii iiiiiiiiii~!ii!ii!iiiii! ~i!!!iii!!i!!ii!iiiiiiii;iii~iiiiii~iii~ ii il !i ;i il i ii iiiiil iiiiiiiiiil ii iiMiMiiiii!ii!iiiiii!ii!!iiiiiiiii!iiiiiiii!!i !!i!iii ii~iii!i~iii!iiiiiiiiiiiiii~iiii~i!iiiii 1

0 . 3 ~:iii~!;i~iii~ii~i~i;i~i;i~;i~iiii~i~?~i~i~1~i~i~i~i;~iiiiiiii~ii~i~;ii~11~1~iiii~iiiiiii~iiii?~ii~:~?i~i~i~i~i!i1i~;i~
0 . 2 5 ~ ~ ' .. ~:~:~::~::~::~::~::: :~::~::~i~::~i~i~iS~ ~ ~ i :: :: i :: :: :: :: :: :: :: :: :: i :: :::: i :: :: ~ :: :: :: :: :: :: :: :: :: i :: :: :: :::: :: i::i::i:::.iii::i::i:: ::i::i::i::iiiii::i!i::iiiii::i::i::!!i::i~!::i::i~!::i~i::!iiii:::::Jii~i ~iiii~i :: ::i~::~:: .. :::

iiiiiiiiiiiiiiiii!iiiiiiiiii!i~iiiiiiiiiiiiii i ii iiil ili i~iiiii~iiii~iii~iiii~i~i~iiiiii~iii~ii~iii~iii~iii!!ii~iiiiiiiiii~iiii~iiiii~ii~i~iiiiii~iiiii~i
._~ 0.2 ~iiiiiiii~ii~i~i~i~i~[::: ~i~i~i~i~i~;~i~i~i~i~i~i~i~i~i~!~i~i~i~i~!~i~i~iiii~iii~iiiiiii

• , ~ l . , ~ ... ~ ~ : ~ . I I) O . 15 iiiiiiiiiiii!i!~i~.`~.~i~iii~i~ii~ii~ii;ii~ii~i~i~!i!i~i!i~!!!!iii~ ~ ilililiiiii!i!~!!!!!!'?~i~ii':~, ~, i i~,ii ~ i

,," o.1 ~iiiiii!iii!iiiii!i!iiiiiiiiiiiii~!~iill i!ii~iiii!

= O i!i i

- 0 . 1

= Schafer(M1) - - - O - - . Schafer(M2)
= Proclmp(M1) - - - I I - -- Proclmp(M2)

Unimpute(M1) - - - e - - - Unimpute(M2)

V° DISCUSSION. Proc Impute is based on two
assumptions: (1) the relations among variables stay the
same for the observed cases and missing cases; (2) within
each homogeneous subset defined by regression function
values, the missing values have the same distribution as
the observed values (see section II). These assumptions
are almost equivalent to the assumption of missing at
random, which is required by Schafer's software. MAR
requires that the missing values behave like a random
sample of all values within subclasses defined by the
observed data. The difference of the assumptions between
the two algorithms is that the homogeneous subsets,
within which the missing values and observed values
have the same distribution, are defined by different mea-
sures. The subsets in Proc Impute are constructed by the
regression values, but those in Schafer's software are
implicitly defined by the observed values. Obviously, the
assumptions in both imputation algorithms are less
restrictive than missing completely at random (MCAR),
which requires that the missing values are a simple ran-
dom sample of all data values. As seen in the simulation,

no matter what the missing mechanism is, both imputa-
tion algorithms can significantly improve the mean bias
caused by missing values if the variables are highly
correlated. Moreover, as long as the normal distribution
assumption holds, Schafer's software is always better
than Proc Impute in terms of imputing error and mean
bias regardless of the missing mechanism.

However, the normal distribution assumption is very
important to Schafer's software, which generates imput-
ations directly from the estimated normal distribution. In
practice, we may use common transformations (e.g.,
logarithm, square root, etc.) to make the variables as close
to normal as possible, and then apply Schafer's software
to ito If no common transformation is available to make
the variables close to normal, we may try Proc Impute,
whose theoretical assumption is that the residuals in the
regression models are normal. Proc Impute should be
better than Schafer's software when the variables them-
selves are not normal but have normal residuals. It should
be noted that, in our simulation, even for the contami-
nated data set, we still have 90% of the data coming from
normal distributions. It is possible that Proc Impute will
show better performance than Schafer's software if the
data further depart from normality.

Although the newest version of Proc Impute allows an
analyst to generate multiple imputations, it may not be
"proper" in the sense of Rubin's definition. On the other
hand, Schafer's software is created for the multiple-
imputation purpose; it adheres to the "proper" criterion if
the sample is a simple random sample.

The biggest advantage of Proc Impute over Schafer's
software is its convenience to run on large data sets. Due
to the limit of dynamic memory of S-PLUS for Windows,
the working environment for Schafer's software, it
usually requires more than one S session and a number of
runs to carry out all the imputations for a large data set.
But Proc Impute only needs one run (one single batch
job) no matter how big the data base is.

REFERENCE

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977),
"Maximum Likelihood Estimation from Incomplete
Data via the EM Algorithm (with discussion)." J. of
the Royal Statistical Society Series B, 39, pp 1-38.

Little, R. J. A. and Rubin, D. B. (1987), Statistical Ana-
lysis with Missing Data. New York: J.Wiley & Sons.

Rubin, D. B. (1987), Multiple Imputation for Nonres-
ponse in Surveys. New York: J. Wiley & Sons.

SAGE (1980), Guidebook for Imputation of Missing
Data. Prepared for NCES (contract #300-78-150).
American Institutes for Research: Palo Alto, CA.

Schafer, J. L (1995), Analysis of Incomplete Multivariate
Data. To be published.

292

