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I. INTRODUCTION. The problem of missing data 
commonly exists in surveys conducted by the National 
Center for Education Statistics (NCES). These missing 
values not only mean less efficient estimates because of 
the reduced size of the data base but also that standard 
complete-data methods can not be immediately used to 
analyze the data. Moreover, possible biases exist because 
the respondents are often systematically different from 
the nonrespondents; of particular concern, these biases 
are difficult to eliminate since the precise reasons for non- 
response are usually not known. 

Imputation is one of the most popular ways to reduce 
the impact of missing values. A number of imputation 
software packages have been developed recently. We 
implemented and evaluated two advanced imputation 
software products, Proc Impute (PC version 2.0, 1991) 
and Schafer's Multiple Imputation Software (version 2.0, 
1995), under a PC DOS or Windows environment. The 
original version of Proc Impute, created by the American 
Institute for Research (AIR), is a SAS procedure run on 
a JCL mainframe, but the recent version is a stand-alone 
Fortran program run under a DOS environment. It is a 
regression-based algorithm and is believed to be more 
general and to produce more accurate results than a stan- 
dard "hot deck" procedure. This software also allows a 
user to generate multiple imputations, but the results may 
not be "proper" in the sense of Rubin's definition (Rubin, 
1987). On the other hand, Schafer's Multiple Imputation 
Software, created by Dr. Schafer of Pennsylvania State 
University, is designed for a multiple imputation purpose. 
This software consists of three independent parts. The 
first part uses a multivariate normal model to perform 
imputations for continuous variables; the second part uses 
a saturated multinomial model and a constrained loglinear 
model to perform imputations for categorical variables; 
and the third part uses restricted and unrestricted general 
location models to perform imputations for mixed 
variables. This paper presents the evaluation of the first 
part, and the evaluations of the other two parts are under 
way. 

Sections II and III of this paper present the detailed 
evaluations of Proc Impute and Schafer's Multiple Imp- 
utation Software, respectively. Section IV describes a 
simulation study which compares the two imputation 
algorithms in terms of average imputation error and mean 
bias. Some discussions are given in section V. 

II. EVALUATION OF PROC IMPUTE. In this 
section, we first briefly describes the statistical algorithms 
used in this software, and then present our evaluations of 
the software in terms of its usability/performance under 
a PC 586 environment, its suitability for generating 
multiple imputations, and its adaptability to different 
NCES surveys. 

ALGORITHM. Proc Impute is a regression-based 
distributional estimation procedure that is believed to be 
more general and to produce more accurate results than a 
standard "hot deck" procedure. Basically, this procedure 
assumes that relations among variables are constant for 
observed cases and missing cases, and considers each 
variable on the file in turn as a "target" variable whose 
missing values are to be filled in and uses information on 
other variables to minimize the error in imputing each 
"target" variable. For each "target" variable, regression 
analysis is used to find the best combination of predictors. 
Once the regression models are constructed and reg- 
ression values are computed for all cases (both missing 
cases and observed cases), Proc Impute partitions the 
range of regression values into subsets. All cases in a 
given subset that are missing the target variable then are 
imputed with weighted averages of two values drawn 
from that regression function value subset and an adjacent 
subset with probability proportional to the distribution of 
reported values for that variable within these two subsets. 
The weighted average value is rounded to an integer if the 
integer flag is set for the target variable. The basic 
assumption of this algorithm is that within these homo- 
geneous subsets, the missing value cases will have the 
same target value distribution as the cases with reported 
values on the target variable. 

After all missing values have been imputed for a case, 
the case is written to the output file with all of the missing 
values filled in. Missing data flags are also created and set 
for each variable with a value of "I" corresponding to 
imputed values, "R" for real values, and "A" for skip 
missing values. 

EVALUATION. Our evaluation is based on runs 
conducted on the NCES data set "1993 National Survey 
of Postsecondary Faculty" (NSOPF), which contains 
about 12,000 cases and 400 variables. The runs were 
performed in a Pentium (586) environment--90 MHZ 
clock speed, 16 megabytes of memory, and 600 mega- 
bytes of hard disk space. We focus on the following six 
questions (1)- (6) in our evaluation. 

(1) How many runs would it take to impute all vari- 

ables in a survey? 
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Proc Impute is a regression-based algorithm. In our 
experience, it can effectively incorporate no more than 30 
variables into any one regression model. Therefore, any 
"large" data set must be partitioned into subsets contain- 
ing no more than 30 variables each before being pro- 
cessed by Proc Impute. 

Given those considerations, how many runs does it 
take to impute all variables in a survey? In short, one run 
is all that is required to impute all missing values (for all 
variables) in any survey. However, in the case of "large" 
data sets, one run would consist of the following steps: 

(i) First, the analyst must partition the variables into 
subsets. Let's use the NSOPF data set as an example. If 
the strategy is to merely use "adjacent" variables in the 
regression models, then the analyst would partition the 
NSOPF data set into about 14 (i.e., 400/30 = 13.3) 
subsets. If the strategy is to use key predictor variables 
(e.g., sex, race, and region) in every regression model, 
then the analyst would divide the NSOPF data set into 15 
(i.e., 397/27= 14.7) subsets. Obviously, how much the 
regression models are customized determines not only the 
number of subsets to be processed by Proc Impute, but 
also the amount of time devoted to the overall imputation 
process (see question (5) below). 

(ii) Second, an ASCII data file must be created for 
each subset of variables (i.e., for each regression model). 

(iii) The third step involves running Proc Impute on 
each data subset. To perform an imputation, a control file 
must be constructed. Fortunately, one can specify all of 
the regression models in the same control file, and run 
Proc Impute on the entire data set as a single batch job. 

(iv) The final step in the process is combining the 
output (imputed) files into a single file that contains both 
the original and the imputed values for all variables, with 
flags indicating imputed values. 

In one sentence, Proc Impute will impute all missing 
values in any data (sub)set that is specified in the control 
file in one run (as a batch job), while the amount of pre- 
and post-processing of a given data file is dependent upon 
the size of the file, the number of variables in the file, the 
relationships among the variables, etc. 

(2) Can Proc Impute handle all types of  variables (i. e., 
continuous, ordinal, and categorical)correctly? 

Proc Impute will only process "numerical" data. Any 
"character" variables in the data set must be either re- 
coded to "numeric" or removed from the data set. Once 
the data set holds the proper coding, each variable will 
have a continuous, an ordinal, or a categorical (dichoto- 
mous or polytomous) distribution. Then Proc Impute can 
be used to process all the variables in the data set. It 
should be noted that Proc Impute uses a regression-based 
algorithm, and assumes that each variable is continuous 
with normal residuals and homogeneous variance. It is 
very rare for all the variables to satisfy these conditions. 

A linear regression that is run on the variables which 
violate the distribution or variance assumptions often 
yields high probabilities of generating "out-of-range" 
predictions. However, in attempts to avoid imputing 
"out-of-range" values, Proc Impute uses knowledge about 
conditional frequency distributions along with its 
regression algorithm when imputing missing values. 

Therefore, for continuous, ordinal, or dichotomous 
categorical variables, Proc Impute requires no special pre- 
or post-processing, and the imputed values for all such 
variables are reasonable--reasonable in the sense that the 
imputed values both fall within the range of the observed 
values and mimic the distributional properties of the 
observed values. However, polytomous categorical 
variables are potentially troublesome to Proc Impute. For 
each polytomous variable, the analyst needs to create an 
appropriate number of dummy (0/1) variables, and then 
run Proc Impute on the dummy variables. Proc Impute 
handles the dummy variables in the same fashion that it 
handles dichotomous variables. Since Proc Impute does 
not understand that the dummy variables are grouped as 
sets of variables, the imputed values may be meaning- 
less~; however, since the dummy variables in any set 
representing a given polytomous variable are highly 
correlated, that should rarely happen. Fewer than four 
percent of the imputed values of our "reconstructed" 
polytomous variables were bad. In such cases "hot-deck" 
method may be appropriate to impute for those bad cases. 

(3) How much special processing is required to 
handle skip patterns ? 

It is very convenient to handle skip patterns with the 
most recent version of Proc Impute. An analyst only 
needs to set the skip missing values to ".A" for a SAS 
data file or "A" for an ASCII data file; then Proc Impute 
will know not to impute any value for these missing cases 
and output a skip flag "A" for each of them. 

(4) How much memory and disk space are needed? 
The amount of required disk space is predominantly 

a function of the size of your data file and the number of 
sets of multiple imputations. It requires about 480 Kb 
conventional memory to run Proc Impute. With a 586 
Pentium PC (16 Mb of total memory and 636 Kb 
conventional memory), we did not experience memory 
problems after we removed some programs to generate 
488 Kb free conventional memory for Proc Impute. 
Considering the rate of technological developments, we 
do not foresee future difficulties. 

lit may be the case that more than one of the (n-l) 
dummy variables, which represent an n-category poly- 
tomous variable, will be imputed with the value "1 "--this 
would indicate that the original polytomous variable case 
assumes multiple categories simultaneously! 
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(5) How fast is it? 
For the actual imputation processing, speed is not a 

serious issue. For the NSOPF survey, a run with 12,000 
cases and 30 variables (one subset) took less than 20 
minutes--this translates into a processing time of less than 
280 minutes if the entire data set was run as a batch job (a 
total of 14 subsets). However, an analyst will devote his/ 
her major processing time to pre- and post-imputation file 
management, such as changing "character" variables to 
"numeric" variables and/or removing them, creating 
ASCII data files, constructing the control file, partitioning 
a large data set into subsets, creating dummy variables for 
polytomous variables, recoding skip patterns to ".A", 
combining the output (imputed) subsets into one overall 
completed file, etc. 

(6) Does Proc Impute perform "proper" imputations 
in the sense of Rubin? I f  not, can Proc Impute be adapted 
to perform multiple imputations? 

Multiple imputation involves imputing each missing 
value multiple times. Hence, in performing a multiple 
imputation, one creates multiple files of complete data, 
wherein each of the multiple data files has a different set 
of imputed values. Once the multiple files have been 
constructed, the analyst should replicate all subsequent 
analyses by using the information from all of the multiple 
files to assess the impact of random variation (of missing 
values) on statistical inferences. 

Rubin's Proper Multiple Imputation (PMI) criteria are 
based on the asymptotic properties of the multiple imput- 
ation statistics; hence, the concept of"proper" imputation 
is exclusively suitable to multiple imputation approaches. 
Since Proc Impute uses a single imputation procedure 
based upon a (non-Bayesian) distributional estimation, 
Proc Impute cannot meet Rubin's criteria for "proper" 
imputation. However, it is the case that Proc Impute is 
designed to assess the impact of random variation (of 
missing values) on statistical inferences. 

Even though the two methods cannot be compared in 
the "proper" sense, we can still examine the criteria for 
the optimalities of these two methods--the randomization- 
valid inferences for PMI are based on the concept of the 
central limit theorem whereas the distributional estima- 
tion method employed in Proc Impute is based on the 
Pitman Closeness criterion 2. 

One can use the most recent version of Proc Impute to 
generate multiple imputations via the option "multiple= 

2 For an estimation problem with parameter space O, an 
estimator 6~ is said to be Pitman closer (to O) than 62, if, 
for every 0cO, Po(16, (x)-01<16= (x)-01)>0.5. This cri- 
terion is called Pitman closeness or Pitman nearness or 

Pitman domination. 

n" in the control file, where n is the number of imput- 
ations for each missing value. Then the question arises: 
"as the number of imputations increases, do these sets of 
imputed values adhere to Rubin's PMI criteria?" The 

answer depends on the data. Proc Impute uses regression 
to find the optimal combination of predictors. If the 
involved errors agree with the Gauss-Markov assumption 
then the least-squares estimator gives an optimal fit of the 
observations to theoretical models. It would not be 
difficult to verify that multiple imputations generated by 
Proc Impute are "proper", since both the observed "com- 
bination of predictors" and the observed "distribution of 
the cases in the range" would converge to the true 
"combination of predictors" and the true "distribution in 
the range", respectively. It should also be noted that the 
average of n estimators based on the n sets of imputed 
data is asymptotically unbiased (conditionally on the 
observed data) if the multiple imputation procedure is 
randomization-valid (Rubin, 1987, p. 116). 

Since the design and structure of Proc Impute are 
fixed, it would not be easy to incorporate Rubin's 
strategies into the program. 

III. EVALUATION OF SCHAFER'S MULTIPLE 
IMPUTATION SOFTWARE. Schafer's multiple 
imputation software consists of three independent parts 
which perform imputations for continuous variables, 
categorical variables, and mixed variables, respectively. 
This section only presents the evaluation of the first part 
for continuous variables, and the evaluations of the other 
two parts are under way. From now on, when we use the 
term "Schafer's software", we always refer to the first 
part, not the other two. Next, we will first briefly describe 
the algorithm used in Schafer's software, and then present 
our evaluation of the software. 

ALGORITHM. Suppose that the random vector X = 
(X~, X2, ... Xp ) has a multivariate normal distribution 
N(ltt,Y~), and the prior distributions for ltt and ~ are 
multivariate normal and normal-inverted Wishart, respec- 
tively. Then the posterior distributions for ltt and ~ are 
also multivariate normal and normal-inverted Wishart 
(Schafer, 1995). It is also assumed that the missing values 
occur at random (MAR). 

First, the software uses the EM algorithm (Dempster, 
Laird, and Rubin, 1977; Little and Rubin, 1987) to find 
the Maximum Likelihood Estimates (MLE) of ltt and ~, 
which are usually used as the starting values in the 
iterative simulation step. Then, the software applies the 
iterative simulation method to simulate one or more 
iterations of a single Markov chain (Schafer, 1995). Each 
iteration consists of a random imputation of the missing 
data drawn from multivariate normal distribution with 
current parameter values (I-step), followed by a random 
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draw from the posterior distributions of the parameters, 
multivariate normal distribution for ~t and normal- 
inverted Wishart distribution for ~, given the observed 
data and the imputed data (P-step). 

EVALUATION. All evaluations are based on runs 
conducted on the NCES data set "Administrator Compo- 
nent of 1990-91 School and Staffing Survey" (SASS.AC). 
These runs were performed in a Pentera (486) environ- 
ment--90 MHZ clock speed, 16 MB of memory, and 520 
MB of hard disk space. Our evaluation focuses on the 
following six questions (1)-(6). 

(1) How many runs would it take to impute all conti- 
nuous variables in a survey? 

Schafer's software is run under an S-PLUS environ- 
ment. Due to the limit of the dynamic memory in S-PLUS 
for Windows, a large data set must be partitioned into 
subsets. The partition strategy is to put variables with 
high correlations and close scales into the same subset. 
This strategy makes the convergence criteria in the itera- 
tive methods easier to set up and very likely produces 
more accurate results. The number of variables in each 
subset depends on the number of cases, while we do not 
recommend more than 30 variables in any subset. For 
example, in the SASS.AC data set which has 56 
continuous variables and 9907 observations, it can be 
divided into two subsets with 28 variables apiece. 

After we have partitioned the data set into subsets and 
read each subset into a data matrix, the following runs are 
required to impute the variables for each subset: 

(i) Call function prelim.norm to perform prelimin- 
ary data manipulations; 

(ii) Call function em.norm to find the MLE for the 
incomplete data set using the EM algorithm. It returns a 
vector of parameter estimators which can be used as 
starting values of parameters for the simulation function 
"da.norm". 

(iii) Call function da.norm to simulate one or more 
iterations of a single Markov chain. It draws parameter 
estimates from their posterior distributions. 

(iv) Call function imp.norm to impute the missing 
values of the data matrix under a user-supplied value of 
the parameter (e.g. the result of "da.norm") and return a 
matrix of complete data. 

Functions da.norm and imp.norm can be called 
multiple times to generate multiple imputations. 

(2) How much special processing & required to 
handle skip patterns? 

It is very easy to handle skips with this software. 
Suppose that "NA" represents the real missing values, 
"999" stands for the valid skips, and X is the data matrix; 
then the following four statements can be used to handle 
the skip patterns: 

(i) Record positions of valid skips: pos_(X==999) 
(ii) Set the valid skips as missing: X[pos]_NA 

(iii) Impute all the holes (real missing and skips) 
(iv) Remove imputed values for skips: Xlposl _999 

Step (iii) is the imputation step. The other three steps that 
are used to handle valid skips will take less than one 
minute for each subset. 

(3) How much memory and disk space would be 
required? 

The amount of required memory and disk space 
depends on the size of the data matrix. We can run the 
software for a data set with 12,000 cases and 30 variables 
in a 486 PC environment. When either the number of 
cases increases to 15,000 (with 30 variables) or the 
number of variables increases to 50 (with 12,000 cases), 
the program runs out of dynamic memory. Therefore, in 
the case of a "large" data set, we must divide the data set 
into several subsets and run the software on one subset at 
a time. We experienced that the second run was hung up 
when we made two runs of Schafer's software in the same 
S session. It is advisable to quit an S session in which a 
user has run Schafer's software on a subset with over 
10,000 cases and 25 variables, and then enter another S 
session to run the software on another subset. 

(4) How fast is it? 
The imputation processing time depends on the size of 

the data matrix and the steps of iterations specified in 
functions "em.norm" and "da.norm". Usually, 25 iterative 
steps will generate quite stable results. For the SASS.AC 
data, a run with 9,907 cases, 30 variables (a subset) and 
25 iterative steps took less than 10 minutes. However, an 
analyst will devote more time to pre- and post-imputation 
file-management, such as recoding variables, partitioning 
a large data set into subsets before imputation, merging 
imputed subsets into one overall completed file, etc. 

(5) How well documented is the software? Is it 
difficult to use? 

Installation instructions provided by Schafer's soft- 
ware are for UNIX workstations and some are not appli- 
cable to a PC system. For a PC environment, we first 
need a WATCOM FORTRAN 77 compiler (WATCOM 
International Corporation, 1993) to compile the Fortran 
source files of the software, and then follow the install- 
ation instructions (2)-(4) provided by the software. Some 
errors about storage mode have to be corrected before the 
Fortran source files can be successfully compiled. Some 
minor modifications on the random generators of the 
software are also required to make the simulation 
functions (e.g., da.norm, imp.norm) work. After making 
all necessary modifications and correctly installing the 
software, the software is very easy to use if the user is 
familiar with S language. 

How well documented is the software? By and large, 
the software is well documented, and the algorithms for 
the software are especially well developed. However, as 
Dr. Schafer said, this software is at its early stage and 
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improvement will be made to it. And, as stated above, 
some modifications to the software are required to make 
the software work on a PC Windows environment. More- 
over, this software does not supply many error messages, 
so if something does not seem to work, it's largely up to 
the user to figure out why. 

(6) Can the software be adapted to interface easily 
with SAS? 

The immediate answer to this question is "no"+ 
Schafer's software is written in S language and run under 
an S-PLUS environment, and S-PLUS and SAS can not 
interface with each other. However, with the help of the 
software DBMS/COPY (Conceptual Software, Inc. 1994), 
it is very easy to make transformations between SAS data 
files and S-PLUS data matrices so that one can use 
Schafer's software to impute the data under an S-PLUS 
environment and analyze the imputed data under a SAS 
environment. We may use the S-PLUS "File" pull-down 
menu to import and/or export SAS data files from within 
S-PLUS for Windows 3.3+ In order to use this tool, we 
need to add a statement "DBMSCOPY=C:\DBMSCOPY '' 
to the S-PLUS initial file "SPLUS.INI" if DBMS/COPY 
is installed on the C directory. 

When we use DBMS/COPY to transfer a SAS data file 
to an S-PLUS data frame, say X, X has "list mode", but 
Schafer's software requires "single mode" of X. Two S- 
PLUS statements 'X_as.matrix(X)' and 'storage.mode(X) 
_"single"' can transfer X from "list mode" to "single 
mode" so that we can apply Schafer's software to it. 

IV. A SIMULATION STUDY. We simulate three 
types of data sets: independent normal data, correlated 
normal data and independent contaminated data. Each 
data set has 8 variables (X,-Xs) and 2000 cases. The first 
7 variables have about 10% missing values apiece and the 
8th variable has no missing value. Three types of missing 
mechanisms are considered: (M 1) X is randomly missing; 
(M2) X is missing when Z< c and corr(X, Z)=0.6; and 
(M3) X is missing when Z< c and corr(X, Z)=0.9. We 
compare Proc Impute and Schafer's software in terms of 
average imputing error and mean bias. The average 
imputing error is defined as v/[~](Ii-Ri)2/m], where I~ and 
1~. are imputed values and real values, respectively, and m 
is the number of missing values. Mean bias is obtained by 
subtracting the true mean from the imputed sample mean. 

For the independent normal data, neither Proc Impute 
nor Schafer's software can correct the mean bias caused 
by the missing values, and the two methods have similar 
performance in terms of imputing error and mean bias. 
This is what we expect since the variables in the model 
provide little information for each other to predict the 
missing values in this case. So we omit the detailed 
simulation results for this type of data set and present 
those for the correlated normal data and independent 

contaminated data in Figure 1 and 2. 
For the correlated normal data, Figure 1 (a) shows that 

Schafer's software has smaller average imputing errors 
for all 7 variables with missing values for all three types 
of missing mechanisms. Figure 2(a) shows that, for M 1, 
the two imputed mean biases and the unimputed mean 
bias are all close to zero, while, for M2, both imputation 
methods have tremendously improved the mean bias, and 
Schafer's software is slightly better than Proc Impute+ 
We have similar results for M3 which do not show in 
figure 2(a). 

For the independent contaminated data, Figure l(b) 
shows that Proc Impute is better than Schafer's software 
for some variables, but it is the other way around for the 
others in terms of average imputing error (in the scale of 
Oc, the complete sample standard error). Proc Impute has 
worse stability of performance. Figure 2(b) shows that, in 
case of M1, both imputation methods worsen the mean 
bias since the model assumptions are not satisfied and the 
data are independent. For M2, it seems that none of the 
three mean estimators has any advantage over the others. 

Figure 1. Comparison of the software in terms of imput- 
ing error via simulation with 2000 cases and 8 variables 

(a) correlated normal data (cor(Xi, Xj)=0. l*li-jl ) 
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Figure 2. Comparison of the software in terms of mean 
bias via simulation with 2000 cases and 8 variables 

(a) correlated normal data (cor(Xi, X~)=0. l*li-jl ) 
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V° DISCUSSION. Proc Impute is based on two 
assumptions: (1) the relations among variables stay the 
same for the observed cases and missing cases; (2) within 
each homogeneous subset defined by regression function 
values, the missing values have the same distribution as 
the observed values (see section II). These assumptions 
are almost equivalent to the assumption of missing at 
random, which is required by Schafer's software. MAR 
requires that the missing values behave like a random 
sample of all values within subclasses defined by the 
observed data. The difference of the assumptions between 
the two algorithms is that the homogeneous subsets, 
within which the missing values and observed values 
have the same distribution, are defined by different mea- 
sures. The subsets in Proc Impute are constructed by the 
regression values, but those in Schafer's software are 
implicitly defined by the observed values. Obviously, the 
assumptions in both imputation algorithms are less 
restrictive than missing completely at random (MCAR), 
which requires that the missing values are a simple ran- 
dom sample of all data values. As seen in the simulation, 

no matter what the missing mechanism is, both imputa- 
tion algorithms can significantly improve the mean bias 
caused by missing values if the variables are highly 
correlated. Moreover, as long as the normal distribution 
assumption holds, Schafer's software is always better 
than Proc Impute in terms of imputing error and mean 
bias regardless of the missing mechanism. 

However, the normal distribution assumption is very 
important to Schafer's software, which generates imput- 
ations directly from the estimated normal distribution. In 
practice, we may use common transformations (e.g., 
logarithm, square root, etc.) to make the variables as close 
to normal as possible, and then apply Schafer's software 
to ito If no common transformation is available to make 
the variables close to normal, we may try Proc Impute, 
whose theoretical assumption is that the residuals in the 
regression models are normal. Proc Impute should be 
better than Schafer's software when the variables them- 
selves are not normal but have normal residuals. It should 
be noted that, in our simulation, even for the contami- 
nated data set, we still have 90% of the data coming from 
normal distributions. It is possible that Proc Impute will 
show better performance than Schafer's software if the 
data further depart from normality. 

Although the newest version of Proc Impute allows an 
analyst to generate multiple imputations, it may not be 
"proper" in the sense of Rubin's definition. On the other 
hand, Schafer's software is created for the multiple- 
imputation purpose; it adheres to the "proper" criterion if 
the sample is a simple random sample. 

The biggest advantage of Proc Impute over Schafer's 
software is its convenience to run on large data sets. Due 
to the limit of dynamic memory of S-PLUS for Windows, 
the working environment for Schafer's software, it 
usually requires more than one S session and a number of 
runs to carry out all the imputations for a large data set. 
But Proc Impute only needs one run (one single batch 
job) no matter how big the data base is. 
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