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1. Introduction 
With the advent of specialized software for analysis of 

survey data including the estimation of appropriate 
sampling error estimates, these data are more frequently 
subjected to more sophisticated analyses For binomial 
data, this often includes the use of log-linear and logistic 
regression models. In this paper, we investigate how the 
statement of the study hypothesis, the assumptions about the 
design scenario, and the actual survey outcomes can 
influence the achieved power. 

The discussion is limited to simple binomial variables• 
It relies on large sample normal approximations; at the 
extremes, exact tests may be more appropriate. We further 
limit the discussion to one-sided tests for simplicity.' of 
presentation. We believe this is an important issue, because 
the actual analytic strength of the study design can differ 
from the plan when assumptions about the level of the 
binomial estimates used in the design planning scenario are 
wrong. The method of stating the alternative hypothesis 
also influences the direction and magnitude of the effects on 
the ultimate power for planned comparisons. 
2. Single Domain Cases 

The simplest example of the alternate statement of 
study; hypothesis involves inference about a single study 
domain. A common way of stating the null and alternative 
hypotheses is: 

H : P - P  - 0  
o o 

with the alternative 

> A  HI :P - Po 11 

where A defines the alternative in terms of an absolute 11 
difference in the population parameter, P ,  from a 
hypothesized value, /Do For a specified sample size, 
significance level, and power level, A 11 is sometimes also 
called the detectable difference. If your client is more 
interested in relative change, you might also state the null 
and alternative hypotheses as: 

P 
H ~ =  1 o p  

o 

with the alternative 

H1 P • _> 1 + A  
e 12 

o 

In this case, A 12 is the hypothetical relative detectable 
difference. 

The consulting statistician generally works with a client 
to establish a scenario that sets the value or values of P 

o 

that are likely to be of most interest to the client. The client 
may also have some preferences about the way the 
hypothesis is stated: i.e., in terms of an absolute difference 
or a relative difference. We consider ten scenarios defined 
by five levels of Po as shown in Table 1. 

Tables 2 through 6 show the parameters of the 
alternative hypotheses when the researcher decides that he 
or she is also interested in testing for other values of P 

o 

This can occur because of poor planning, a change in 
perspective, or the fact that the survey has multiple 
purposes and the scenario used in planning the required 
sample size pertained to only one of those purposes. The 
one sample case is fairly simple and generally well 
understood. When stating the hypothesis in terms of an 
absolute difference, it is safest to choose a scenario with/) 

o 

at or near 0.50; then regardless of the final Po of most 
interest, the sample size will be adequate to meet the stated 
power requirements. The risk in this behavior is that the 
sample size (and data collection costs) will be unnecessarily 
high if the actualP ° of most interest is well away from the 
mid-range of possible values. When stating the alternative 
hypothesis in terms of a relative change, the safe policy is to 
fred the smallestP ° of potential interest and design tbr that 
scenario. For larger values of P o '  the power will exceed 
the specified level. The risk with this behavior is that the 
power drops off very rapidly if the researcher should 
become interested in values of P lower than those used 

o 

in the design planning scenario. 
3. Hypothesis Tests Comparing Two Domains 

Two sample comparisons are routinely treated as a 
hypothesis about the difference between domain proportions 
or rates. Some researchers, however, prefer to think in 
terms of relative risk which leads to hypotheses about the 
ratio of proportions or rates. Many researchers anticipate 
the use of log-linear or logit modeling and would like to see 
the hypothesis stated in terms of their model parameters. 
For this paper, we consider four forms of the null and 
alternative hypotheses. 

The first form is the one most usually applied by 
statisticians in determining the required sample size, 
namely: 

Ho" P1 - P2 
with the one-sided alternative 

Hi  P1 - P2 -> A21 
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scenario 
Number 

la 

Table 1. Design Planning Scenarios for the One Domain Problem 
Hypothesized Absolute difference, Equivalent relative 

A 11 
(Alternative 1) 

.05 

difference, A 12 
(Alternative 2) 

1.0000 

population proportion, 
P 

o 

0.05 

Required sample size 

150 
lb 0.10 .05 0.5000 253 
"lc 0.20 .05 0.2500 419 
ld 0.50 .05 0.1000 617 
le 0.80 .05 0.0625 368 

Table 2. Power to Reject the Null Hypothesis Under Design Planning Scenario 1 a 
(P_ - 0.05,  A l l  - 0.05,  AI~ - 1, n - 1 5 0 )  

Actual P of most 
o 

interest 

0.05 
0.10 

True P given the alternative 

P + A  
o 

0.1000 
0.1500 

Po (1 + A12 ) 
0.1000 
0.2000 

Power for: 

Alternative 11 

0.8013 
0.6304 

Alternative 12 

0.8013 
0.9797 

0.20 0.2500 0.4000 0.4580 1.0000 
0.50 0.5500 1.0000 0.3364 1.0000 

0.8500 0.80 0.4492 1.6000 1.0000 
Table 3. Power to Reject the Null Hypothesis Under Design Planning Scenario l b 

(Po - 0.10,  A11 - 0.05,  AI~ - 0.5, n =253)  

Actual P of most 
o 

interest 

0.05 
0.10 
0.20 

True P given the alternative 

P + A  
o 

0.1000 
0.1500 
0.2500 

Po(1 + A 
0.0750 
0.15O0 
0.3000 

12) 

Power for: 

Alternative 11 

0.9273 
0.8010 
0.6244 

Alternative 12 

0.5519 
0.8010 
0.9844 

0.50 0.5500 0.7500 0.4782 1.0000 
0.80 0.8500 Exceeds 1 0.6497 n.a. 

Table 4. Power to Reject the Null Hypothesis Under Design Planning Scenario l c 
(Po - 0.20, A l l  - 0.05, A12 - 0.25, n =419)  

Actual Po of most True P given the alternative Power lbr: 
interest 

Po + A 11 Po (1 + A12 ) Alternative 11 Alternative 12 

0.05 0.1000 0.0625 0.9867 0.3661 
0.5204 0.10 

0.20 
0.50 

0.1500 
0.2500 
0.5500 

0.1250 
0.2500 
0.6250 

0.9311 
0.8007 
0.6569 

0.8007 
0.9998 

0.80 0.8500 1.0000 0.8470 1.0000 
Table 5. Power to Reject the Null Hypothesis Under Design Planning Scenario l d 

(Po - 0.50,  A l l  - 0.05,  AI~ - 0.10,  n - 6 1 7 )  

Actual Po of most True P given the alternative Power for: 
interest 

Po + A 11 Po (1 + A 12) Alternative 11 Alternative 12 

0.05 0.1000 0.0550 0.9984 0.2174 
0.10 0.1500 0.1100 0.9820 0.2462 
0.20 
0.50 
0.80 

0.2500 
0.5500 
0.8500 

0.2200 
0.5500 
0.8800 

0.9113 
0.8004 
0.9490 

0.3548 
0.8004 
0.9999 
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where P 1 andP 2 represent the population proportions for 
domains 1 and 2, respectively, and A21 is the hypothesized 
difference that the client wishes to detect 

The second Ibrm of the hypotheses is stated in terms of 
relative values of the domain proportions (sometimes 
refen-ed to as "relative risk"). Its general form is 

P 
H -  1 = 1 

o P2 

with the one-sided alternative 

P 
H1. 1 _ 1 + A22. 

P2 
If the client researcher wishes to fit log-linear models 

to the data, he or she may wish to state the hypothesis in 
terms of a model parameter. 

P 
H • In 1 - 0 with the one-sided alternative 

o t92 
r ~  

H 1 In t ' l  > A 
p 23 

2 
Since A 22 is a direct transfornaation of A 23 that does not 
depend on the level of P2 '  either hypothesis leads to 
equivalent results as is shown in the tables. 

The client researcher may plan to analyze the data 
using a logit transformation model and may also wish to 
state the hypothesis in terms of those parameters. With the 
common model reparameterization which makes domain 2 
the reference set, the model can be written as 

P 
In ' = o~ + [ 3 X + e  

(1 - p )  
whereX is set to one for domain 1 and zero for domain 2. 

I 

The relevant model parameter, [3 , can be represented in a 
design planning hypothesis test as" 

P1/(1 -P~) 
H l n  = 0 

o /).2/( 1 - / )2)  

with the one-sided alternative 

P1/( 1 -P1) 
Hi ln p2/(l_p: ) > A24 

As was the case with the log-linear model above, tests 
stated in terms of the odds ratio rather than the log odds 
ratio would yield equivalent results in this analysis. Kendall 
and Buckland (1971 ) note the regrettable use of the term 
"relative risk" tbr the odds ratio~ this interpretation can lead 
to errors in the interpretation of logistic regression 
parameter estimates. 

We continue to work with a one-sided test, a 
significance level of 0.05, and a planned power of 0.80 at 
the design scenario level of the population values• All of 
the above null and alternative hypothesis can be made 
equivalent Ibr a particular scenario and would lead to the 

same required sample size• We state this scenario in terms 
of the hypothesized lower domain value, 192 , and the choice 
of the alternative hypothesis as indicated by positive values 
of A21 , A22 , A23, or A24. Table 7 shows the 
planning scenarios covered• 

Tables 8 through 13 show the values of P1 under each 
alternative hypothesis formulation for selected values of 
P 2  In the two sample case, the level of the estimates is 
part of the scenario, but can be stated in words without 
referring to the assumed levels: e.g., the difference, the 
relative risk, the log-linear model parameter, or the log 
odds ratio. As formulated here for a one-sided test, Pe is 
treated as the hypothetically lower value • in fact, good target 
values forP 2 may not be known for the domains of interest 
in advance of the study. 

Certain conclusions can be drawn ti-om examining the 
data in Tables 8 through 13. The behavior of the power tbr 
tests of an absolute difference, A 11' follows the behavior 
in the one-sample case. It is safer to choose a scenario in 
the mid-range of possible values of P 2  this generates the 
largest sample size and provides more than adequate power 
if the design scenario assumptions are wrong. The next two 
tests are equivalent. The power associated with failure of 
the design scenario follows the behavior of the relative 
difference in the one-sample case. The power for logit 
model (log odds model) has somewhat of an inverse 
relationship to the behavior of the power for the absolute 
differences; it has its highest power in the mid-range and 
drops off at both extremes. 
4. I m p l i c a t i o n s  

While the results of this examination may be intuitively 
obvious to many statisticians, the whole area of the 
interpretation of model parameters and the testing of 
hypotheses about those parameters remains murky.. Ibr many 
general researchers and needs to be addressed directly by 
the consulting statistician. This is important as a means of 
avoiding disappointment with a planned study after the data 
are obtained. It is also important that the sampling 
statistician become aware of the actual planned analysis so 
that the hypotheses testing foITnulations used in developing 
the required sample size are consistent with those that will 
be used by the analyst. This requires effective 
communication between the sampling statistician and the 
researcher analyst. 
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Table 6. Power to Reject the Null Hypothesis Under Design Planning Scenario l e 
(Po - 0 . 8 0 ,  A l l  - 0 . 0 5 ,  A I2 - 0 . 0 6 2 5 ,  n = 3 6 8 )  

ActualP of most 
o 

interest 
True P given the alternative Power for: 

Po + ~ 11 Po( 1 + ~ 12) Alternative 11 Alternative 12 

0.05 0.1000 0.0531 0.9774 0.1598 
0.10 0.1500 0.1063 0.9039 0.1477 
0.20 0.2500 0.2125 0.7566 0.1671 
0.50 0.5500 0.5313 0.6082 0.3270 
0.80 0.8500 0.8500 0.8005 0.8005 

Table 7 Design Planning Scenarios for the Two Domain Problem 

Scenario 
Number 

2a 
2b 
2c 
2d 
2e 
2f 

Assumed 
/-.. 

1 

0.025 
0.050 
0.100 
0.200 
0.500 
0.800 

Absolute 
t21fference 

A 21 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 

Equivalent alternatives for assumed P 

A 22 
2.0000 
1.0000 
0.5000 
0.2500 
0.1000 
0.0625 

A 23 
1.09861 
0.69315 
0.40547 
0.22314 
0.09531 
0.06062 

A 24 
1.15126 
0.74721 
0.46262 
0.28768 
0.20067 
0.34831 

Sample Size 

238 
343 
540 
862 
1233 
714 

Actual 
P ? 

0.0250 
O.O500 

Table 8. Power to Reject Null Hypothesis Under Design Planning Scenario 2a 

21 
0.0750 
0.1000 

(P2 = . 0 2 5 ,  n - 2 3 8 )  

Value of P1 given the alternative 
22 

0.0750 
0.1500 

23 
0.0750 
0.1500 

24 
0.0750 
0.1427 

21 
0.8060 
0.6656 

Power to detect alternative 
22 

0.8060 
0.9783 

23 
0.8060 
0.9783 

24 
0.8060 
0.9644 

0.1000 0.1500 0.3000 0.3000 0.2600 0.5017 1.0000 1.0000 0.9985 
0.2000 0.2500 0.6000 0.6000 0.4415 0.3671 1.0000 1.0000 1.0000 
0.5000 0.5500 > 1 > 1 0.7597 0.2900 n.a. n.a. 1.0000 
0.8000 0.8500 > 1 > 1 0.9267 0.4168 n.a. n.a. 0.9923 

Actual 
P 2 

O.0250 
0.0500 
0.1000 

Table 9. Power to Reject Null Hypothesis Under Design Planning Scenario 2b 

21 
0.0750 
O. 1000 
O. 1500 

(P2 = . 0 5 0 ,  n - 3 4 3 )  
Value of 1)1 given the alternative 

22 
0.0500 
0.1000 
0.2000 

23 
0.0500 
0.1000 
0.2000 

24 
0.0514 
0.1000 
0.1900 

21 
0.9144 
0.8009 
0.6315 

Power to detect alternative 
22 

0.5313 
0.8009 
0.9795 

23 
0.5313 
0.8009 
0.9795 

24 
0.5621 
0.8009 
0.9570 

0.2000 0.2500 0.4000 0.4000 0.3455 0.4693 1.0000 1.0000 0.9962 
0.5000 0.5500 1 1 0.6786 0.3691 n.a. n.a. 0.9992 
0.8000 0.8500 > 1 > 1 0.8941 0.5313 n.a. n.a. 0.9637 

Actual 
P 2 

0.0250 
0.0500 
0.1000 
0.2000 
0.5000 
0.8000 

Table 10. Power to Reject Null Hypothesis Under Design Planning Scenario 2c 
(P2 = . 0 1 0 ,  n - 5 4 0 )  

Value of 1)1 given the alternative 
24 21 

Power to detect alternative 
22 23 24 21 22 23 

0.0750 0.0375 0.0375 0.0391 0.9838 0.3210 0.3210 0.3717 
0.1000 
0.1500 
0.2500 

0.0771 
0.1500 
0.2842 
0.6136 0.5500 

0.9307 
0.8000 
0.6267 
0.5001 

0.0750 
0.1500 
0.3000 
0.7500 

0.5208 
0.8000 
0.9848 
1.0000 

0.0750 
0.1500 
0.3000 

0.5208 
0.8000 
0.9848 
1.0000 0.7500 

0.5727 
0.8000 
0.9444 
0.9833 

0.8500 > 1 > 1 0.8640 0.6979 n.a. n.a. 0.8794 
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Actual 
Pg. 

0.0250 
21 

Table 11. Power to Reject Null Hypothesis Under Design Planning Scenario 2d 
(P~  = . 0 2 0 ,  n - 8 6 2 )  

Value of P1 given the alternative Power to detect alternative 
23 24 21 22 23 22 24 

0.0750 0.0313 0.0313 0.0331 0.9992 0.1948 0.1948 =l 
0.0500 0.1000 0.0625 0.0625 0.0656 0.9895 0.3019 0.3019 0.3976 

0.1250 
0.2500 
0.6250 

0.9329 
0.8002 
0.6679 

0.1500 
0.2500 
0.5500 

0.4990 
0.8002 
0.9998 

0.1250 
0.2500 
0.6250 

0.4990 
0.8002 
0.9998 

0.1000 
0.2000 
0.5000 

0.1290 
0.2500 
0.5714 

0.5979 
0.8002 
0.9085 

0.8000 0.8500 =1 =1 0.8421 0.8620 n.a. n.a. 0.7378 

Actual 

P2 
0.0250 
0.0500 

21 
0.0750 
O. 1000 

Table 12. Power to Reject Null Hypothesis Under Design Planning Scenario 2e 
(P2 = .050, n - 1233) 

Value of P l  given the alternative Power to detect alternative 
22 

0.0275 
23 

0.0275 
0.0550 0.0550 

0.1000 0.1500 0.1100 0.1100 
0.2000 
0.5000 
0.8000 

0.2200 
0.5500 
0.8800 

0.2200 
0.5500 
0.8800 

0.2500 
0.5500 
0.8500 

24 21 22 23 24 
0.0304 1.0000 0.1044 0.1044 0.2033 
0.0604 0.9990 0.1382 0.1382 0.3049 

0.9828 0.2018 0.2018 0.4637 0.1196 
0.2340 
0.5500 
0.8302 

0.9083 
0.8001 
0.9480 

0.3351 
0.8001 
0.9999 

0.3351 
0.8001 
0.9999 

0.6576 
0.8001 
0.6126 

Actual 

P2 
0.0250 
0.0500 

21 
0.0750 
0.1000 

Table 13. Power to Reject Null Hypothesis Under Design Planning Scenario 2f 
(P2 = .080, n - 714)  

Value of P l  given the alternative 
22 

0.0266 
0.0531 

23 
0.0266 
0.0531 

24 
0.0351 
0.0694 

21 
0.9966 

, , ,  

0.9744 

Power to detect alternative 
22 

0.0723 
0.0841 

23 
0.0723 
0.0841 

24 
0.2972 
0.4606 

0.1000 0.1500 0.1063 0.1063 0.1360 0.8878 0.1044 0.1044 0.6787 
0.2000 0.2500 0.2125 0.2125 0.2615 0.7319 0.1443 0.1443 0.8682 

0.5793 
0.8004 

0.7438 
0.8500 

0.6814 
0.8004 

0.7500 
0.8500 

0.5793 
0.8004 

0.7000 
0.8000 

0.7677 
0.8500 

0.7438 
0.8500 

0.8952 
0.8004 
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