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Introduction 

Data from complex surveys are often used to effi- 
ciently obtain estimates of population parameters. 
Variances of the estimators depend on the survey 
design and are often difficult to obtain analytically, 
especially for nonlinear statistics such as ratios or 
sample quantiles. Traditional methods for variance 
approximation, as discussed by Wolter (1985), in- 
volve one of two strategies: Taylor linearization or 
replication methods such as the bootstrap, the jack- 
knife, and balanced repeated replication (BRR). In 
cases where the estimators have a complex form (as 
in the case of quantiles), replication methods are pre- 
ferred by virtue of being easier to implement. A sam- 
ple quantile is the classic example of a nonsmooth 
estimator for which the standard delete-1 jackknife 
is known to give an inconsistent variance estimator 
(Shao and Wu, 1989). However, asymptotic consis- 
tency of BRR variance estimators for sample quan- 
tiles has been established by Shao and Wu (1992) for 
the case where the data  are observed without error. 

The problem we address in this paper arises in 
the analysis of food consumption data. The United 
States Department  of Agriculture conducts survey 
to assess the dietary adequacy of the population. 
An important  concept in analyzing data from these 
surveys is that  of usual intake, defined as the long- 
run average daily intake of a dietary component by 
an individual. To estimate distributions of usual in- 
take, surveys collect daily intake measurements on 
individuals for a small number of days. Due to the 
small number of observations per individual, the dis- 
tribution of individual mean intakes performs poorly 
as an estimate of the distribution of usual intakes. 

*This research was partly supported by Cooperative 
Agreement No. 58-3198-2-0006 with the Agricultural Re- 
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This is because the variance of the mean of a few 
daily intakes contains a sizable amount of within- 
individual variation. If we assume that  daily intakes 
of a dietary component for an individual measure 
the individual's usual intake with error, the prob- 
lem of est imating the distribution of usual intakes 
can be thought of as the problem of estimating the 
distribution of a random variable that  is observed 
subject to measurement error. Once an estimator 
of the the usual intake distribution is obtained, we 
can estimate the proportion of the population with 
usual intake of some nutrient (say calcium) below a 
given level by evaluating the estimated distribution 
function at that  value. 

Several characteristics of dietary intake data make 
statistical analysis difficult. Intake data  are non- 
negative, and the distributions of both daily in- 
takes and individual mean intakes are often highly 
skewed. Nuisance effects are often present in the 
data; daily consumption patterns differ according to 
day-of-week and month-of-year. Within-individual 
variances may vary across individuals, suggesting 
that  the measurement error variance is not con- 
stant. Nusser et al. (1996) propose a method, 
based on semiparametric transformations, to esti- 
mate usual intake distributions of dietary compo- 
nents consumed on a daily basis. The proposed 
method has several steps and addresses attributes of 
the data  mentioned above. A software package, C- 
SIDE, was developed to implement the procedure. 
The current version of C-SIDE estimates standard 
errors of usual intake percentiles using a form of 
Taylor linearization. These standard errors were de- 
rived under the assumption of simple random sam- 
pling and are not expected to perform well in the 
case of complex survey design. In this paper, we 
explore the use of balanced repeated replication and 
the jackknife as robust, computationally inexpensive 
alternatives to the Taylor linearization method in 
the special case of two-cluster-per-stratum designs. 
Our validation tool will be Monte Carlo simulation. 
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2 T h e  M o d e l  

Let ~ j ,  (i = 1 , . . . , n ) ,  (j = 1 , . . . , r )  denote the 
jth observed daily intake for individual i, and let 
yi =- E ( Y ~ j  l i) denote the usual intake for individ- 
ual i. We wish to estimate the marginal distribution 
function of the random variables yi. The transfor- 
mation that  maps observed daily intakes }/)j into 
normal-scale daily intakes X i j  is denoted by g(.). Es- 
t imation of g(.) is discussed in Nusser et al. (1996). 
We assume a measurement error model in the nor- 
mal scale: 

X i j  --  Xi Jr- Uij , (1) 

2 2 where x i  ~ NI(#a:,cra:); ui j  ~ N(0, cru); xi  is the 
normal-scale usual intake for individual i; Uij is the 
normal-scale measurement error for individual i on 
day j; the Uij a r e  independent given i; and xi  and 
u j k  are independent for all i, j ,  and k. Finally, a 
transformation h(.) that carries normal-scale usual 
intakes x i  to original-scale usual intakes Yi is ob- 
tained. We then estimate the pth percentile, Op, of 
the usual intake distribution by 

0p -- h(ft, + &a:(I)-l(p)), (2) 

where ~ and &a: are estimates of the measurement 
error model parameters, and ~-1 denotes the inverse 
of the standard normal distribution function. 

3 T a y l o r  L i n e a r i z a t i o n  for S R S  

The C-SIDE software mentioned in Section 1 esti- 
mates the standard error of 0p in (2) using Taylor 
linearization to approximate the variance of ~a: and 
&a:, and to approximate the variance of h(Qp), where 

O p  --  f/a: -t" O'x (I)-1 (P) .  

The effect of survey design on the variance compo- 
nent estimates and the function h(-) cannot easily 
be formulated mathematically, due to the nature of 
g(-) and h(-), so this particular linearization assumes 
that  the data  Y/j (and hence X i j )  are a simple ran- 
dom sample of daily intakes. 

Associated with the model in (1) is the ANOVA 
presented in Table 1, from which we obtain estima- 

Source df SS E(MS) 

Model n -  1 

Error n (r - 1) 

r t  

~ E ( x ,  - x  ) ~ ~o~ + ~  
i=1 

n T" 

E E ( x , ,  x , )  ~ , - -  . ( 7  u 

i=1 j = l  

Total n r -  1 

n r 

E E ( x , , - ~ , )  ~ 
i--1 j = l  

Table 1" Analysis of variance under SRS. 

2 and 2 .  tors of Px , o'x , O'u 

lfiz --  --  - -  X i j  , 
n r  

i=1 j = l  

1 t i f f  = (x~ - 2~ )~, 
u n (r - 1) i=1 j = l  

[ ^~  _ _1 ,. ( 2 , .  - 2 . . )~  - ~  
~rx - r n - 1 i=1 

(3) 

(4) 

(5) 

where 2 i . -  1 f i  X i j .  Under the mode l ( l )  
r 

j = l  

I ) ( ~ . ) - - 1 ^ 2  __1 ̂ 2 
n 0"a: q- n r  ° 'u 

is an unbiased estimator of V (p,) .  Because 

(6) 

n 
r 

< + ~,~ E (~ , -  ~)~ 
i--1 

2 
X n - 1  

independently of 

~ E  (x,j - ~ )~ 
i=1 j = l  

"~ X~(r-i), 

we have 

1 [2(cru2q-rcr2) 2 
v (~)  = -~ ~ - 1  + 

2~4 ] 
n ( r - -  1) 

which suggests the estimator 

1 [2 (&] + r&~) 2 

~ ? ( ~ ) - ~  n - 1  
2 4] 

n ( r -  1) " 

To estimate V (&a:)- V ( ~ )  we use the Taylor 
expansion of the square root function at the point 

2 to obtain O'a: 

1 2 

2v~ (~-  ~ ) .  
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It follows that  

so we take 

Define 

• 1 V (~=) ?-~V (~;) 

1 
- 

Qp -- ~x + O'x ~ -  1 (p) , 

Q; _ + ¢-1(p). 

(7) 

Then 0 v in (2)is simply h(Qp). To estimate the vari- 

ance of @, we use the Taylor expansion of h(Qp) at 
Qp to obtain 

h(O , , )  • h ( q , , ) +  

It follows that 

Oh( ) 
Ox ( ~p Qp ) 

0h(x)] 
• (8) 

An estimator of V(Qp) is given by 

'~')'(Op) -- V (~x )  -I- [ ( I ) - I  (p)] 2 V (o'x) , (9) 

where 1)' (fix) and I)' (ka) are as in (6) and (7), re- 
spectively. Combining (8) and (9), we obtain 

V(@) - -  Ox {V(/~,) 4- [ ~ - l ( p ) ]  2 ¢ ( k . )  • 

10) 
4 Taylor and B R R  in SRS 

The estimator @ of (2) is an estimator of a popula- 
tion quantile, but by construction is expected to be a 
smoother estimator than the usual sample quantile. 

^ 

To investigate the smoothness properties of 0p and 
to assess the general performance of BRR, we first 
consider the case where the observed daily intakes 
come from a simple random sample. In this case, 
the Taylor linearization method derived in Section 
3 is expected to yield acceptable standard error es- 
timates. In the simuiation, the usual intake distri- 
bution is constructed to be moderately skewed and 
to require a fair amount of effort to estimate with 
the C-SIDE software. For each of 1,000 samples, an 
observation Y/j for the jth day (j = 1, 2) on the ith 
individual (i = 1 , . . . ,  700) is generated as follows: 

• Draw xi, the individual's usual intake in normal 
scale from a N(0, 0.36) distribution. 

500 

o 200 

~6 

-~ 100 
b5 

0 

I I I 
• I 

I 
I 

I 

-3  -2  - t  0 1 
Normol Score 

I I 
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Y 

~_l , T 
- 4  2 5 4 

Figure 1: Transformation of Xij to Y}j. 

2 the measurement error variance, from • Draw o'ui, 
a discrete uniform distribution on the values 
0.32, 0.50, 0.64, 1.1. The measurement error 
variance distribution has mean 0.64 and vari- 
ance 0.0834. 

• Draw the measurement error u i j  from a normal 
2 distribution with mean zero and variance ~r~i , 

and form X i j  -- xi + uij ,  where Xi j  is the ob- 
served intake in normal scale. If Xi j  is less than 
-6.97, Xi j  is set to-6.97. 

By construction, the marginal distribution of Xi j  
2.5 has mean zero and unit variance. Let Y i j  - -  Lij , 

where Lij is a grafted cubic function of Xij. The 
function relating Y/j to X i j  is shown in Figure 1. 
The definition of Lij ensures that no power transfor- 
mation can be applied to the Y/j to achieve normally 
distributed daily intakes. 

For each sample, each individual's observed in- 
takes are randomly assigned to one of 32 approxi- 
mately equal-sized clusters, which are then grouped 

into 16 strata. Let Yi~ kl) denote the observation for 

the ith individual on the j th day, where the /th in- 
dividual has been assigned to cluster k of stratum 
l. The columns h~, (n = 1 , . . . ,  16), of a Hadamard 
matrix of order 16 are used to construct sixteen bal- 

half-samples as follows" Yi~ kl) is assigned to anced 
the n th half-sample if k = 1 and the /th element of 
h,~ is 1, or k = 2 and the/th element of h~ is -1 .  This 
procedure is equivalent to assigning weights 0 and 2 
to observations according to the standard BRR pro- 
cedure presented in McCarthy (1969). 

The usual intake distributions are estimated using 
C-SIDE for each of the sixteen half-samples and for 
the full sample. Let 0 denote the pth percentile of 

^ 

the usual intake distribution. Let Oi, (i = 1 , . . . ,  16) 

and 00 denote the estimates of 0 obtained from the 
ith half-sample and the full sample, respectively. We 
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Figure 2" Rat io of Mean Estimated Variance to True 
Variance in the SRS Simulation. 
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Figure 3" Coverage Probability of Nominal 95% CI 
in the SRS Simulation. 

take 00 as the point estimate of O, and compute the 
BRR estimate 

16 
~rB (0) -- (16) -I ~-~(0{ -- 00) 2 (ii) 

i=1 

Figures 2 and 3 show the results of the first sim- 
ulation. The true variance is taken to be the sam- 
ple variance of the 1,000 estimated percentiles for 
each value of p. The ratio of the average estimated 
variance to the true variance is shown in Figure 2. 
The observed coverage probabilities for nominal 95% 
confidence intervals constructed using the estimated 
standard errors are shown in Figure 3. In both Fig- 
ures, the dotted lines correspond to the Taylor es- 
t imates and the solid lines to the BRR estimates. 
Note that  we use a critical point of 1.96 for con- 
structing confidence intervals with the Taylor stan- 
dard errors, but a critical point of t.975,16 = 2.12 for 
the confidence intervals constructed with the BRR 
standard errors. The BRR variances average some- 
what higher than the Monte Carlo variances cr~ over 

the the first three-fourths of the distribution, and 
somewhat lower over the last fourth. The general 
performance of the BRR estimates is quite good, 
and in fact, is better than the Taylor estimates for 
percentiles in the tails. The Taylor estimates are 
also satisfactory, indicating that  estimated usual in- 
take quantiles may be sufficiently smooth for the 
jackknife (a replication approximation to Taylor lin- 
earization) to give acceptable results as well. 

5 A p p l i c a t i o n  to  the  C S F I I  

For the second set of simulations, we generate the 
observed daily intakes Y/j by resampling from a data 
set that  is a subset of the 1994 Continuing Survey of 
Food Intakes by Individuals (CSFII) conducted by 
the U.S. Department  of Agriculture. The CSFII was 
a multi-stage stratified area probability sample from 
the 48 coterminous states. The sample was divided 
into 43 variance estimation strata,  each with two 
clusters, and 43 sets of jacknife weights were con- 
structed to facilitate variance estimation. The ith 
set of j acknife weights deletes a randomly selected 
cluster from s t ra tum i and doubles the weights for 
the observations in the remaining cluster. The sub- 
set of the data  contains dietary intake data for 1082 
men between 20 and 59 years of age. Two daily 
intake observations were recorded for three dietary 
components for each individual. The nutrients iron, 
protein, and vitamin C were analyzed in Nusser et al. 
(1996). These three nutrients display a wide range 
of distributional behaviors, so that  if BRR and the 
jackknife perform satisfactorily for these nutrients, 
we will have some evidence that  they will perform 
well for a variety of dietary components consumed 
on a near-daily basis. The data  set also contains in- 
formation about nuisance effects such as day-of-week 
and interview sequence. 

The 1082 × 2 = 2164 observations in the base data  
set are used to create 1000 simulated data sets with 
43 two-cluster s t ra ta  as follows. 

• For the lth s t ra tum ( l -  1 , . . . ,  16), select num- 

bers kJ t) , (j - 1, 2) with replacement from the 
set {1,2}. 

Select multipliers m~ t) with replacement from 

the set { .90 , .91 , . . . ,1 .09 ,1 .10} .  Ifk~ t) - k~ t) 
and m~ t) - m~ t), then reselect m~ l) until the 

m~ l) are distinct. 

Multiply every daily intake observation in the 
(/)th /th mJ l) kj cluster of the s t ra tum by to form 
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two simulated pseudo-clusters for s t ratum l. 
The weight for each simulated observation is 
the weight for the generating observation in the 
base data  set. The values of the variables for 
day-of-week and interview sequence are simi- 
larly retained for the simulated data. Note that,  
under this procedure, the sizes of the simulated 
clusters are allowed to vary, in contrast to the 
procedure used in Section 4. 

For each of the 1000 simulated data sets, 44 bal- 
anced half-samples are constructed as described in 
Section 4, using a Hadamard matrix of order 44. 
Both BRR and Jackknife variance estimates are 
computed for selected percentiles for each of the six 
dietary components. BRR variance estimates are 
obtained using the formula 

44 

l)s (0) - (44) - 1 E ( 0 i  - 00) 2 (12) 
i = 1  

where 0i is computed using the i th half-sample. 
Jacknife variance estimates are obtained using the 
formula 

43 

tYj (t?) - E ( t ? i  - 00) 2 (13) 
i----1 

where 0i is computed using the i th set of jackknife 
weights. 

Adjustments for day-of-week and interview se- 
quence effects are made separately for each parent 
sample and replicate sample. The results of the sec- 
ond simulation for the nutrients protein, iron, and 
vitamin A are given in Figures 4-9. 

The ratios of the average estimated variance to 
the true variance are shown in Figures 4-6 for the 
three dietary components. The observed coverage 
probabilities for nominal 95% confidence intervals 
constructed using the estimated standard errors are 
shown in Figures 7-9. In all of these Figures, the 
dotted lines correspond to the jackknife estimates 
and the solid lines to the BRR estimates. Note that  
we use a critical point of t .975,43 -- 2.01 for the confi- 
dence intervals constructed with both kinds of stan- 
dard errors, even though 44 replicates were used to 
construct the BRR standard errors. In the case of a 
linear statistic, the BRR procedure reproduces the 
textbook estimator of variance, which would have 
43 degrees of freedom. Hence, we assume the same 
holds true for our nonlinear statistic, the usual in- 
take quantile. 

In general, both the BRR and jackknife variance 
estimates are conservative, but the BRR estimates 

are less biased. However, confidence intervals con- 
structed with the estimated variances are rather lib- 
eral, suggesting that  the distributions of usual intake 
quantiles are heavier-tailed than the t-distribution. 
The larger positive bias of the jackknife variance es-  

t i m a t o r  therefore yields more "accurate" confidence 
intervals. 

6 Summary 

Our simulation studies suggest that  both the bal- 
anced repeated replication method and the delete-1 
jackknife method yield generally acceptable variance 
estimates. Both methods yield conservative variance 
estimates, but somewhat liberal confidence intervals. 
The performance of the estimates varies quite a bit 
on a per-nutrient basis. The BRR method is less bi- 
ased than the jackknife, and is expected to be more 
stable than the jackknife method when the measure- 
ment error variance is small, in which case the usual 
intake distribution is almost identical to the daily 
intake distribution. 
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Figure 4: Ratio of Mean Estimated Variance to True 
Variance for Iron in the CSFII Simulation. 

Figure 7" Coverage Probability of Nominal 95% CI 
for Iron in the CSFII Simulation. 
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Figure 5" Ratio of Mean Estimated Variance to True 
Variance for Protein in the CSFII Simulation. 

Figure 8: Coverage Probability of Nominal 95% CI 
for Protein in the CSFII Simulation. 

Vi tamin  C 

1.61 

1.54 

o ® 1 .4 t  / 
c"  

o 1 . 3  4 .- - "- . / 

o 1.1- t  

.£ I ~6 1.o 
t w  I 

| | | ! i i I i i ! 1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Percent i le 

V i tamin  C 

0.99. 
o 0 . 9 8  

u~ 0 . 9 7 ,  

o 0.95 ~ " ~  y : -  0 . 9 4  

o 0 . 9 3  
x~ 
o 0 . 9 2  
L 

o_ 0.91 

u~ 0 . 9 0 1  
o 
L 0 . 8 9 4  
Q )  1 i ! i 1 i i i | ! 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
o Percent i le 

Figure 6: Rat io  of Mean Est imated  Variance to True 
Variance for V i t a m i n  C in the CSFII  Simulation.  

Figure 9" Coverage Probability of Nominal 95% CI 
for Vitamin C in the CSFII Simulation. 
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