1. INTRODUCTION

Krewski and Rao (1981) and Rao and Wu (1985) explore the design based properties of the jackknife variance estimator under a stratified multi-stage design using with replacement sampling at the first stage. Their results, although fairly general, cannot be directly applied to many multi-phase sampling designs.

In this paper, we consider a specific two-phase design: at the first phase, primary sampling units (PSUs) are drawn within each first phase stratum using Simple Random Sampling (SRS) with replacement (WR). Then, all units within the sampled PSUs are selected, resulting in a one-stage take-all cluster design. At the second phase, the entire first phase sample is restratified, and second phase units are drawn according to SRS without replacement (WOR) from each of the second phase strata. Several surveys at Statistics Canada use designs very similar to this one, such as the International Adult Literacy Survey on the social side, and the Quarterly Retail Commodity Survey on the business side.

To estimate a total in this context, it is common to use the Double Expansion Estimator (or \(\pi^* \)-Estimator, in the parlance of Särndal, Swensson and Wretman (1992)). For this estimator, each of the subsampled units is multiplied by the product of its inverse sampling rates at each phase and then summed. Although the Double Expansion Estimator is more easily located in textbooks, an estimator that is more commonly used in practice is the Reweighted Expansion Estimator, especially when unit nonresponse is treated as a second phase of sampling. (See Rao and Shao (1992)). Although both of these estimators behave well from the standpoint of point estimation, Kott (1995) has suggested that under the above design, the jackknife variance will behave reasonably well for the Reweighted Expansion Estimator but not for the Double Expansion Estimator. The investigation of that conjecture is the focus of this paper.

The organization of this paper is as follows: Section 2 introduces all of the point estimators and Section 3 gives their corresponding jackknife variance estimators. In Section 4, the results of a simulation study are given, in which the finite sample properties of the point estimators and their corresponding jackknife variance estimators are investigated. Finally, in Section 5, some concluding remarks are made.

2. THE POINT ESTIMATORS

Suppose the parameter of interest to be estimated is the population total, \(T = \sum_{i \in U} y_i \), where \(y_i \) is the value of interest for unit \(i \) and \(U \) is the set of all finite population units. Suppose, further, that the two-phase design described in the introduction is assumed.

If the entire first phase sample is available, one could use a Full First Phase Estimator (FFPE) given here in terms of two-phase notation as:

\[
G = \sum_{g=1}^{G} \sum_{i \in S_g} w_i y_i
\]

where \(g (=1, \ldots, G) \) is the index for the second phase strata, \(S_g \) is the set of sampled first phase units that fall in second phase stratum \(g \), and \(w_i \) is the first phase weight for sampled unit \(i \).

On the other hand, if only second phase units are available, one could use the Double Expansion Estimator (DEE) or \(\pi^* \)-estimator, given by:

\[
t_2 = \sum_{g=1}^{G} \sum_{i \in s_g} \frac{M_g}{m_g} w_i y_i
\]

where \(s_g \) is the set of sampled second phase units in second phase stratum \(g \), \(M_g \) is the number of sampled first phase units in second phase stratum \(g \), and \(m_g \) is the number of sampled second phase units in second phase stratum \(g \).

Kott (1995) has suggested that, in terms of jackknife
variance estimation, a better choice of estimator to use would be the Reweighted Expansion Estimator (REE), given by:

\[t_3 = \sum_{g=1}^{G} \left(\sum_{i \in S_g} w_i \frac{M_g \cdot w_i y_i}{\sum_{i \in S_g} M_g \cdot w_i} \right) = \sum_{g=1}^{G} \sum_{i \in S_g} w_i^* y_i \]

where

\[w_i^* = \frac{\sum_{i \in S_g} w_i}{\sum_{i \in S_g} w_i}, \quad i \in S_g. \]

It is the formulation on the right hand side of equation (3), in terms of \(w_i^* \), that gives the Reweighted Expansion Estimator its name. Notice that the second phase inverse inclusion probabilities, \(M_g / m_g \), cancel out, so that this formulation is reminiscent of a "reweighting" within classes that one would use if one had unit nonresponse and were treating it as a second phase of sampling.

Since it is common for many household and business surveys to benchmark their final weights to known external control totals, it is of interest to consider a simple poststratified version of the Reweighted Expansion Estimator (SP-REE) as well as a simple poststratified version of the Double Expansion Estimator (SP-DEE). The former is given by:

\[t_3(SP) = \sum_p (N_p/\hat{N}_p) \sum_{g} \sum_{i \in S_{pg}} w_i^* y_i \]

where \(\hat{N}_p = \sum_{g} w_i^* \) and where \(S_p \) represents that part of the first phase sample which falls into poststratum \(p \).

3. THE JACKKNIFE VARIANCE ESTIMATORS

Following Rust (1985), the jackknife variance estimator, \(v_f ; f=1 \text{ or } 2 \text{ or } 3 \), is defined here as:

\[v_f = \frac{1}{n_f} \sum_{h=1}^{H_f} \sum_{i \in F_h} (t_f(h) - t_f)^2; \quad f=1,2,3 \]

where \(h(=1,\ldots,H_f) \) is the index for the first phase strata, \(n_h \) is the number of PSUs selected in stratum \(h \) at the first phase, and \(F_h \) the set of sampled PSUs in stratum \(h \). Finally, \(t_f(h) \) is called the replicate estimator, and will be defined next.

For the Reweighted Expansion Estimator \(f=3 \), the replicate estimator is formed by recalculating the Reweighted Expansion Estimator, \(t_3 \), after removing the \(j^{th} \) PSU from the \(h^{th} \) stratum by reweighting to reflect the removal. That is,

\[t_3(h) = \sum_{h'=1}^{H_f} \left(\sum_{i \in S_{h'}} w_{h'j} y_i \right) \sum_{i \in S_{h'}} w_{h'j} \]

where \(w_{h'j} = \frac{n_{h'-1} w_{h'j}}{n_{h'-1} w_{h'j}} \) if \(h'=h, j \neq h \)

\[w_{h'j} = \frac{n_{h'-1} w_{h'j}}{n_{h'-1} w_{h'j}} \] if \(h'=h, j \neq h \)

and where \(w_{h'j} \) is the first phase weight for individual \(i \) in PSU \(j' \) and first phase stratum \(h' \).
For the Double Expansion Estimator ($f=2$), in defining the replicate estimator, it is not clear whether it is better to reweight only the first phase weights, $w_{hj}^{(1)}(h)$, as in Variant 1 given below, or both the first phase weights and the second phase weights M_{gj}/m_{gj}, as in Variant 2 given below.

Variant 1 is given by:

$$t_2(hj) = \sum_{g=1}^{G} \sum_{i \in s_g} \frac{M_g}{m_g} w_{hj}^{(1)}(h) y_i$$

(10)

and **Variant 2 is given by:**

$$t_2^*(hj) = \sum_{g=1}^{G} \sum_{i \in s_g} \frac{M_{gj}}{m_{gj}} w_{hj}^{(1)}(h) y_i$$

(11)

where

$$M_{gj} = M_g \text{ minus the number of selected first phase individuals falling in second phase stratum } g \text{ and PSU } j$$

and

$$m_{gj} = m_g \text{ minus the number of selected second phase individuals falling in second phase stratum } g \text{ and PSU } j.$$

As we shall see, neither produces a jackknife variance which tracks the true mean squared error (MSE) well.

The replicate estimator for the Full First Phase Estimator is straightforward and is given by:

$$t_1(hj) = \sum_{g=1}^{G} \sum_{i \in s_g} w_{hj}^{(1)}(h) y_i$$

(12)

4. **A MONTE CARLO SIMULATION STUDY**

4.1 **Design of the Study**

The main contention of this paper is that the jackknife estimator based on the Reweighted Expansion Estimator should behave much better than that based on the Double Expansion Estimator. In order to see if this was the case, we undertook a Monte Carlo simulation study in which we investigated the finite sample frequentist properties of both jackknife variance estimators.

December 1990 Canadian Labour Force Survey (LFS) sample data for the province of Newfoundland was used to simulate a finite population, from which repeated samples were drawn. The LFS is the largest ongoing household sample survey conducted by Statistics Canada. Monthly data relating to the labour market is collected using a complex multi-stage sampling design with several levels of stratification. The details of the design of the survey prior to the 1991 redesign can be found in Singh, Drew, Gambino and Mayda (1990). In general, provinces are stratified into "economic regions", which are large areas of similar economic structure; Newfoundland has four such economic regions. The economic regions are further substratified into lower level substrata. Now, the lowest level of stratification in Newfoundland yielded 45 strata, each of which contained less than 6 primary sampling units (PSUs), which was an insufficient number from which to sample for the purposes of the simulation. Thus, the 45 strata were collapsed down to 18, each containing between 6 and 18 PSUs. In collapsing the strata, economic regions were kept intact, as were the Census Metropolitan Areas (CMAs) of St. John’s and Cornerbrook.

For the Monte Carlo study, $R = 4000$ samples, were drawn from the Newfoundland "population" (consisting of 9152 individuals), according to the following two-phase design: within each first phase stratum, two PSUs were selected at the first stage using simple random sampling (SRS) with replacement (WR), yielding a total of 36 PSUs. All households within selected first phase PSUs (as well as individuals within those households) were selected, resulting in a one-stage take-all cluster sample. At the second phase, all selected first phase units (individuals) were restratified according to five age categories ($< = 14, 15-24, 25-44, 45-64, > = 65$), and second phase units (individuals) were drawn according to SRS without replacement (WOR) sampling within each of the five second phase strata. We varied the second phase sample size to take on values $m = 5, 10, 20, \text{ and } 50$, yielding overall second phase sample sizes of $m = 25, 50, 100, \text{ and } 250$. We even drew 4000 full first phase samples ($m_g = M_g$), in order to calculate full first phase estimators for the sake of comparison.

We took as the parameter of interest: T, the total
number of employed, where \(T = \sum_{i \in U} y_i = \sum_{i=1}^{952} y_i \) and \(y_i = 1 \) if individual \(i \) was employed; 0 else. For each of the \(R = 4000 \) samples, we calculated the Reweighted Expansion Estimator (REE), \(t_1 \), given by equation (3) and the Double Expansion Estimator (DEE), \(t_2 \), given by equation (2), as well as their poststratified counterparts, given in equations (5) and (6), respectively. For the poststratified versions, we took the poststrata to be the four economic regions of Newfoundland; these economic regions are aggregates of first phase strata. Given that one can never improve on an estimator based on the full first phase sample, for the sake of comparison we also considered the full first phase sample estimator (FFPE), \(t_1 \), given in equation (1), as well as its poststratified counterpart, given in equation (7).

For each of the \(R = 4000 \) second phase samples, we calculated the jackknife variance corresponding to the Reweighted Expansion Estimator and the Double Expansion Estimator, given by equation (8) with \(f = 3 \) and \(f = 2 \) respectively. In the case of the Double Expansion Estimator, we attempted both variants defined in equations (10) and (11). We also attempted jackknife variances for simple poststratified versions each of the above (SP-REE, SP-DEE (variant 1) and SP-DEE (variant 2)). For each of the \(R = 4000 \) first phase samples, we calculated the jackknife variance corresponding to the full first phase estimator, given by equation (8) with \(f = 1 \). We also attempted the jackknife variance of the simple poststratified full first phase estimator (SP-FFPE).

For all of the above estimators and their corresponding jackknife variances, a number of frequentist properties were investigated. These are given below.

(A) The percent relative bias of the estimated number of employed with respect to the population value is estimated by:

\[
E_M(t^*) - T \over T \times 100 \tag{13}
\]

where

\[
E_M(t^*) = \frac{1}{4000} \sum_{r=1}^{4000} t_r^*
\]

is the Monte Carlo expectation of the point estimator \(t^* \) taken over the 4000 samples. Here \(t^* \) can be either \(t_1, t_1(SP), t_2, t_2(SP), t_3 \) or \(t_4(SP) \), and \(t_r^* \) is the value of \(t^* \) for sample \(r \).

(B) The percent relative bias of the jackknife variance estimator with respect to the estimated true mean squared error is estimated by:

\[
\frac{(E_M(v_{j'}(t^*)) - MSE_{true})}{MSE_{true}} \times 100 \tag{14}
\]

where

\[
E_M(v_{j'}(t^*)) = \frac{1}{4000} \sum_{r=1}^{4000} v_{j'}(t_r^*)
\]

and

\[
MSE_{true} = \frac{1}{4000} \sum_{r=1}^{4000} (t_r^* - T)^2
\]

and \(v_{j'}(t_r^*) \) is the value of \(v_{j'}(t^*) \) for sample \(r \).

(C) The percent coefficient of variation of the jackknife variance with respect to the estimated true MSE is estimated by:

\[
\sqrt{\frac{1}{4000} \sum_{r=1}^{4000} \left(v_{j'}(t_r^*) - MSE_{true} \right)^2} \times 100, \tag{15}
\]

i.e., the root mean squared error of the variance estimator divided by the estimated true MSE, expressed as a percentage.

4.2 Results of the Study

Table 1 ahead gives the percent relative biases of the six point estimates for the total number of employed using equation (13). All biases are less than 1% in absolute value, except for the two poststratified second phase estimators, SP-REE and SP-DEE, when \(m = 10 \) and 5. Even so, all estimators behave reasonably in terms of point estimation, as expected.
Table 2 ahead gives the percent relative biases of the jackknife variances for the total number of employed using equation (14). The Full First Phase Estimator’s variance is almost perfectly unbiased, at 0.94%. Among the second phase estimators, the Reweighted Expansion Estimator clearly comes out the winner, having small negative biases in the variances always less than 6% in absolute value. The biases become increasingly negative as the second phase sample sizes diminish. Both variants of the Double Expansion Estimator fail miserably, with very large positive biases in the variances ranging from 46.35% to 1997.51%! The second variant is worse than the first, but both are well beyond the realm of acceptable behaviour. In the case of simple poststratification, the variance of the Full First Phase Estimator exhibits a small positive bias of 3.3%. The poststratified version of the Reweighted Expansion Estimator still behaves reasonably well, exhibiting biases in the variances between 4.88% and 12.03%. However, both variance variants of the poststratified versions of the Double Expansion Estimator behave poorly, although not as poorly as in the cases without poststratification. Here, the biases in the variances range between 22.39% and 50.03%. As before, variant 2 is worse than variant 1.

Although most studies focus on the bias of the variance estimators, it is also of secondary interest to look at the coefficient of variation of the variance estimators to see how stable the variance estimates themselves are. In Table 3, we investigate the coefficients of variation corresponding to the total number of employed. In equation (15), the expression under the square root in the numerator gives the MSE of the variance, whose component parts are the square of the bias of the variance and the variance of the variance. For those entries in Table 2 where the bias of the variance has been determined to be exceedingly large (say larger than 20%), the corresponding entries in Table 3 are not reported (indicated by a *), since it is clear that those entries will be excessively large. In Table 3, the coefficients of variation corresponding to the Reweighted Expansion Estimator range between 46.86% and 53.42%, while those of its poststratified counterparts range between 50.26% and 71.03%. There seems to be a tendency for the variances to become more unstable as the second phase sample sizes diminish, which is not surprising. Coefficients of variation of the magnitude exhibited here, although large, are typical for variance estimators, and have been encountered in other simulation studies relating to variances. See, for example, Kovačević, Yung and Pandher (1995). To that end, note that even the coefficients of variation corresponding to the Full First Phase Estimators are in the same range, and in fact, somewhat higher than those of the second phase estimators in certain cases.

5. SUMMARY

The main purpose of this paper was to show that a simple jackknife variance estimator works well under a specific two-phase sampling strategy, provided the Reweighted Expansion Estimator is used in the estimation strategy and not the Double Expansion Estimator. A Monte Carlo simulation study supported these results, even using small second phase sample sizes of magnitude 5 and 10.

REFERENCES

Table 1 - Percent Relative Bias of the Point Estimates for Total Number of Employed

<table>
<thead>
<tr>
<th>ESTIMATOR</th>
<th>(m_g = M_g)</th>
<th>(m_g = 50)</th>
<th>(m_g = 20)</th>
<th>(m_g = 10)</th>
<th>(m_g = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>--</td>
<td>0.14</td>
<td>-0.3</td>
<td>-0.29</td>
<td>-0.56</td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>0.16</td>
<td>-0.01</td>
<td>0.03</td>
<td>0.115</td>
</tr>
<tr>
<td>FFPE</td>
<td>0.04</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SP-REE</td>
<td>--</td>
<td>-0.08</td>
<td>-0.93</td>
<td>-1.96</td>
<td>-4.44</td>
</tr>
<tr>
<td>SP-DEE</td>
<td>--</td>
<td>-0.05</td>
<td>-0.71</td>
<td>-1.67</td>
<td>-3.98</td>
</tr>
<tr>
<td>SP-FFPE</td>
<td>0.06</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 2 - Percent Relative Bias of Jackknife Variances for Total Number of Employed

<table>
<thead>
<tr>
<th>ESTIMATOR</th>
<th>(m_g = M_g)</th>
<th>(m_g = 50)</th>
<th>(m_g = 20)</th>
<th>(m_g = 10)</th>
<th>(m_g = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>--</td>
<td>-0.99</td>
<td>-2.51</td>
<td>-5.81</td>
<td>-5.13</td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>46.35</td>
<td>68.24</td>
<td>78.18</td>
<td>86.22</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>101.59</td>
<td>278.44</td>
<td>654.99</td>
<td>1997.51</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFPE</td>
<td>0.94</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SP-REE</td>
<td>--</td>
<td>4.88</td>
<td>6.42</td>
<td>12.03</td>
<td>9.20</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-DEE</td>
<td>--</td>
<td>28.52</td>
<td>32.04</td>
<td>35.33</td>
<td>22.39</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-DEE</td>
<td>--</td>
<td>33.50</td>
<td>40.62</td>
<td>50.03</td>
<td>46.41</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-FFPE</td>
<td>3.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 3 - Percent Coefficient of Variation of Jackknife Variances for Total Number of Employed

<table>
<thead>
<tr>
<th>ESTIMATOR</th>
<th>(m_g = M_g)</th>
<th>(m_g = 50)</th>
<th>(m_g = 20)</th>
<th>(m_g = 10)</th>
<th>(m_g = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE</td>
<td>--</td>
<td>51.33</td>
<td>49.30</td>
<td>46.86</td>
<td>53.42</td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>--</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFPE</td>
<td>56.71</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SP-REE</td>
<td>--</td>
<td>50.26</td>
<td>58.26</td>
<td>63.82</td>
<td>71.03</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-DEE</td>
<td>--</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(Variant 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-DEE</td>
<td>--</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(Variant 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-FFPE</td>
<td>58.10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>