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1. INTRODUCTION 
Krewski and Rao (1981) and Rao and Wu (1985) 
explore the design based properties of the jackknife 
variance estimator under a stratified multi-stage 
design using with replacement sampling at the first 
stage. Their results, although fairly general, cannot be 
directly applied to many multi-phase sampling designs. 

In this paper, we consider a specific two-phase design: 
at the first phase, primary sampling units (PSUs) are 
drawn within each first phase stratum using Simple 
Random Sampling (SRS) with replacement (WR). 
Then, all units within the sampled PSUs are selected, 
resulting in a one-stage take-all cluster design. At the 
second phase, the entire first phase sample is 
restratified, and second phase units are drawn 
according to SRS without replacement (WOR) from 
each of the second phase strata. Several surveys at 
Statistics Canada use designs very similar to this one, 
such as the International Adult Literacy Survey on the 
social side, and the Quarterly Retail Commodity 
Survey on the business side. 

To estimate a total in this context, it is common to 

use the Double Expansion Estimator (or n*- 
Estimator, in the parlance of S/irndal, Swensson and 
Wretman (1992)). For this estimator, each of the 
subsampled units is multiplied by the product of its 
inverse sampling rates at each phase and then 
summed. Although the Double Expansion Estimator 
is more easily located in text books, an estimator that 
is more commonly used in practice is the Reweighted 
Expansion Estimator, especially when unit 
nonresponse it treated as a second phase of sampling. 
(See Rao and Shao (1992)). Although both of these 
estimators behave well from the standpoint of point 
estimation, Kott (1995) has suggested that under the 
above design, the jackknife variance will behave 
reasonably well for the Reweighted Expansion 
Estimator but not for the Double Expansion 
Estimator. The investigation of that conjecture is the 
focus of this paper. 

The organization of this paper is as follows: Section 2 
introduces all of the point estimators and Section 3 
gives their corresponding jackknife variance 
estimators. In Section 4, the results of a simulation 
study are given, in which the finite sample properties 
of the point estimators and their corresponding 
jackknife variance estimators are investigated. Finally, 
in Section 5, some concluding remarks are made. 

2. THE POINT ESTIMATORS 
Suppose the parameter of interest to be estimated is 

the population total, T - ~ Yi, where Yi is the value 

of interest for unit i and U is the set of all f'mite 
population units. Suppose, further, that the two-phase 
design described in the introduction is assumed. 

If the entire first phase sample is available, one could 
use a Full First Phase Estimator (FFPE) given here in 
terms of two-phase notation as: 

G 

E E wiYi 
g=l ieS~ 

(1) 

where g (=1,...,6') is the index for the second phase 

strata, S~ is the set of sampled first phase units that 

fall in second phase stratum g, and w i is the first 

phase weight for sampled unit i .  

On the other hand, if only second phase units are 
available, one could use the Double Expansion 

Estimator (DEE) or g*-estimator, given by: 

G 

t2 = E E - -  Me w, yf (2) 
g=l ie% mg 

where sg is the set of sampled second phase units in 

second phase stratum g M is the number of ' g 

sampled first phase units in second phase stratum g, 
and mg is the number of sampled second phase units 

in second phase stratum g. 

Kott (1995) has suggested that, in terms of jackknife 
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variance estimation, a better choice of estimator to 
use would be the Reweighted Expansion Estimator 
(REE), given by: 

t3 
G 

E (E w, 
g=l i~$ z 

E gg wiYi G 
i~sg m s $ 

) = E E wigYi 

~sg m g 

(3) 

where 

E W i 
, iESg 

wig = w i ~ ;  ies 8" (4) 
wi 

i %  

P g i~st~ 

w - E  E 
g i~s~ 

(6) 

and where wis = wi(M/ms); iEss. Note that if 
poststrata are defined to be the same as second phase 
strata, then t2(SP ) = q(se). Finally, a simple 
poststratified version of the Full First Phase Estimator 
(SP-FFPE) is given by: 

tI(SP) = 2 (Np/I~[;*)2 wiYi 
p iE$p 

= 

iesp 

(7) 

It is the formulation on the right hand side of 

equation (3), in terms of wi~, that gives the 
Reweighted Expansion Estimator its name. Notice 
that the second phase inverse inclusion probabilities, 

Ms~ms, cancel out, so that this formulation is 
reminiscent of a "reweighting" within classes that one 
would use if one had unit nonresponse and were 
treating it as a second phase of sampling. 

Since it is common for many household and business 
surveys to benchmark their f'mal weights to known 
external control totals, it is of interest to consider a 
simple poststratified version of the Reweighted 
Expansion Estimator (SP-REE) as well as a simple 
poststratified version of the Double Expansion 
Estimator (SP-DEE). The former is given by: 

t3(SP) = E (Np[Iflp)E E wi*gYi 
P g i~st~ 

w = E E 
g i~st~ 

(5) 

and where p is the index for the poststrata (different 
from g which is the index for second phase strata). 
Here, N represents the known external count for 

poststratum p.  In addition, s s represents that part of 

the second phase sample which falls into poststratump 

and second phase stratum g, and w,g is given in 
equation (4). The Simple Poststratified Double 
Expansion Estimator is given by: 

and where S represents that part of the first phase 

sample which falls into poststratum p.  

3. THE JACKKNIFE VARIANCE ESTIMATORS 
Following Rust (1985), the jackknife variance 

estimator, vj/; (f=l or 2 or 3), is defined here as: 

tt nh_ 1 
v# : ~ ~ (tl(hj) - t/)z; f= 1,2,3 (8) 

h=l nh ]¢eh 

where h(=l,...,/-/) is the index for the first phase 
strata, n h is the number of PSUs selected in stratum 

h at the first phase, and F h the set of sampled PSUs 

in stratum h. Finally, tf(hj) is called the replicate 
estimator, and will be def'med next. 

For the Reweighted Expansion Estimator (/'=3), the 
replicate estimator is formed by recalculating the 
Reweighted Expansion Estimator, t3, after removing 

the j~  PSU from the h th stratum by reweighting to 
reflect the removal. That is, 

o ~ whg/i(hj)yi 
t,(hj) = ~ (~_~ whg,~(hj) t% ) (9) 

r-1 icS, ~ whg, i (h  J) 
i% 

0 ff h/=h, j/=j 
%, 

where Whg~(hj) = %,-1 wh3/i ff h/=h' j t , j  

Whg, ~ ff h/*h 
and where Wh,j,~(-- W~) is the first phase weight for 

individual i in PSU j /  and first phase stratum h / . 
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For the Double Expansion Estimator (/'=2), in 
defining the replicate estimator, it is not clear whether 
it is better to reweight only the first phase weights, 
whg+i(hj), as in Variant 1 given below, or both the first 

phase weights and the second phase weights M ~ / m a  , 
as in Variant 2 given below. 

Variant 1 is given by: 

G 

t2(hj) = ~., ~_, Mgwh)~i(hj)yi 
g--t i %  m e 

(10) 

and Variant 2 is given by: 

G 

q (hj  - E E M" Y, 
g=l  ics t m~ 

(11) 

where 

M .  - M minus the number of selected 
gd g 

first phase individuals falling in 
second phase stratum g and PSU j 

and 

m .  = m minus the number of selected g/ g 

second phase individuals falling in 
second phase stratum g and PSU j .  

As we shall see, neither produces a jackknife variance 
which tracks the true mean squared error (MSE) well. 

The replicate estimator for the Full First Phase 
Estimator is straightforward and is given by: 

G 

t I (hJ) = E E Wh~'li(h]) Yr 
g=l  i~Sg 

(12) 

It is also possible to define jackknife variance 

estimators for t 1 (SP), t 2 (SP), and t 3 (SP) in an 
analogous way. The only noteworthy difference is that 
the poststratification must be recalculated after each 
PSU removal, to ensure a proper jackknife. 

4. A MONTE CARLO SIMULATION STUDY 

4.1 Design of the Study 
The main contention of this paper is that the jackknife 
based on the Reweighted Expansion Estimator should 
behave much better than that based on the Double 

Expansion Estimator. In order to see if this was the 
case, we undertook a Monte Carlo simulation study in 
which we investigated the f'mite sample frequentist 
properties of both jackknife variance estimators. 

December 1990 Canadian Labour Force Survey (LFS) 
sample data for the province of Newfoundland was 
used to simulate a finite population, from which 
repeated samples were drawn. The LFS is the largest 
ongoing household sample survey conducted by 
Statistics Canada. Monthly data relating to the labour 
market is collected using a complex multi-stage 
sampling design with several levels of stratification. 
The details of the design of the survey prior to the 
1991 redesign can be found in Singh, Drew, Gambino 
and Mayda (1990). In general, provinces are stratified 
into "economic regions", which are large areas of 
similar economic structure; Newfoundland has four 
such economic regions. The economic regions are 
further substratified into lower level substrata. Now, 
the lowest level of stratification in Newfoundland 
yielded 45 strata, each of which contained less than 6 
primary sampling units (PSUs), which was an 
insufficient number from which to sample for the 
purposes of the simulation. Thus, the 45 strata were 
collapsed down to 18, each containing between 6 and 
18 PSUs. In collapsing the strata, economic regions 
were kept intact, as were the Census Metropolitan 
Areas (CMAs) of St. John's and Cornerbrook. 

For the Monte Carlo study, R = 4000 samples, were 
drawn from the Newfoundland "population" (consisting 
of 9152 individuals), according to the following two- 
phase design: within each first phase stratum, two 
PSUs were selected at the first stage using simple 
random sampling (SRS) with replacement (WR), 
yielding a total of 36 PSUs. All households within 
selected first phase PSUs (as well as individuals within 
those households) were selected, resulting in a one- 
stage take-all cluster sample. At the second phase, all 
selected first phase units (individuals) were restratified 
according to five age categories (< = 14, 15-24, 25-44, 
45-64, > = 65), and second phase units (individuals) 
were drawn according to SRS without replacement 
(WOR) sampling within each of the five second phase 
strata. We varied the second phase sample size to take 

on values m = 5, 10, 20, and 50 yielding overall g 

s e c o n d  p h a s e  s a m p l e  s i z e s  o f  

m -- 25, 50,100, and 250. We even drew 4000 full first 

phase samples (rag - Mg), in order to calculate full 
first phase estimators for the sake of comparison. 

We took as the parameter of interest: T, the total 
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9152 

number of employed, where T = ~ Yi = ~ Y, and 
i E U  i=1 

Yt = 1 if individual i was employed; 0 else. For each 

of the R = 4000 samples, we calculated the 
Reweighted Expansion Estimator (REE), t3, given by 
equation (3) and the Double Expansion Estimator 
(DEE), t2, given by equation (2), as well as their 
poststratified counterparts, given in equations (5) and 
(6), respectively. For the poststratified versions, we 
took the poststrata to be the four economic regions of 
Newfoundland; these economic regions are aggregates 
of first phase strata. Given that one can never improve 
on an estimator based on the full first phase sample, 
for the sake of comparison we also considered the full 
first phase sample estimator (FFPE), tt, given in 
equation (1), as well as its poststratified counterpart, 
given in equation (7). 

For each of the R = 4000 second phase samples, we 
calculated the jackknife variance corresponding to the 
Reweighted Expansion Estimator and the Double 
Expansion Estimator, given by equation (8) with 

f -- 3 and f -- 2 respectively. In the case of the 
Double Expansion Estimator, we attempted both 
variants defined in equations (10) and (11). We also 
attempted jackknife variances for simple poststratified 
versions each of the above (SP-REE, SP-DEE 
(variant 1) and SP-DEE (variant 2)). For each of the 

R -  4000 first phase samples, we calculated the 
jackknife variance corresponding to the full first phase 

estimator, given by equation (8) with f --- 1. We also 
attempted the jackknife variance of the simple 
poststratified full first phase estimator (SP-FFPE). 

For all of the above estimators and their 
corresponding jackknife variances, a number of 
frequentist properties were investigated. These are 
given below. 

(A) The percent relative bias of the estimated number 
of employed with respect to the population value is 
estimated by: 

Eg(t*) - T 
• 100 (13) 

T 

where 

4000  

E~(t*) - 1 ~_, tr, 
4000 r-1 

is the Monte Carlo expectation of the point estimator 

t * taken over the 4000 samples. Here t * can be 

either tl, tl (SP), t 2, t2(SP ), t 3 or t3(SP), and tr* is 

the value of t * for sample r .  

(B) The percent relative bias of the jackknife variance 
estimator with respect to the estimated true mean 
squared error is estimated by: 

(E~ (vj/(t *)) - MSEtn~) 

MSEtru, 
• 100 (14)  

where 

4ooo 
E (vjf(t *)) - 1 ,) 

4000 ~~ ~ v j f ( t  

and 

4O0O 

1 ( t :  - r f  
MSEm~ - 4 0 0 0  r=l 

and vsf ,(t *) is the value of vjf(t *) for sample r .  

(C) The percent coefficient of variation of the 
jackknife variance with respect to the estimated true 
MSE is estimated by: 

-~--~r~=l (v,L(t') - MSEtr~) 2 
• loo, (15) 

MSEm,~ 
i.e., the root mean squared error of the variance 
estimator divided by the estimated true MSE, 
expressed as a percentage. 

4.2 Results of the Study 
Table 1 ahead gives the percent relative biases of the 
six point estimates for the total number of employed 
using equation (13). All biases are less than 1% in 
absolute value, except for the two poststratified second 
phase estimators, SP-REE and SP-DEE, when 
m = 10 and 5. Even so, all estimators behave g 

reasonably in terms of point estimation, as expected. 
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Table 2 ahead gives the percent relative biases of the 
jackknife variances for the total number of employed 
using equation (14). The Full First Phase Estimator's 
variance is almost perfectly unbiased, at 0.94%. 
Among the second phase estimators, the Reweighted 
Expansion Estimator dearly comes out the winner, 
having small negative biases in the variances always 
less than 6% in absolute value. The biases become 
increasingly negative as the second phase sample sizes 
diminish. Both variants of the Double Expansion 
Estimator fail miserably, with very large positive 
biases in the variances ranging from 46.35% to 
1997.51%! The second variant is worse than the first, 
but both are well beyond the realm of acceptable 
behaviour. In the case of simple poststratification, the 
variance of the Full First Phase Estimator exhibits a 
small positive bias of 3.3%. The poststratified version 
of the Reweighted Expansion Estimator still behaves 
reasonably well, exhibiting biases in the variances 
between 4.88% and 12.03%. However, both variance 
variants of the poststratified versions of the Double 
Expansion Estimator behave poorly, although not as 
poorly as in the cases without poststratification. Here, 
the biases in the variances range between 22.39% and 
50.03%. As before, variant 2 is worse than variant 1. 

Although most studies focus on the bias of the 
variance estimators, it is also of secondary interest to 
look at the coefficient of variation of the variance 
estimators to see how stable the variance estimates 
themselves are. In Table 3, we investigate the 
coefficients of variation corresponding to the total 
number of employed. In equation (15), the expression 
under the square root in the numerator gives the 
MSE of the variance, whose component parts are the 
square of the bias of the variance and the variance of 
the variance. For those entries in Table 2 where the 
bias of the variance has been determined to be 
exceedingly large (say larger than 20%), the 
corresponding entries in Table 3 are not reported 
(indicated by a *), since it is clear that those entries 
will be excessively large. In Table 3, the coefficients of 
variation corresponding to the Reweighted Expansion 
Estimator range between 46.86% and 53.42%, while 
those of its poststratified counterparts range between 
50.26% and 71.03%. There seems to be a tendency for 
the variances to become more unstable as the second 
phase sample sizes diminish, which is not surprising. 
Coefficients of variation of the magnitude exhibited 
here, although large, are typical for variance 
estimators, and have been encountered in other 
simulation studies relating to variances. See, for 
example, Kova~evi6, Yung and Pandher (1995). To 

that end, note that even the coefficients of variation 
corresponding to the Full First Phase Estimators are 
in the same range, and in fact, somewhat higher than 
those of the second phase estimators in certain cases. 

5. SUMMARY 
The main purpose of this paper was to show that a 
simple jackknife variance estimator works well under 
a specific two-phase sampling strategy, provided the 
Reweighted Expansion Estimator is used in the 
estimation strategy and not the Double Expansion 
Estimator. A Monte Carlo simulation study supported 
these results, even using small second phase sample 
sizes of magnitude 5 and 10. 
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Table 1 - Percent Relative Bias of the Point Estimates for Total Number of Employed 

ESTIMATOR 

REE 

DEE 

FFPE 

SP-REE 

SP-DEE 

SP-FFPE 

m~ = M ~  

0.04 

0.06 

m e = 50 

.14 

0.16 

-0.08 

-0.05 

m e = 2 0  

-0.3 

-0.01 

-0.93 

-0.71 

m e = 1 0  

-0.29 

0.03 

__ 

-1.96 

-1.67 

m e = 5  

-0.56 

0.115 

-4.44 

-3.98 

Table 2 - Percent Relative Bias of Jackknife Variances for Total Number of Employed 

ESTIMATOR 

REE 

DEE 
(Variant 1) 

DEE 
(Variant 2) 

FFPE 

SP-REE 

SP-DEE 
(Variant 1) 

SP-DEE 
(Variant 2) 

SP-FFPE 

mg = M ~  

0.94 

3.3 

m e = 5 0  

-0.99 

46.35 

101.59 

4.88 

28.52 

33.50 

m e = 2 0  

-2.51 

68.24 

278.44 

6.42 

32.04 

40.62 

m e = 1 0  

-5.81 

78.18 

654.99 

12.03 

35.33 

50.03 

m e = 5 

-5.13 

86.22 

1997.51 

9.20 

22.39 

46.41 

Table 3 - Percent Coefficient of Variation of Jackknife Variances for Total Number of Employed 

ESTIMATOR mg = M e m e = 50  m e = 20  m e = 10 m e = 5 

I 
REE 51.33 49.30 46.86 53.42 

DEE 
(Variant 1) 

DEE 
(Variant 2) 

FFPE 

SP-REE 

SP-DEE 
(Variant 1) 

SP-DEE 
(Variant 2) 

SP-FFPE 

56.71 

58.10 

50.26 58.26 63.82 71.03 
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