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Abstract: Mudryk, Burgess and Xiao (1996) propose to 

use statistical process control charts for computer aided 

telephone interview surveys at Statistics Canada. In this 

paper, we discuss two alternative charts to be used in the 

same application. By borrowing the concepts from 

hypothesis testing, we introduce criteria of coverage 

probability and detection power to compare the 

performance of these two charts. Both heuristic argument 

and empirical results show the equivalence of these two 

charts. Therefore, a choice is made based on relization 

convenience. In addition, we discuss how to adopt the 

ANOVA approach to testing the stability of an survey 

operation. The idea is tested with the weekly keying error 

rates observed during the twenty-one week data capture 

operation for the 1991 Census of Agriculture in Canada. 

1. Introduction 

applications for which implementation of acceptance 

sampling plans is difficult and control charts are preferable. 

A computer aided telephone interview (CATI) survey 

provides such an example. Mudryk, Burgess and Xiao 

(1996, hereafter as MBX) use process control chart to 

enhance the quality of CATI surveys. 

MBX's process control chart is not a statistical 

chart, since they use a user-specified upper control limit 

(UCL) line. In this paper, we propose two alternative 

statistical charts. One chart is based on the Poisson 

distribution and the other on the Bernoulli. In either chart, 

the UCL is three standard deviations above the centre line. 

Our heuristic argument and simulation show that there is no 

significant difference between these two charts. Therefore, 

we suggest selecting the Bernoulli-based chart because the 

chart is easier to implement. The need to estimate the 

standard deviations and centre lines of our charts with 

historical data leads us to the discussion of how to identify 

the breaking points. 

Statistics Canada, a leading official statistical 

agency in Canada, conducts numerous surveys and 

publishes the results. To publish high quality data, the 

agency adopts an extensive quality assurance program. 

Included in the program are statistical quality control and 

quality checking. Statistical quality control (QC) means 

quality improvement with the aid of statistical theory. A 

hundred percent sampling, acceptance sampling with 

rectifying inspection (Hald 1981) and skip lot sampling 

with rectifying inspection (Schilling 1982), in the 

descending order of sampling intensity, are the most 

popular statistical QC methods at Statistics Canada. A less 

commonly used method is the statistical process control. 

Quality checking refers to a collection of ad hoc quality 

assurance methods. 

With respect to the acceptance sampling methods, 

statistical process control requires fewer sampled units, 

resulting in less QC cost. Furthermore, there are some 

Throughout the paper, we assume serially 

uncorrelated data. Control charts for temporally dependent 

survey observations are discussed, for example, by Spisak 

(1995). This paper is structured as follows. Section 2 

introduces the two control charts. Simulation results 

regarding the performance of these two charts are presented 

in the same section. In section 3, we discuss the stability of 

a survey operation. The final section is devoted to 

concluding remarks. 

2. Two Alternatives to MBX's Control Charts 

CATI is an integrated data collection and capture 

system. It allows interviewing, editing and data capture to 

be carried out on a unified system, thereby reducing survey 

operation steps and costs. During a CATI survey, a QC 

technician randomly monitors part of a live conversation 

between an interviewer and respondent. The technician 

records errors made by the interviewer during the 
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monitoring period. To measure the quality of telephone 

interview quantitatively, MBX propose a demerits rate, 

which is a weighted sum of error counts. More 

specifically, let Cij~h i = 1 ..... t, j = 1 ..... n, l -  1 ..... m, be 

the number of class h errors committed by the fh 

interviewer, during the/~ monitoring session, at time i. The 

demerits rate is 

c 

where Wh is the weight assigned to error class h. MBX 

define three classes of error severity: minor, major and 

critical. 

For a fixed interviewer j, MBX plot Cot on a 

weekly control chart over l and i. They set a lower limit 

line zero and let UCL be specified by the user. An example 

of the user-specified UCL is the weight assigned to the 

class of critical error, if the user's objective is to control 

critical errors. The centre line equals the previous week's 

grand mean of demerits rates over n interviewers and m 

monitoring sessions. 

To simplify the presentation below, we only 

discuss the case of one error severity class and replace the 
, 

notation Cot with P~j~. The extension to more than one 

class is straightforward. We, also, assume P!j~ follows a 

Poisson distribution with mean ,~, and is independent over 

indexj and l. Define 

l i fPo t>O 
B ol=q)(P ol ) = 0 if Pot = O, 

and P-J1:1~,7=, P or' B-~i: I z : ,  B or" Two alternatives to 
m m 

and/~., on a control chart the MBX chart are to plot P0 
t j  

respectively. Call the first chart P-chart and the second B- 

chart. 

In both charts, we take LCL = 0, since a low error rate is 

good in a survey operation. The centre line is the grand 

N 

mean of P0 (or Bo) over i andj. Note that when m is large 

- and/7., are close to normal. UCL is, then, enough, bothB0 ,J 

taken to be three standard deviations above the centre line. 

Both the grand mean and standard deviation are estimated 

with historical data, which will be discussed further in the 

next section. 

Since there are two alternative control charts 

available, selecting one becomes the focus of the section. To 

this end, we need to compare the performance of two 

statistical control charts. It is unclear, however, how to 

compare statistical control charts directly. The link between 

a control chart and a sequence of hypothesis tests provides a 

solution to this comparison problem, as the tools from the 

hypothesis testing theory can be borrowed for the context of 

statistical process control chart. 

To explain the link, let us look at the case of a 

standard statistical control chart, where the upper/lower limit 

line is three standard deviations above/below the centre line. 

At a fixed time, when a sample point is plotted on the chart, 

it is equivalent to testing whether the sample point falls inside 

a three standard deviation confident interval (CI). If the 

sample point follows a normal distribution, which usually is 

the implicit assumption for a standard statistical control chart, 

the confidence level of this CI is almost 100%. The 

connection between a CI and a hypothesis test is a well- 

known fact. Thus, a control chart corresponds to a sequence 

of tests. 

Suppose a survey operation is at a stable status with 

£obeing the commonly targeted mean error count for every 

interviewer. The P-chart of an interviewer j is 

approximately identical to a sequence of tests for the 

hypothesis Ho: ~'--~'o vs H~: ~.>X o. The approximation 

(instead of exactness) is due to the fact that ~o is estimated 

with historical data. Similarly, the B-chart identifies to 

tests for Ho: P=Po vs HI: P>Po, where ~,o=-loge(l -Po) 

as P(B~j~ = 1) = 1 - P(P~j~ = 0). Because of the monotonic 

relationship between ~o and Po, the above two hypotheses 

are equivalent. Based on these arguments, we can treat the 

two control charts as two test statistics designed to test for the 

same hypothesis. Thus, we have justified borrowing the tools 

of comparing two test statistics in the hypothesis test to the 

context of control charts. 
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According to the hypothesis testing theory, a good 

test statistic should assume a small type I error and a big 

power. A small type I error means a high value of one minus 

type I error. By translating these terms in hypothesis test into 

the language of control chart, we introduce coverage 

probability (CP) and detection power (DP). Intuitively, when 

a CATI survey process is in control, a good control chart 

should, with a high probability, cover a sample point, i.e. the 

sample point should fall under the UCL. On the other hand, 

when the process is out of control, the chart should, with a 

high probability, detect the anomaly by letting the sample 

point lie above UCL. We call the first probability the CP of 

a control chart and the second the DP of a control chart. A 

control chart with a low CP sends out excessive number of 

false alarms and a chart with a low DP creates a false sense 

of security. The counterpart of CP in test theory is one minus 

type I error and DP the power of a test statistic. Formally, CP 

refers to P(P~s<_ UCL I~0) and DP P(Pis > UCLI&), where 

~>~'0. 

Coverage Probabil i t ies for n=10, m=100 
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Figure 1" Coverage probabilities of B.. and P .. charts. 
I j  i j  

Figure 1 displays the simulated CP's of the P-chart 

and the B-chart, where Po changes from 0.01 to 0.5, or 

equivalently ~0 from 0.1 to 0.69. The CP of the B-chart 

corresponding to a fixed Po is computed in the following 

way. An estimate of Po is calculated as the mean of nm 

randomly generated numbers from Bernoulli(po). UCL is 

taken to be 3.~/,6o*(1-t~o)/m. A large number of 

independently observed B~jt are generated from the same 

distribution and CP is the proportion of B ij lying below 

UCL. CP's of the P-chart is computed similarly, but with 

random numbers generated from Poisson(-log,(1 -Po))" 

Figure 2 gives detection powers. We compute the 

simulated DP's of the B-chart as follows. P0 is taken to be 

0.1 and the drifted p equals to (l+k%)*po, with k ranging 

from 0 to 500. The UCL is 3~/po(1-po)/m. Random 

observations B~j~ are then generated from Bernoulli(p) and DP 
m 

is the proportion of B ij lying above the UCL. For the P- 

chart, the calculation is similar. 

Detection Power for n= 10, m= 1 O0 
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Figure 2: Detection power of B .. andP .. charts. 
i 1 i j  

We have heuristically showed that the P- and B- 

charts are equivalent. The simulated CP's and DP's in Figure 

1 and 2 display no significant difference, particularly when m 

is large. Thus, heuristically the two charts are not different: 

either one serves the purpose of controlling a survey 

operation (e.g. a CATI survey) equally well. 

In terms of implementation, the B-chart enjoys 

certain advantages over its rival, since it requires collecting 

less information. More specifically, in an actual CATI survey 

operation a QC technician only needs to decide whether an 

interviewer commits an error or not during a monitoring 

session. This reduces the work load of the technician. A QC 

technician commonly works in a demanding environment 

while monitoring a live conversation. The reduction on the 

workload of data collection decreases their stress level. The 

B-chart helps the technician make less measurement errors 

as well. Judging whether an interviewer makes a mistake 

during a monitoring session is much more likely error-free 
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than counting the exact number of errors. 

3. Stability of an Operation 

The above section showed how to construct two 

alternative charts and concluded implementational 

superiority of B-chart over P-chart. Yet, the discussion is 

incomplete, since for either chart the UCL and center line are 

unknown. Historical data will be used to estimate these lines. 

The question of using what historical data for the estimation 

motivates us to discuss the stability of an operation. 

In addition, it is worth pointing out that the 

discussion in the previous section centred on the level of an 

individual interviewer's error count. The following 

discussion will be carried at the level of all interviewers' 

error counts. 

For either P-chart or B-chart, the sampling 

distribution of an interviewer's error count at a fixed time is 

uniquely determined by its parameter. Suppose the 

commonly targeted mean of each interviewer's error count is ~0 

and Ho: po = 1-e . When a CATI operation is stable, P0 

or ~o remains constant. An operation may have several 

stable periods separated by breaking points, where a breaking 

point refers to a point in time when P0 or ~0 changes. Thus, 

testing whether an operation is stable is equivalent to testing 

whether P0 or ~o is constant. 

To define a stable operation formally, let Xij be 

some error measurement of j '~ interviewers at time i. For 

instance, Xij can be ,ff.j or /~0" Suppose Xij follows a 

sampling distribution with density function f(x0[ 0).  Stating 

that the operation is stable from time i+ 1 to i+k, in a strict 

sense, we mean that 0~ does not change; that 

is, 0i+~=0~+ 2 . . . . .  0~+ k. A wide sense definition will 

be II0~+r-0~+sll<c,s for some pre-determined constants Cr., 

r, S = 1 ..... k. Here, k serves as the moving window size. In 

this paper, we only use the strict definition. 

widely used method for checking homogeneity. This test, 

however, is sensitive to non-normality. Another test which 

is less known, but less sensitive to normality assumption is 

proposed by Burr and Foster (refer to Anderson et al 1974). 

To test for H0: ~tt+l --~l't+2 . . . . .  ~ t+k,  w e  can use one-way 

ANOVA. 

Since appropriate CATI survey data are not 

available, we test the above idea with weekly keying error 

rates. The richness of this data set provides a proper test 

ground to our method. The error rates were observed during 

the twenty-one week data capture operation for the 1991 

Census of Agriculture in Canada. During the twenty-one 

week operation, 131 keyers captured information from about 

280,000 questionnaires (Duddek 1996). After data-capture, 

a portion of questionnaires were sampled and keying errors 

were identified by verifiers. Here, an error means a 

discrepancy in entry between a keyer and a QC verifier. The 

weekly error rate is the average number of errors per hundred 

questionnaires (phu) committed by a keyer within a week. 
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Figure 3: Dot plot of keyers" weekly error rates in phu from 

week 1 to 21. 

m 

When m is sufficiently large, Bij and P~j are close to normal. 

In this case, f(xij[ 0)  is normal with 0~=(~, o ) ,  where ~t~ 

is the mean of X~j and o i the standard deviation. The strict 

definition implies to show lai+]=la~+2 . . . . .  O~÷k and 

o;+ 1 =o~+ 2 . . . . .  o,+ k. Bartlett's test (Montgomery 1991) is a 

Figure 3 is the dot plot of error rates. Each dot 

represents a keyer's weekly error rate. Note that not all 131 

keyers worked in every week. For example, there were only 

10 keyers worked in week 1 and 31 keyers in week 2. The 

plot shows a general downward trend in variability and mean 
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of error rates. 

Initial data analysis uncovers no serial correlation 

and histograms at each fixed time show the weekly error rate 

distributions are highly skewed to the right. A log(data+a) 

transformation is necessary to make the data normal. The 

value a should be big enough so that the logarithm of zero 

plus a does not blow up the sample variance. Figures 4 and 

5 show the weekly sample variances and means at the 

original scale and the log-transformed scale (a = 100). The 

plots show that this drifted logarithm transformation keeps 

temporal trends of the raw data's sample variances and 

means. 

'~o" Basing on P0 or )~o, we can easily fred the centre line 

and UCL for the control chart of an individual interviewer. 

For example, suppose the current time is week 14. If we 

want to create a control chart for a keyer, only historical 

data between week 9 and 13 should be used to estimate the 

UCL or centre line. 

.j 

S 10 15 20 

Weeks of Operation 

When the moving window size, k, equals 2, 

Bartlett's test shows that there is significant change of 

variability between week 1 and 2, 8 and 9, 15 and 16, and 19 

and 20. When the size is increased to 3, same test reveals a 

similar story. We then conclude that week 2, 9, 16 and 20 are 

breaking points for the operation• Applying F-test of 

ANOVA to the sample mean series for k-2  and 3, we 

identify the breaking points at week 2 and 20. Table 1 gives 

the period of weeks, where either Bartlett's test or F test is 

significant• By combining these two tests, we conclude that 

the operation have four breaking points: week 2, 9, 16 and 

20. 

Table 1" period of weeks where either a Bartlett's or F test 

is significant 

k=2 

k=3 

Bartlett's Test, Significant level=0.1 

(1,2) (8, 9) (15, 16) (19,20) 

(1,2, 3)(8, 9, 10)(14, 15, 16)(15, 16, 17) 

(18, 19, 20) 

ANOVA Test, Significant level=0.1 

k=2 (1,2)(19,20) 

k=3 (1,2,3)(18, 19,20)(19,20,21) 

5 10 15 20 

Weeks of Operation 

Figure 4: Sample variances of original and log-transformed 

weekly error rates from week 1 to 21. 

o 

5 10 15 20 

Weeks of Operation 

5 10 15 

Weeks of Operation 

As long as the breaking points of an operation are 

identified, we should use historical data from the most recent 

breaking point up to the previous time point to estimate P0 or 
Figure 5: Sample means of original and log-transformed 

weekly error rates from week 1 to 21. 
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4. Concluding Remarks 

P~j~ contains more information than B 0~ since B ij~ 

only indicates whether an interviewer commits at least one 

error where P~j~ actually tells us how many errors the 

interviewer commits during monitoring session l. Yet, this 

additional information does not help P-chart performing 

better. 

In this paper, no comparison, in terms of CP and 

DP, between MBX's chart and its two alternatives is made. 

There are two reasons for that. First, the MBX chart's 

UCL is specified by a user. Statistical characteristics like 

CP and DP cannot be computed with such a chart. Second, 

the main purpose of MBX's chart is to control severe errors, 

while the two alternatives control the average number of 

errors committed by an interviewer. The two alternatives 

enjoy an advantage over MBX's chart. In the case of having 

several error severity classes, if the error cotmts of an 

interviewer among classes are independent, then the 

extension of our charts to the d-chart is straightforward. 

This is because the average, over monitoring sessions, of 

demerits rates is still normal. This is not true for the 

MBX's chart. 

Although the above discussion on two alternative 

charts takes the context of a CATI survey, it can be easily 

extended to other surveys. The idea of mapping control 

charts to a sequence of tests, and then comparing them with 

the tools of hypothesis test theory can be valuable to the 

general comparison of several statistical process control 

charts. The discussion of testing stability of an operation 

could be useful for other QC sampling plans as well. For 

example, when an 100% sampling plan is replaced with a 

QC plan at a less intensively sampling level, e.g. an 

acceptance sampling plan, the general assumption is that the 

operation has become more stable. Finding when this shift- 

towards-being-more-stable occurs helps us to timely switch 

an intensively sampled QC plan to a less intensive one. 
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