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1. Introduction 
Data collected by the Economic Census Programs are 

subjected to ratio edits as a part of the overall data-review 
process. In a ratio edit, the ratio of two highly correlated 
items is compared to upper and lower bounds, known as 
tolerances. Ratio edits are useful because it is difficult to 
evaluate the "reasonableness" of a data item's value by 
itself. By comparing an item to other related values, the 
analyst can determine if the response appears valid (e.g., 
total annual hours to total employees should be 
approximately 2000). Ratios outside the tolerances are 
considered edit failures, and one or both of the items in an 
edit-failing ratio are either imputed or flagged for analyst 
review. The efficiency of the ratio edit is therefore 
dependent on the selected tolerances. 

When historical data are available, the development of 
ratio-edit tolerances usually begins with data analysis. 
Ratio-edit tolerances separate a distribution of  ratios into 
two regions: an acceptance region and an outlier region. 
Determining ratio-edit tolerances via data analysis thus 
falls into the category of univariate outlier detection 
applied to ratios. Because the distributions of  ratios are 
generally unknown, nonparametric techniques are often 
preferred. 

This report compares three different tolerance 
development methodologies. In Section 2, we describe 
our considered outlier detection methods. Most of the 
techniques presented assume the ratios are symmetrically 
distributed. Distributions of  ratios created from skewed 
data may or may not be symmetric. In Section 3, we 
present our approach for symmetrizing skewed 
distributions of ratios. Section 4 describes our evaluation 
of  the outlier detection methods. Section 5 contains final 
remarks and recommendations. 

2. Outlier Detection Methods 
The historic data we used to develop tolerances 

contained outliers. We can minimize the effects of deviate 
observations by using methods that are said to be robust 
or resistant. A robust method is insensitive to departures 
from assumptions surrounding an underlying probabilistic 
model. Resistant methods are insensitive to localized 
misbehavior in data and produce results that change only 
slightly when a part of the data is replaced by new 
(entirely different) numbers. (Hoaglin et al., 1983). 

We examined three approaches to setting tolerance 
limits: a robust approach (fifteen-percent trimmed mean 
and standard deviation); an outlier-resistant approach 
(resistant fences); and a gap analysis approach. 

2.1 Robust Mean and Standard Deviation 
In an earlier economic census editing cycle, the first 

step of tolerance development was to eliminate all of the 
ratios within a class that were more than two standard 
deviations from the mean and to base the tolerances on the 
resultant data set. We attempted an analogous technique 
using robust estimates of the population mean and 
standard deviation. We used the fifteen-percent trimmed 
mean as our robust estimate of the population mean and a 
robust estimate of population standard deviation based on 
the Winsorized sum of squared deviations (a consistent 
estimator of the variance of the trimmed mean. See Gross 
(1976)). 

If the distribution of ratios is approximately symmetric, 
the robust estimates of the population mean and standard 
deviation define a robust confidence interval for the mean. 
See Gross (1976). Though we are not interested in the 
mean, the underlying principle is that the distribution is 
"normal in the middle," so that (Xk :[: 3 O k )  is a plausible 
tolerance interval for the data. A liberal rule for setting 
tolerances defines an outlier as any ratio greater than (.~k 
+ 2Ok) or less than (~k - 2 O k ) .  A more conservative rule 
uses + 30 k. 

2.2 Resistant Fences 
West (1995) recommended using an exploratory data 

analysis (EDA) outlier detection method called resistant 
fences to develop tolerances. Resistant-fences rules are 
based on sample quartiles. Given an ordered distribution 
of  ratios, let 

q25 = the first quartile (the lower fourth) 
q75 = the third quartile (the upper fourth) 
H = q75 - q25, the interquartile range 

The resistant-fences rules define outliers as ratios less than 
q25 - k*H or greater than q75 + k 'H,  where k is a constant. 
The inner fences rule sets k equal to 1.5. The Tukey 
boxplot uses the inner fences rule. The outer fences rule 
sets k equal to 3. A compromise rule -- the middle fences 
rule -- sets k equal to 2. 

We calculated the quartiles by setting the cumulative 
probability level for the ith order statistic, xo), equal to 
i/(n+ 1) as recommended by Hoaglin and Iglewicz (1987). 

The resistant-fences rules implicitly assume that the 
ratios are symmetrically distributed. Symmetry is not 
required, however. We applied the resistant-fences rules 
to both transformed and untransformed data. 

2.3 Distance Measurement Algorithm for Selection of 
Outliers (D_MASO) 

The D,MASO gap analysis approach was developed at 
the Census Bureau to develop ratio edit parameters for the 
1992 Enterprise report (Oh et al. (1994)). D_MASO 
examines successive ratios of  ordered explicit ratios, 
considering distances (actually proportions) between 
adjacent ordered observations to find potential edit 
bounds. An "unusually" large gap between adjacent 
observations at either end of the distribution may indicate 
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that the observations between the gap and the end of  the 
distribution are outliers. The observation on the "center 
side" of  the gap is a potential tolerance. 

The user specifies the maximum percentage of 
observations that can be labeled as outliers and specifies 
a cut-off value for distance comparisons. 

3. Symmetrizing Skewed Distributions 
3.1 Background 

In general, economic data are highly skewed. However, 
most of  the statistical methods considered for tolerance- 
development assume that the ratios are symmetrically 
distributed. We use transformations called power 
transformations to symmetrize skewed distributions of 
ratios. Once transformed, many ratios that originally 
appeared to be outlying become consistent with the rest of 
the distribution. A power transformation with parameter 
equal to p is a function of  the following form: 

x p (p>0)  

~ ( x )  : log(x)  ( p = o )  (a . )  

- x  p (p<0)  

Our approach to determining the appropriate p 
parameter for the power transformation of a skewed 
distribution of  ratios consisted of  the following steps" 
• Employ a modification of an EDA method for 

determining p, described by Hoaglin et al. (1983). See 
section 3.2; 

• Apply the natural logarithm transformation to the same 
distribution of  ratios; 

• Select the transformation that results in the smallest 
absolute value of  the skewness coefficient. 
We include the comparison to the natural logarithm 

transformation because the EDA method's resistance 
breaks down when the data set contains more than the 
expected number of  outliers. We further discuss this issue 
in Section 3.2. 

We did not symmetrize every distribution of ratios. 
Several of the distributions contain legitimate outliers and 
remain skewed even after being transformed. Moreover, 
a symmetrizing power transform may not exist for some 
distributions. 

3.2 EDA Method For Symmetrizing Skewed 
Distributions 

Most of the skewed distributions we examined could be 
symmetrized by applying the natural logarithm 
transformation to the ratios. This is equivalent to applying 
a power transformation with p=O. When the log 
transformation was not appropriate, we obtained p from 
the following modification of  Hoaglin et al.'s (1983) 
transformation plot for symmetry. 

Given an ordered sample of size n', let Mbe  the median 
of the sample, and xL and xu represent the lower and upper 
values of  a set i of k-percent approximate quantiles. The 
EDA transformation plot for symmetry places 

x~ = [(xu + XL )/2] - M 
on the vertical axis (v), and 

Xhi = [(Xu- M) z + (M-  XL )z]/[4M] 
on the horizontal axis (h), so that 

slopei =Xvi/Xhi 

(2) 

(3) 

(4) 

If the resultant graph is nearly linear-- that is slope --c 
-- then p = 1-c. We determined a value for p without 
graphing the points, by setting p = 1-median(xv/xh3. 
Hoaglin recommends rounding p to the nearest power of 
½. We did not employ this rounding. The procedure's 
resistance breaks down when the actual number of outliers 
exceeds the number of observations in one (or both) of the 
quantiles with the smallest tail probability. This is known 
as exceeding the breakdown point. The breakdown point 
can be raised by decreasing the number of  quantiles 
employed. However, the lower the breakdown point, the 
more data points available to calculate the median slope. 

To minimize the effect of multiple outliers, we deleted 
extreme observations from the untransformed sample 
using the outlier resistant fences rule described in section 
2.2. We refer to the reduced sample size as n'  . To 
maximize the resistance, we linked sample size with 
expected number of outliers before breakdown by using 
the sets of quantiles specified in Table 1. 

Table 1" Quantiles Used for EDA Transformation Plot for 
S~ ¢ 

Range 
t of n ,  

33-64 
65-128 
129-256 

257-512 

513-~ 

mmetry 

Breakdown Quantiles 
Point Used 

1/8 1/4, 1/8 
1/16 1/4, 1/8, 1/16 

1/32 1/4, 1/8, 1/16, 1/32 

1/64 1/4, 1/8, 1/16, 1/32, 1/64 

1/128 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 

Our variation of the EDA method allows for fou..._._rr expected 
outliers in the subsetted dataset before breakdown. 

4. Determining Ratio Edit Tolerances 
4.1 The Ratio Edit As A Hypothesis Test 

A ratio edit is a hypothesis test, in which the null 
hypothesis is that both data fields in the ratio are correct 
(Pierce and Gillis, 1995). One rejects the null hypothesis 
when the ratio falls outside of the tolerances. 

Given this definition, we can define Type I and Type II 
errors for each ratio edit. A Type I error flags a ratio value 
as an error when it is in fact correct: these are good ratios 
that fall outside of the tolerances. A Type II error flags a 
ratio as correct when it is in fact an error: these are bad 
ratios that lie inside of  the tolerances. Type I error 
increases unnecessary analyst work and is generally 
controlled by widening the tolerances. However, the 
wider the tolerances, the greater the probability of Type II 
error. Some caution must be used in defining Type II 
error. Only a portion of the Type II error for an individual 
ratio test is controlled by the tolerance limits. With ratio 
edits, there is usually an "inlier" set of bad ratios, where 
an inlier is defined as a bad ratio whose value is 
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consistent with the rest of the distribution. For example, 
ratio edits rarely identify rounding errors: if both items 
are reported in the wrong units (e.g. thousands instead of 
units), the ratio value will be acceptable even though both 
data items are scaled incorrectly. 

Because item values are often tested in more than one 
ratio edit, the individual ratio-edit Type II error is a poor 
measure of the overall proportion of uncorrected 
(unidentified) bad items left remaining in the edited data. 
Consequently, we define the Type II error of an entire set 
of ratio edits as bad data that passes al_A1 containing ratio 
edits. At the ratio-edit level, the all-ratio-test Type II 
error (for the complete set of  ratio edits) is the number of 
bad ratios that are not outside of ~ tolerances. At the 
individual data-item level, the all-item Type II error (for 
the complete set of ratio edits) is the bad data items that 
are not contained in ~ ratios outside the tolerances, i.e., 
the bad items that are not identified as outliers by any of 
the ratio edit tests. 

We can also examine the power of a set of ratio edits. 
For outlier detection, the power is the probability of 
correctly concluding that a bad ratio is an outlier. The 
power of a set of ratio edits is the proportion of bad ratios 
that fall outside of one or more tolerances. 

An alternative measure for evaluating the tolerances for 
a given ratio test is the hit rate -- the ratio of  the number 
of bad ratios outside of  the tolerances to the total number 
of ratios outside of  the tolerances (Granquist, 1995). 

To examine the different methods, we used historic data 
(see section 4.2) and classified each ratio based on its 
historic edit outcomes. First, we considered each data 
item separately using the reported data item, the edited 
data item, and the data item's edit action flag. We 
classified each nonblank/nonzero item as: 

Good- The data item should be located within the edit 
bounds; 

Bad- The data item should be located outside of  the 
edit bounds; 

Questionable- The data item cannot be classified 
as "good" or "bad." The edit action flags for 
these items may be difficult to interpret. On the 
average, approximately five percent of the non- 
zero data items were flagged as questionable. 

A ratio is good if both the numerator and the 
denominator are flagged as good. A ratio is bad if either 
the numerator or the denominator is flagged as bad. 
Ratios that contain blank or questionable values are 
excluded from all evaluations. The flowchart in Figure 1 
shows how we classified and used the historical data. 

4.2 Historic Data Sources 
We had two sources of  historic data: the 1994 Annual 

Survey of Manufactures (ASM) and the 1992 Business 
Census. Our data included only full-year reporter 
establishments and excluded all full-impute cases. 

The ASM is a mail-out/mail-back survey representing 
all establishments that received a form in the previous 
census of manufactures. The survey provides detailed 

annual statistics on the location, activities, and products of 
approximately 58,000 U.S. manufactures. 

Prior to ratio-editing, the ASM reported data undergoes 
some clerical edits. We used this partially edited data to 
develop the tolerances. Twelve of the ASM ratio edits use 
statistically developed tolerances. The ASM uses the 
same set of ratio edits in each standard industrial 
classification (SIC). 

The Business Census comprises five trade areas: 
Retail Trade; Wholesale Trade; Service Industries; 
Transportation, Communication, and Utility Industries 
(Utilities); and Finance, Insurance, and Real Estate 
Industries (FIRE). It is a mail-out/mail-back census and 
is conducted once every five years. 

Edited i),n 

All-Ratio-Test and 

Aft-Item 

Type iI F_xrm~ 

Figure 1 

The Business Census reported data are directly input 
into ratio editing without a prior clerical edit. 
Administrative data is substituted for blank data whenever 
possible to develop tolerances, so we used reported and 
administrative data to develop the tolerances. Some trade 
areas classify the establishments within SIC by legal form 
of organization, type of operation, and tax status. We 
used the trade area classifications for our evaluation, but 
refer to each classification as an SIC. Each trade area in 
the Business Census employs a common set of core ratio 
edits. Four of these ratio edits require statistically 
developed tolerances. We performed our evaluation by 
trade area within census for the four statistically 
determined ratio edits. 

4.3 Evaluation Methodology 
We generated nine sets of edit tolerances per ratio test 

in each SIC: two sets of robust edit limits for symmetrized 
distributions; three sets of resistant edit limits for 
symmetrized and unsymmetrized distributions (six sets 
total); and one set of gap analysis (D_MASO) edit limits. 

168 



We used sixteen SICs for the ASM evaluation. Because 
some industries contained less than sixteen establishments 
with non-zero ratios, we could not produce tolerances for 
all twelve of the ratio tests in each SIC. We used thirty 
SICs for the Business Census evaluation. Our objective 
was to find a technique that balanced the goals of 
maximizing the number of rejected bad items and 
minimizing the number of rejected good items. 

Thompson and Sigman (1996) presents the average 
Type I error rates for each ratio test, the all-ratio-test Type 
II error rate, and the all-item Type II error rate obtained 
using each tolerance development method on 1994 ASM 
data and 1992 Business Census data by trade area. 

4.3.1 Comparison of Robust and Resistant 
Methods: Symmetrized Distributions 

We examined two outlier-detection methods for 
symmetrized distributions: robust methods and resistant 
methods. Our goal was to eliminate the method that 
performed the worst overall in terms of Type I error (false 
reject rate). A high proportion of ratio tests with a Type 
I error greater than 0.10 was considered unacceptable. 

Across the board, the tolerances generated with two 
robust standard deviations were too narrow. The robust 
methods perform poorly because the tails of the 
symmetrized distributions are heavier than those of a 
normal distribution with O 2 equal to that estimated by the 
Winsorized variance estimator. Thus, ±2o did not cover 
the expected 95 percent. We concluded that there was no 
apparent advantage in further pursuing the robust 
estimation techniques. The remainder of our evaluation 
concentrated on the resistant methods. 

4.3.2 Comparison of Resistant Fences Methods: 
Symmetrized and Unsymmetrized Data 

We first compared the resistant methods separately on 
symmetrized and unsymmetrized data. For each SIC/ratio, 
we selected a "best" resistant fence rule for the 
unsymmetrized data and for the symmetrized data. We 
then examined whether the symmetrizing was necessary 
for the historic data used. For more details, see Thompson 
and Sigman (1996). 

For most of the ASM ratios, the same resistant fence 
rule worked best on both the symmetrized and 
unsymmetrized data. In fact, the tolerances generated on 
both data sets are similar. Although the ASM 
distributions of ratios are generally positively skewed, the 
degree of skewness is not often severe. The symmetrizing 
compressed the ASM distributions of ratios but did not 
dramatically change their shapes. In many cases, the 
transformed distributions remained skewed because the 
longer tail consisted entirely of outliers. Consequently, 
the tolerances developed from the symmetrized data were 
slightly narrower than those from the unsymmetrized data. 

In general, the tolerances calculated from the 
unsymmetrized ASM data yielded tests with slightly 
higher hit rates (proportion of rejected ratios that were 
bad) than those calculated from symmetrized data. 
Consequently, the Type I error rate (proportion of rejected 
good ratios) is also lower for the unsymmetrized 

distributions. Moreover, the proportion of ratios inside of 
the tolerances that was bad was essentially the same for 
both the symmetrized and unsymmetrized distributions. 

In contrast with the ASM results, the resistant methods 
performed quite differently on the Business Census 
symmetrized and unsymmetrized distributions of ratios. 
The Business Census data is highly positively skewed, 
more so than the ASM data. Because of the degree of 
skewness, the interquartile range (H) is generally larger 
than (q25 "X(o) for the unsymmetrized data: the lower 
bound is almost always negative, and the upper bound is 
near the center of the distribution. For most of our data 
sets, applying the natural log transformation to the 
distributions of ratios corrected most of the skewness 
(occasionally another power transformation was required). 
When the resistant fences rules were applied to the 
symmetrized data, the tolerances were generally near the 
ends of the distributions. The Type I error rate decreased 
when we applied the resistant fences rules to the 
symmetrized data, while the proportion of bad ratios 
inside of the tolerances remained nearly constant. 

Applying the resistant outer fences (k=-3) to the orginal 
unsymmetrized distribution of ratios usually worked well 
for the ASM data. This was not always the case with the 
Business Census data. Although symmetrizing the 
distributions improved the hit rate of the tests, a distance 
of three interquartile ranges from the upper and lower 
quartiles was not often sufficient. In three of the five trade 
areas, the Type I error rate was too high for/c=3 (on the 
average, greater than 0.05). We found that specifying four 
interquartile ranges (k=-4) improved the Type I error rate 
with very little loss in individual hit rates or total power 
for the census of Retail Trade, the census of Service 
Industries, and the census of Transportation, 
Communication, and Utitilities Industries. 

4.3.3 Comparison of Resistant Fences and the 
D_MASO Algorithm 

The D_MASO algorithm was developed at the Census 
Bureau to generate tolerances for the 1992 Enterprise 
Report (Oh et al., 1994). There are some key differences 
between the D_MASO approach and the resistant 
approaches: 

• the D_MASO algorithm does not use a probability 
model; 

• the D_MASO algorithm looks for separate groups of 
observations to determine outlier zones, rather than 
looking for extreme observations; 

• with D_MASO, the user specifies a pr ior i  the 
maximum proportion of the data that can be labeled as 
outliers. 

For our application, we specified a maximum outlier 
proportion of five percent per tail and used the default cut- 
off factors of 1.2 for the lower and upper tail as specified 
in Oh et al. (1994). We found that the algorithm was 
fairly insensitive to the cut-off percent when the default 
cut-off factors were between 1.2 and 3. The selection of 
the cut-off factor had much more effect on the bounds 
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than the starting location of the algorithm. 
The resistant methods do not generate tolerances for 

distributions containing less than sixteen observations. 
The D_MASO procedure does. If the SIC did not have 
the two estimates of bounds, we excluded it from our 
comparison. We compared the D_MASO procedure to the 
most successful resistant procedure for each historic data 
set" outer fences with unsymmetrized ASM data; and 
outer fences (k=-3) or "big" fences (k=4) with 
symmmetrized Business Census data, depending on trade 
area. See Thompson and Sigman (1996) for more details. 

For most of the ASM ratios, the resistant fences 
methods usually performed better than D_MASO. In the 
few cases where the D_MASO bounds were clearly 
superior, the original distributions were very positively 
skewed; the resistant fences bounds were too narrow and 
were negative at the lower end. In general, however, the 
ASM resistant fences tolerances were usually slightly 
wider than the D MASO tolerances and identified the 
same bad ratios. Consequently, the Type I error rate is 
usually higher for D_MASO. The power is about the same 
for the two methods, although the hit rate is generally 
higher for the resistant fences tolerances. However, the 
difference in error rates and hit rates between the two 
methods is usually caused by a small number (two or 
three) of rejected good ratios. 

For the Business Census data, the resistant methods 
outperformed D_MASO in three trade areas: Wholesale, 
Utilities, and FIRE. In the other two trade areas, the two 
methods tied in terms of overall performance. The 
D_MASO procedure limits the number of observations 
that can be flagged as outliers, so the procedure begins at 
the tail ends of the distribution. In cases where the 
interquartile range was small and the range of the 
distribution of ratios was large, the resistant bounds were 
much narrower than the D MASO bounds. In these cases, 
the D_MASO bounds outperformed the resistant fences 
bounds by a large margin in terms of rejected good ratios 
(Type I error). 

4.4 Discussion 
We examined three different approaches to setting 

tolerance limits. None of these approaches incorporated 
specialized subject-matter knowledge of the distribution 
of ratios. Analysts who work with economic data develop 
an understanding of the distributions of ratios in a given 
industry. A statistical methodology cannot replace this 
knowledge. However, it can serve as a good starting 
point, especially when there is no known mathematical 
relationship to rely upon. 

Outlier detection methods can fail to work properly 
when more than one outlier is present. Problems that arise 
in the presence of multiple outliers are of two types: 
masking and swamping. Masking occurs when the 
presence of several outliers makes each individual outlier 
difficult to detect. Swamping occurs when multiple 
outliers cause the procedure to erroneously flag too many 
observations as outliers. These two problems can 
adversely impact tolerance development. 

The resistant fences rules were designed to reduce 

masking. Because they are based on quartiles, they have 
a breakdown point of approximately 25%, i.e., "up to n/4 
observations can be replaced by arbitrary values without 
causing the lower or upper cutoff value to become 
unbounded" (Hoaglin et al., 1986). Swamping must be 
controlled by the choice of k, the number of interquartile 
ranges between the quartiles and the fences. 

Hidiroglou and Berthelot (1986) note that resistant 
fences methods are not free from masking. They cite two 
specific masking effects, both of which were present in 
our analysis. First, if the distribution is very positively 
skewed, then outliers on the left tail of the distribution are 
undetectable (as they are with generated negative lower 
tolerances for data that is always non-negative). Second, 
the resistant fences method does not make a specific 
provision for the size of the establishment, and the 
variability of ratios for small establishments is larger than 
the variability of ratios for large establishments. If the 
establishment size varies widely within a SIC, then too 
many small units will be flagged as outliers, and not 
enough large units will be considered. Hidiroglou and 
Berthelot refer to this as the "size masking effect." 

D_MASO was designed to reduce swamping. The user 
specifies the maximum percentage of the data set that can 
be identified as outliers. In this case, the masking is 
controlled by the choice of lower and upper cut-off 
factors. The larger gaps in proportional distances are 
usually due to the smaller establishments, so the 
D_MASO algorithm is also prone to the size masking 
effect. 

In terms of outlier detection, the resistant methods were 
the most consistently successful, in terms of balancing 
minimum Type I error and maximum power. They 
worked best when the distribution was approximately 
symmetric. After fine-tuning some of the values of k, we 
were able to develop tolerances with low Type I error 
rates (proportion of rejected good ratios) and reasonable 
power (proportion of rejected bad ratios) for most of the 
ASM and the Business Census ratio edits. As always, 
there is a trade-off between Type I error and Type II error: 
by minimizing the Type I error rate, we increase the Type 
II error rate for the set of ratio edits and correspondingly 
reduce the power of the set of ratio tests. 

D_MASO worked quite differently for the two sets of 
historic data. Usually, the D_MASO bounds were too 
tight with the ASM data: the algorithm appeared to be 
quite prone to swamping. This result surprised us because 
it was counter to the design of the algorithm. We 
expected the D_MASO bounds to be wider than the 
resistant bounds in most cases. There was no clear pattern 
for the Business Census data. 

The appeal of the D_MASO approach is the user's 
control over the maximum number of outliers From a 
statistical perspective, this is not necessarily a strength. 
Deciding a priori  on the number of outliers that can be 
detected has quality implications for the final edited data; 
tabulations may use data that contains several unexamined 
erroneous observations. If the number of establishments 
is large, then the Type II error rate (proportion of accepted 
bad ratios) can have a significant effect on the final 
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tabulations. 
For us, D MASO was a "black box." We did not have 

m 

an intuitive understanding of the ordered distribution of 
gaps for a ratio and had a difficult time relating the 
D_MASO breaks to histograms of ratios in a SIC. 

In contrast, the resistant fences rules were fairly 
intuitive. This approach takes the skewness of the 
distribution into consideration, without any parametric 
assumptions. The resistant fences methods do not allow 
explicit control over the number of flagged outliers per 
ratio test. In practice, however, we found that the percent 
of observations in the rejection region could be controlled 
through the choice of k. 

Based on our evaluation results, we recommend the 
following steps for developing tolerances: 

Step One- Use a power-transformation to symmetrize 
skewed distributions of ratios, implementing the 
procedure described in Section 3; 

Step Two - Apply resistant outer fences rule (k=-3) to 
the (symmetrized) data to obtain outlier bounds; 

Step Three-  Use the inverse power transformation 
on the initial bounds to obtain final bounds (if 
necessary); 

Step F o u r -  Examine the bounds. If they are too wide, 
decrease the value of k. If they are too narrow, 
increase the value of k. Repeat steps two through 
four as necessary. 

For a new survey or census, the user might prefer 
starting with a less conservative rule, such as the middle 
fences rule (k=-2). 

5. Conclusions 
In this paper, we examined a variety of methods for 

developing ratio edit tolerances. Our proposed approach 
for tolerance development uses power transformations and 
EDA resistant fences rules. As we have shown, this 
approach must be modified for different data sets. Each 
economic census and survey collects unique data. The 
distributions of ratios will correspondingly be very 
different. 

No matter how much we refine a statistical 
methodology, however, statistical methods cannot always 
provide the "best" tolerances. Statistical methods do not 
always replace subject matter expertise and common 
sense. As a general rule, a mathematical relationship that 
governs the upper and lower bounds of a ratio edit should 
preempt any statistical techniques. For example, the 
Business Census tests the ratio of Annual Payroll to First 
Quarter Payroll. Logically, the lower bound of this ratio is 
one. When we used the resistant fences methods to 
generate tolerances, our lower tolerances were as low as 
0.85. For this distribution, a ratio value of 0.86 would not 
be flagged as an outlier. However, one of the two items 
being edited is obviously wrong. 

At the Census Bureau, the traditional approach to 
tolerance evaluation examines summary statistics. 
Analysts review the tolerances, the industry averages, and 
the percentage of items that fall in the rejection region. 

This approach is limited. A better approach combines this 
review with some form of graphical analysis. 

Developing good ratio edit tolerances is an iterative 
process. Our proposed approach provides an initial set of 
parameters. Data users should examine these parameters 
using a combination of graphical techniques and subject- 
matter expertise and modify them accordingly. 
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