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ABSTRACT 
For complex surveys, a design-based methodology 

termed modified regression is proposed. It uses the 
idea of finite population (semiparametric) modelling 
with a working covariance structure within the (general- 
ized) zero function framework. Also it encompasses 
the familiar design-based methodology of generalized 
regression which uses the idea of superpopulation 
modelling within the model-assisted framework. It is 
shown that the method of modified regression provides 
a unified approach to estimation in several problems of 
combining information in survey sampling such as those 
arising from two occasions, two frames, two phases, 
small areas and outlier-prone domains. The problem of 
estimating nonlinear parameters, such as the median, is 
also covered by the proposed method. For estimating 
finite population parameters in the context of survey 
sampling, the proposed method of modified regression 
can be viewed as an analogue of the method of (gene- 
ralized) zero functions for estimating infinite population 
parameters in the context of classical statistics. 

Key Words: Finite population model; Predictor 
zero functions; Weight calibration; Working covariance. 

1. INTRODUCTION 
We consider estimation of finite population parame- 

ters under the design-based approach, i.e., values of the 
study and auxiliary variables attached to units in the 
finite population are assumed to be fixed, and the only 
source of randomization of the sample observations is 
due to a given probability sampling design p(s). The 
parameters of interest could be linear (such as total) or 
nonlinear (such as median); we will say that a parame- 
ter is linear if it can be expressed as a population total 
of values of a function of the study variable. The 
problem considered is the estimation of a parameter 
when in addition to the sample data y~ ..... Yn, corre- 
lated auxiliary information is available. The auxiliary 
information could be in several forms or combination of 
them: (i) known population total for a correlated 
variable x (or an estimate of the total based on a larger 
sample of x-values), (ii) additional (cross-sectional) 
sample of y-values which may represent a population 
partially overlapping with the target population, (iii) 
past sample from a partially overlapping longitudinal 
survey, and (iv) prior information about the parameter 
of interest. 

We propose a method termed modified regression 
(MR) which was first introduced by Singh (1994) in a 
somewhat different manner, and was inspired by the 
contributions of Fuller (1975), S/irndal (1980), and Rao 
and Scott (1981) in survey sampling for estimating 

finite population parameters, and C.R. Rao (1968), 
Henderson (1975), Nelder and Wedderbum (1972), 
Wedderburn (1974), Liang and Zeger (1986), and 
Godambe and Thompson (1989) in classical statistics 
for estimating infinite population parameters. In the 
classical statistics, one could use a common principle 
for various problems of estimation involving combining 
correlated information. This has to do with the use of 
linear zero functions of Rao (1968) (which gives a 
convenient alternative characterization of Gauss- 
Markov) to get optimal (BLUE) estimates of linear 
(semiparametric) model parameters, and more gen- 
erally, use of maximum quasi-likelihood (Wedderburn, 
1974), and optimal estimating functions (Godambe and 
Thompson, 1989) for nonlinear model parameters. 
When some parameters are random with known prior 
distribution (up to second moments), then optimal 
(BLUP) estimates (Henderson, 1975, see also 
Robinson, 1991) for linear model parameters can be 
obtained, and for nonlinear model parameters, a 
generalization of estimating functions given by genera- 
lized zero (or predicting) functions (Singh, 1995) can be 
used. When the covariance structure is difficult to 
specify, then the use of a suitable working covariance 
matrix (as in the GEE-generalized estimating equations 
approach of Liang and Zeger, 1986)can be used which 
gives rise to suboptimal but consistent estimates in 
general. Thus, the method of generalized zero functions 
for semiparametric model parameters (which gives rise 
to above methods as special cases) provides the under- 
lying common principle. 

The above general principle of estimation by gener- 
alized zero functions used in classical statistics can also 
be used in survey sampling provided a suitable finite 
population (semiparametric) model can be defined. 
Although it may not be possible to define such a model 
at the unit level (in view of the noninformativeness of 
the design-based likelihood with labelled units, 
Godambe 1966), it may be possible to define it at the 
aggregate level. Suppose, the sample data is condensed 
into elementary estimates corresponding to subsamples 
(or domains) of interest using Horvitz-Thompson 
estimation. Now, treating these elementary estimates as 
working sufficient statistics (i.e., as building blocks), 
and assuming that their design-based covariance matrix 
can be specified, one can use optimal regression via 
linear zero functions (or generalized zero functions for 
the general case of nonlinear or random model parame- 
ters) to get estimates for finite population parameters of 
interest. However, this solution is not practical except 
for simple designs because the covariance structure is 
difficult to specify for complex designs. An obvious 
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alternative is to use the idea of working covariance 
matrix (as in GEE) and define suboptimal estimates. 
This is the route followed by the proposed MR method. 
The MR methodology provides a general principle for 
estimation when combining information from two phase 
sampling, two frames, two time points, as well as when 
prior information is available.The parameter of interest 
may be linear or nonlinear.The option of using prior 
information by treating the finite-population parameter 
as random is particularly useful in dealing with the 
problem of small area and outlier-prone domain estima- 
tion, in which case MR leads to biased but stable 
estimates under design-based framework. (Under the 
design-cum-prior distribution, the estimator will be 
(approximately) unbiased). Note that estimation of 
design-based MSE would, however, be difficult in this 
case due to design bias. 

For problems of combining information, the existing 
design-based methods in survey sampling often employ 
the concept of superpopulation modelling. For 
example, for the problem of combining auxiliary 
information from known population totals for correlated 
variables, both Fuller (1975) and S~irndal (1980) used 
a superpopulation model to motivate regression-type 
estimators (known as model-assisted); S~irndal's gene- 
ralized regression (GR) estimator is more general and 
encompasses Fuller's estimator. For the problem of 
smoothing (categorical) finite population parameter 
estimates under a hypothesis (which can be viewed as 
a problem of combining information in the form of 
parameter restriction imposed by the hypothesis), Rao 
and Scott (1981) used the method of pseudo maximum 
likelihood (PML); this can also be motivated from a 
superpopulation model. However, for various problems 
of combining information mentioned earlier, it may be 
difficult to justify a suitable superpopulation model 
required for a model-assisted estimator. Besides, if the 
design-based properties are of interest, the superpopula- 
tion model remains somewhat passive. The MR 
approach, on the other hand, avoids the need of super- 
population modelling by using the idea of finite popula- 
tion modelling with a working covariance structure, and 
can recover the existing model-assisted methods as 
special cases. 

Based on the above discussion, it follows that use of 
MR in estimating finite population parameters provides 
a common principle which is analogous to the use of 
generalized zero functions for infinite population 
parameters. However, there is an important aspect in 
which the two differ. Since the probability sampling 
mechanism depends on known design variables and not 
on the study variable y,  it is possible to develop an 
estimation method which is not y-specific, i.e., which 
is applicable to all study variables. This feature is very 
appealing in practice and is known as weight calibration 
in sampling (Deville and S~irndal, 1992). For infinite 
population parameters, on the other hand, the estimation 
is y-specific because generally the model specification 

depends intrinsically on the variable y. For each MR- 
estimator considered, we provide a representation in 
terms of expansion estimates using calibrated weights 
which will be common for all study variables. Note 
that for this purpose a common set of auxiliary vari- 
ables is needed for all study variables. However, 
variance of the estimator for a given study variable will 
of course depend on the correlation between the study 
and the chosen auxiliary variables. 

The organization of this paper is as follows. Section 
2 provides a motivation of the proposed MR method 
while Section 3 contains its description. Illustrative 
examples of its application are given in Section 4. 
Finally, Section 5 contains concluding remarks. 

2. MOTIVATION OF MODIFIED REGRESSION 
To motivate MR, we will first show how the usual 

generalized regression (GR) estimator, developed by 
S~irndal (1980) in a model-assisted framework, can be 
obtained by finite population (and not superpopulation) 
modelling. In GR, the extra information is in the form 
of known population totals 0 x of p-vector of auxiliary 
variables x This gives rise to p predictor zero func- 
• ^ , r  0 -vector ~Hr = X / W  1 is the tlons 0 x - x where  the p 

Horvitz-Thompsonestimator of 0 x, W - d iag(h ,×l ) ,  X 
is a n xp  matrix of observed x-values, and h is the n- 
vector of inverse inclusion probabilities. Now, the GR- 
estimator of the total 0y of the study variable y is given 
by 

b ~" = O "~ , w x ( x '  .~,,T y y -- Y W X )  -1 t x - Ox) (2.1) 

The above estimator can be obtained using the 
method of linear zero functions, i.e., as a residual after 

OHT 
regressing ~ on the p-predictors under a working 
covariance l'g (see 2.2b) of the (p 4" 1)-vector 
g -- (Onyr-Oy, (Onxr-Ox)/)/. The underlying finite 
population model is a semiparametric common mean 
model given by 

" H T  
Oy 1"  

" HT " HT 
Or + (Oxi -- 

" HT " HT 
Oy + (Oxp -- 

where %÷1) × 

Oxl) 

Ox.  1 

- (0,  I ' ) ,  I' = C F g C  I 

[,, '/ 1 01x p 
C = 

xl I p  ×p 

Oy 4" ~. (2.2a) 

( y t W y  y t W X  ] 
re, ) X t W y  X t W X  

(2.2b) 

The matrix IF' is of course nnd because it can be 
g / 

expressed as ( y , X )  W ( y , X ) ,  and W is nnd. However 
at first sight it may seem unusual to treat rg as a 
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working covariance because its entries do not involve 
deviations from the mean. We will show that under 
suitable conditions, the above choice of rg gives rise to 
optimal regression estimate for simple random samples, 
but suboptimal estimates in general. Thus there is some 
justification in choosing I'g. This can be seen as 
follows. The conditions are: (i) the population size N 
is known and h / 1 =N" a condition often met in 

n ^hhr (the Hajek-modification of practice by using Or 
the HT-estimator) defined as X / W H l n  where WH= 
d iag{h~N(~h~) -~ 'k~s} ,  (ii) the counting variable is 
used as one of x. Equivalently, this means that 1 is 
in the column space of X. We will assume without 
loss of generality that the first variable x 1 is 1 so that 
Oxl = N .  Now, denoting by x,,, the x-vector  without 

• ~ ' ~ " G R  • 

the first element, the estimator Oy obtained under the 
working covariance matrix I'g is equivalent to the 
estimator obtained by optimal regression of 0~:/r under 
simple random sampling on ( p - l )  predictor zero 
functions corresponding to x(1 ) , see (2.6) below. 

More specifically, under the condition (i), the GR- 
estimator has the simple projection form which in turn 
gives the following results. 

Oy"GR = y~ W X ( X  / WX)_~Ox (2.3a) 
= y /  WnX(X/  W I ~ - I O x  (2.3b) 

- O ~  - y~ WnX(X'  WnX) -~^unr - ~Oi' , ,20x)  (2.3c) 
= O~l~r-y / W X ( X  / WX)-~(Ox - v x) (2.3d) 

Note that although the first element of 0 x -~mtrx is 
zero under the condition (ii), its contribution in the 
working covariance rg is not zero because rg does not 
involve deviations from the mean. Now using the 
inverse partitioned m~trix formula for the l~atrix 

l ,  X 1 W x ,  X 1 W X , , , 1  
X / W X  = ' ' " [  , (2.4) 

/ X;1) WX 1 X;1 , WX(1)I 
where X(1 ) denotes thd matrix X without first row and 
column, we obtain from (2.3d) ,~unr 
~IGR-OHHT-['I W X  "~[X/,, W X(1))  -1 - 0x(1)).(2.5 ) Vy -- Y k)' c(1)]k c(l) (x(1)  

Here X(~) denotes the centered X(~) matrix, i.e., 
from column i , the sample meanxi( = ~ E s X i k  h ~ ( ~ h )  -1 ) 
is subtracted. Thus,X(1)=X<l)-I . ® x(~). We can write 
(2.5) as 

Y = n y - [ F, k:l Yk(Xk(1) -_X(1))hk] 
X [  ~ k=l(Xk(1) - ~'(1)) (Xk(1) - X(1))/hk ] - I  (N~.(1) _ 0x(~) X2.6) 

Note that the sampling weights h k are included in 
the simple random sample variance-covariance expre- 
ssions. Thus (2.6) coincides with the optimal 
regression estimator for simple random samples. 

The formulation of the finite population model (2.2) 
in terms of zero functions defines MR for the special 
case of GR. As will be seen in the next section, MR 
gives GR-type solutions to many different problems. 
Now there are several ways in which MR can 
generalize GR. For example, MR allows for other zero 

functions such as those given by the difference of two 
estimates• The zero functions can also involve nonli- 
near parameters. Also MR gives rise to a family of 
estimates by choosing different working covariance 
matrices• Moreover, prior information about the 
parameter can be incorporated by using additional zero 
functions. Finally, like GR, MR-estimates for any y 
can be represented as an expansion estimator,y/w 
where w represents the n-vector of calibrated weights 
common for all y-variables. In particular, for GR, the 
calibrated weights are given by 

,~HT 
w cR = h - W X ( X  / WX)-I~, x -Ox) (2.6) 

The variance of the MR-estimator can be estimated 
in general by a sandwich-type estimator as in the case 
of estimating equations (see e.g. Binder, 1983). In 
particular, for GR, the usual variance formula in terms 
of residuals can be expressed alternatively as follows. 
First note that O cR is the solution of the following .Y 
estimating equanon 

G / r g l g  = 0 (2.7) 
w h e r e  G = (1, 0 ..... 0)/, g = (Onr-Oy, (on~r-Ox)/) / . 

Therefore. 
V(Oy ) = B- I (G  / G)(B / (2.8) 

where B = G / I'g 1 G, and Vg is an estimate of the true 
covariance matrix of the vector g of HT-estimates 
using standard formulas in sampling. Under the 
asymptotic framework of Isaki and Fuller (1982), the 

• OGR • 
esnmator y is asymptotically normal with mean0 
and variance 9(0 aR) as n, N--,oo. This follows frol~ 
the CLT of G / I'~gg. This implies, in particular, that 0y cR 
is asymptotically design consistent, i.e. 

"GR , (Oy ) = Op(n -1N2). N-I  I Or -0 ,  I = Op(n-''2) since ~ ^G,. 

3. METHOD OF MODIFIED REGRESSION 
In GR, we worked with the elementary unbiased 

estimates of finite population parameters for study and 
auxiliary variables. However, for defining MR, it 
would be useful to work with zero functions which are 
elementary unbiased estimates of zero; here the function 
may depend in general on both the variable and the 
parameter. This makes it convenient to deal with 
nonlinear parameters. The function g~(y,O) will be 
used to denote the (parameter-dependent) elementary 
zero function involving the study variable and the 
parameter of interest 0. Thus, 

= E ~ ,  4~(Yk, 0 t hk - ~2 ke v4~(Y~, 0) (3.1 a) 
g,(y,O)= ~'k~u(l(~s~ -hi, )ck(Yk, O)hk (3. lb) 

If 4~(yk,0) does not depend on 0, then the finite 
population parameter 0 implied by (3.1) is the popula- 
tion total 0~ = ~] k~ u 4~(Yk). (If 4~(Y~) " Yk, then 0~ .is 
simply 0y). In this case, we will say that the parameter 
is linear because the parameter 0, can be expressed as 
a population total of values of a function of y~. How- 
ever, if 4~ (Y~, 0) does depend on 0, then the parameter 
is nonlinear in population values, in which case 0 is 
defined by solving E k~ v 4~(Z~, 0) -- c for a known 
value of c. For example, if Oy is the finite population 
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median, then ~)(Yk, Oy) -- l { y k ~ O y } ,  and c = N / 2 .  
Similarly, the functions gc,(x) will be used to denote 

the (parameter-free) elementary zero functions involving 
the auxiliary variables x. For example, g~ for GR can 
be expressed as, for i-1 .. . . .  p ,  and ¢(x~,)- xit , , 

gC,(X i) = ~ s ~ (Xik) hk 10¢' (3.2a) 
= ~ ~ u ( l ~ }  - hi ) ¢(Xik ) h~, (3.2b) 

The function g~ is parameter-free because 0~ -- ~ he u¢(xi~) 
is assumed to be known. Now, for other types of 
predictor zero functions such as the difference of two 
estimates obtained from the same sample, ¢(xi~) can be 
suitably defined as a function of Xik such that ~] he u ¢(x;k)-0. 

We distinguish between two scenarios depending on 
whether prior information is available for 0 or not. 

3.1 No Prior Information About 0 
Case I (Linear Case) 

Here, 0= ~ k, v4~(Y,). For combining information 
about 0 in terms of (p+l) zero functions g+(y, 0) and 
g¢(x)px I , it follows from the method of zero functions 
that the optimal estimator is given by the regression 
estimator for the common mean model similar to (2.2) 
provided the true covariance matrix V of the vector of g 
zero functions g = (g~, g+)/ is (approximately) known. 
It is obtained as the solution of the following estimating 
equation, 

G / lWglg = 0, (3.2) 
where G / - (1,0 ..... 0)~×~o+1 ) . However, for complex 
designs, it is in general difficult to find a stable estimate 
of Vg due to insufficient degrees of freedom (cf: Rio, 
1994), and therefore a working covariance matrixla g 
can be used instead. This defines MR for the linear 
case. In particular, i f  lag is chosen in a manner similar 
to that for GR, i .e . , [  ~ / W ~  ¢ / W , l ,  ] 

lag = [ ~I '/ W0 xl ' / W ' t '  ] ' (3.3) 

where 4~ is the n x l  vector of <h-values, ,I, is the 
n ×p matrix o f  C-values (k=l to n, i - 1  to p ) ,  then 
the estimator 0 M and calibrated weights w MR are given 
by 

OMR = Ekes (~)(Yk) W~eIR = ~ /wMR (3.4a) 
w MR = h - W"R("R I Wff ' ) -1 go.  (3.4b) 

In various applications, the following more general 
form of the calibrated weights for MR will be used. 

MR W. = h - W.  '~It'. ('~I¢/. W.  xl¢.)-I g ¢ . .  (3.5) 
This entails replacing (i) predictor functions g~ byg~. 

(and the corresponding covariate matrix ,I, by ,I,. ); 
this feature allows for transforming predictor functions 
in order to have certain desirable properties in MR, see 
e.g., composite estimation (Section 4.1) and two-phase 
estimation (Section 4.3), (ii) the weight matrix W by 
W. ; here unlike W, W. is not necessarily d i a g ( h , , ) ,  
see e.g., dual frame estimation in Section 4.2, and (iii) 
the initial weight vector h by h .  ; here h . ,  unlike h,  
need not be the usual vector of inverse inclusion 
probabilities, see e.g., two-phase estimation in Section 

4.3 where h denotes the inverse of conditional 
inclusion probabilities at the second phase given the 
first phase sample, and small area estimation to allow 
biased (but asymptotically design consistent) estimation 
in Section 4.5. The properties of the underlying finite 
population model should be kept in mind to suitably 
choose the predictors and the working covariance which 
in turn define , I ,  , h ,  W for the calibration form of 
MR. A direct application of calibration estimation for 
a given distance function may not be justifiable. 

Now as before for GR, f,(~MR) Can be obtained in a 
sandwich form (2.8), and an approximate confidence 
interval for OMCan be constructed from the asymptotic 
normality of O -0 with mean 0 and variance f,(~mR). 
Case II (Nonlinear Case) 

Here 0 is defined as a solution of ]~ ~,u 4)(Y~, 0) - c. 
Now, in general, it may not be possible to write a 
common mean model as in the linear case from the zero 
functions g~(y, 0) and g~,(x) because y and 0 may not 
separate in the expression g~,(y,O). However, the 
method of estimating functions of Godambe and 
Thompson (1989), which is more general than the 
method of linear zero functions, can be adapted for the 
finite population parameters under certain conditions. 
Here the finite population semiparametric model can be 
expressed as 

g - (0, Vg). (3.6) 
Suppose for the class of estimating functions A Z g 

defined by n × 1 transformation vectors A, we have 
the following asymptotic representation as n, N---,oo, 

A ' V-gig = A ' V-g ~ G(O-O) + o°(n ~ - N),  (3.7) 
where G - (f(0), 0 .. . . .  0) / for a suita~ole function f (O) .  
Then the optimal choice of A is given by G. Note that 
(3.7) is not a Taylor expansion where G represents the 
vector of derivatives of g with respect to 0, because in 
the context of finite population parameters, these may 
not be meaningful. However, these can be viewed as 
pseudo-derivatives. Thus, under the condition (3.7), 
the optimal estimating function has the same form as 
(3.2) of the linear case. 

Using the working covariance matrix lag of (3.3), 
the MR-estimator for the nonlinear case is obtained by 
solving 

¢k / (y, O) w me = c ,  (3.8) 
where w MR has the same form (3.5) as in the linear 
case, and is independent of 0. Notice that the estimat- 
ing equation (3.8) and hence the estimator 0MR does not 
depend on tile pseudo-derivative riO). However, its 
variance, V(O MR) would, of course, depend on f lO) .  It 
is interesting to note that MR justifies a natural and 
commonly used estimator of 0. In the absence of 
auxiliary information, 0 is estimated by solving 
S, ~e~4~(y~,O)h~ = c while in the presence of auxiliary 

MR information, h, is replaced by w, and 0 is estimated 
• MR • 

by solving ~ ,e~4~,(y k, O)Wk " C. From a practical 
point of view, the resulting estimator of 0 is convenient 
because it uses the same set of calibrated weights as in 
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the linear case• However, choice of a suitable set of 
predictor variables would invariably depend on whether 
the parameter is linear or not, see also Section 4.4. 

3.2 Prior Information About 0 
We will consider only the linear parameter case• If 

the estimator OMR is unstable due to insufficient sample 
size as in the case of small area or outlier-prone domain 
estimation, it may be worthwhile to reduce instability 
by using prior information at the cost of introducing 
(marginal) design bias. Using the method of genera- 
lized zero functions, it is easy to combine the addi- 
tional prior information. The prior information about0 
can be expressed in the form of a zero function (under 
the prior distribution), go - 0 " - 0 ,  where 0" is the 
prior estimate of 0. Since the zero functions g - (g~, g~)/ 
and go are uncorrelated, it is easy to see that the 

. . . . . .  " O P T  
optimal (under des~gn-cum-pnor distribution)_ estimator,0 

• • • " M R  will be a convex linear combination of 0 and 0*, and 
is given by 

0 °PT = kO MR + ( l - k ) 0 " ,  (3.9a) 

where k = V(go)[V(g o) + V(OMR)] -1 (3.9b) 
Using a working covariance for g to compute k, 

the resulting estimator, O MR* (say), would be suboptim- 
al. Under only design-based framework, the estimator 
~R.  is biased, but more stable (i.e., has less variance) 
than 0 MR, but its MSE is, in general, difficult to 
estimate. However, biased estimates can be quite 
useful in practice if it can be ensured that bias (relative 
to standard error) is not too high. 

In practice, some working assumptions may be used 
to choose the prior estimate 0 * and the shrinkage factor 
k. For example, if 0" is set equal to /]/0~, where 
/]/ = 4 d i , ~ ( ~ / I , ~ , ) _ i ,  and 0¢, = F_,k~vC,(x), then 
~R.  assumes the form of a calibration estimator, i.e., 

where 
0 MR = 4~/WMR. (3.10a) 

w MR• = Xh - P~(~/Pxl ' ) - Ig~.x ,  (3.10b) 
=h ~] ~ssC/(xk)hk-O¢, = ~ kev(XI{~es}-hT, )¢,(xk)h k 

Thus, with a working value of k,  the estimator 
O MR" can be easily calculated from a simple modifica- 
tion of the usual regression weight calibration. In 
practice, ~ itself can be made more stable by borrow- 
ing q5 and ¢, values suitably (see Section 4.5 and 4.6). 
This modification helps to make 0 MR approximately 
unbiased, but the problem of instability in OMR still 
persists. Also, in practice, the value of k is chosen 
such that it tends to 1 as n--,co. Therefore, for large 
samples, 0 MR* will be asymptotically design consistent. 

4. EXAMPLES OF MODIFIED REGRESSION 
4.1 Composite Estimation by MR 

With rotating panel surveys, usual estimates of level 
and change based on only cross-sectional data can be 
made more efficient by incorporating in the estimates 
correlated information from another time point due to 
overlapping samples. The traditional estimator is the 

AK-estimator of Gurney and Daly (1965). Let t, t ~ 
denote the current and previous time points and let 
y , m  denote respectively the study variable at t ,  and 
the matched (backward with t z -sample) subsample of 
t-samp!e. Similarly, y / , m  / are defined whereto / 
now denotes the matched (forward with t-sample) 
subsample of t / -sample. The AK-composite estimator, 
Oy~K, of the total 0 for the study variable y at timet 
i s ^ ~ e n "  ~,AK yt 

oY~..AKVYt~,~ A,OGR 0 GR 
Oyt + K[Uy't'+(Oytm-Oy'GR'm')-OyGR] + ( y t -  ytm)(a.la) 

= 0 GR + K'O AK _0 GR ,) - ( K - A ) ( O ~ R _ O  GR" yt ( y, t , y' t' m ytm) (4. l b ) 

The coefficients A and K are chosen to minimize 
" A K  

the variance of Oy t . Thus, the AK-estimator is a two- 
step estimator where in the first step, a GR-estimator of 
Oy, is computed using the usual time t predictor zero 
functions ( O x t  ~ H T  - x, ), and in the second step, optimal 
regression is used to combine OaR with two additional 
premctor zero tunctlons ( y,,, - y','m') anct ( ,t -V,tm)" 
The K-composite estimator, a predecessor of' AK, "is a 
special case of AK by setting A-0 .  Thus, in the K- 
composite estimator, the additional predictor zero 
function is simply the difference of the two additional 
predictors used in AK. A further development of AK 
which can be termed as the AK-calibration estimator, 
was suggested by Fuller (1990), in which a set of 
composite weights are produced for estimation of all 
study variables. For this purpose, for a few linearly 
independent key variables, the AK-estimators are first 
obtained, and then these estimates are used as additional 
auxiliary population totals in the GR-method to find 
final calibrated weights. 

Alternative estimators using MR were developed by 
Singh and Merkouris (1995). Since Oy, is a linear 
parameter, MR for the linear case can be used here. 
The MR-composite is basically a GR-type estimator 
obtained by regressing (under a working covariance) the 

• " H T  zero funcuon (0~, -0~,) on all the predictor zero func- 
tions simultaneou•sly, the usual predictors (Ox,-On.tr) and 

• • " R " 7 - 1 T  " H I "  " H T  

the addmonal o n e s  (~y~t,--Oy,t,m,) and (Ovt-O,,tm). 
Notice that in this formulation, it is easy to mak'e it 
multivariate, that is, additional predictors corresponding 
to a set of key study variables (y,z, etc.) can be used 
together to take advantage of the contemporaneous 
correlation between variables. This represents a 
departure from the traditional AK-estimator which is 
univariate. There is another aspect in which MR- 
composite departs from AK. Since the weight calibra- 
tion is used for computing MR, all predictor zero 
functions should be in the form of auxiliary control total 
minus HT-estimator of the auxiliary variable at the 

• • • " M R  " H T  
current time t .  Now, the additional p ~ c t o r ( O y ,  t, - O , , , , , m t  ) 

involving the variable y /  from t / is not of this ~orm. 
So this is transformed (compare with ,I, of (3.5)) to 

z " b " the ero functmn ( y,, - y'tm) where bothO~y, t and 0.,,, 
are (approximately) unbiased estimates of the concep- 
tual parameter Oy,,, i.e. the population total of y/ at 
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time t if the variable y /  were assigned conceptually to 
all the population units at t .  The estimate ~y,~ is 
obtained from ~y,t R by calibrating the time t / MR- 
weights with respect to time t GR-auxiliary controls• 

^ H T  
On the other hand, the e s t i m a t e  O y t t m  i s  obtained by 
augmenting the unit-level information about y/ for the 
matched subsample via micromatching. For microma- 
tching, some form of imputation (such as carrying the 
current y-value backward) may be needed for missing 
data due to nonresponse at t / and movers from t / to 
t .  Impact of this imputation, however, will be negli- 
gible if the probability that a time t-respondent is 
nonrespondent at t/ and that its y-value has changed is 
small. 

In computing MR-composite, the (random) control 
totals ~y,~ are treated as fixed, but their variability, is 

• • M R  
taken into account when computing variance o f  Or  t . 

Also, to avoid instability due to too many predictors, 
Singh-Merkouris used only (~y,t R - ^ n r  O y t t m  ) a s  additional 
predictors. They found good efficiency gains relative 
to the AK-estimator in the context of the Canadian 
Labour Force Survey. Other versions of MR-composite 
m~.,R be obtained by using the differences 
[( y ' , - y ' , m ) - (  y , -  y,m)] as additional predictors as in 
the K-estimator, or after this step, the remaining 
predictors ( t - ytm) can be added In a second step 
along with the usual GR-predictors. These and other 
measures of enhancement are currently being investi- 
gated in collaboration with B.P. Kennedy and S. Wu. 

It may be instructive to consider the form of the 
^ M R  estimator Oy, in the case of simple random samples of 

size n from two successive occasions with the overlap 
sample being of size n o. Also assume for simplicity 
that the population size N does not change over time. 
Now, theauxiliaryvariablesare¢l~ = 1, ¢21, = a y~ l{k6m,}, 
~'3k = (ot l{k6m} -.l{k~s~Y~), where c~ is the inverse of the 
overlap proportion, 1.e., oe - n/n  o, and m -- m / are the 
matched subsamples at t and t / . The three predictor 
zero functions are 

g~ - ~vs!l)h~ - N (4.2a) 
g~2 = °el(~ m ' - ' ~  hk) - E s'Y~ hi (4.2b) 
i . . /g¢,3 ,  or( ~ mYkhk) - ~ ~ykhk (4.2C) 

where h k -- nk - Jv/n. Here g.,. happens to be identica- 
v l  XMR- 

lly zero From (3.4) we have or- - 
• yt  

--  O~ O'y,  (c~-l) byy, -1 

^ 2  (N/n~ EsY~ (~, O) ( ~ - 1 ) ~ ,  ( ,~-l)oy &~ 

^ / / o o where a .... - [ ~ mY~ Y~ - ( ~ mY~)( ~ m' Y~ ) / n ] / (n - 1) ,  
^2 ~,(2 • . 

and a~,, Cry are s~mllarly defined. Note that the estlma- 
^ M R  . . . .  

tor Oy, is not the optimal regression estimator because 
• / / • . 

the estimator ~s,Y~ h~ m g~2 is treated as a fixed 
population control. The only difference between~yt g 
and the optimal regression estimator is that the second 
diagonal element in the 2 ×2 matrix of (4.3) is changed 

^ 2  
to c~ % for the case of optimal regression. However, 

^ M R  
if g~3 is not used as a predictor, t h e n  Or t will 
coincide with the corresponding optimal regression 

estimator. 
4.2 Mult i - frame Est imat ion by MR 

Here the problem of estimation involves combining 
information in independent samples from overlapping 
frames which together cover the target population. For 
simplicity, we consider the case of only two framesA 
and B, say. Let a, b, and c denote respectively the 
three nonoverlapping domains, A 1"1 B c, A c f-] B, and 
A r] B. The pioneering work in this area is due to 

, O n Hartley (1962, 1974). Hartley s estimator, , turns 
y 

out to be a special case of the well known estimator of 
Fuller and Burmeister (1972) which is defined a s  0 FB 

= ycA ) -- ~1  {' ycA -- U y c B ) -  [ J ' (  cA -- cB )(4.4) 
w ~ l g ; e  " y c A  hGl~b, for example, denotes the GR-estimator OfOy c 
based on sample from frame A, and 31, 32, are chosen 
to get optimal regression. If the predictor zero function 

" GR GR • ^ B 
(N'~ -N'~ ) is dropped from (4.4), then ~ reduces to 
^ n " . . . .  : 
Oy. An alternative estimator was proposed recently by 
Skinner and Rao (1996) using the PML method. 

The MR-estimator for multiframe problems was 
developed by Singh and Wu (1996). It is a GR-type 
solution with four t~'pes of predictor zero functions: the 
usual predictors 0~'-0xA from A, (ii) the usual pre- 
dictors ~H[_ 0y, from B, (iii), the additional predictors 
" H T  O H T "  ~"  • • 
OycA- yc8 frorn the s arnples in the common domain; 
these include N c , ] ' - N c j  for the counting variable as 
well as those for other selected study variables (thus 

^ M R  • • • 
rendering 0 multivariate in nature), and (iv) the 

Y ' - - .  ~..HT an t  (~cr  +~xnc~)/2 _ 0  x for additional prechctors Uxa + Vxb + 
R • 

the combined frame. However, ~yt differs from the 
single frame GR in some ways.The working covariance 
matrix is modified by replacing W -- block  d iag  ( W A, W 8) 
by A W (compare with W of (3.5)) defined as 

A W = b lock  d iag  ()'A WA' )XB WB)' (4.5) 
where )'A, )~B are relative measures of the inverse 
effective sample size for the two sample designs from 
A and B. If the two designs are identical, then clearly 
h A -- X B - 1. In practice, design effects can be used 
to estimate ),'s. 

The weight calibration is defined slightly differently 
from the usual GR as follows. 

^tar ^MR M̂R ^MR (4.6a) 
Oy = Oy a + Oyp + Oy c / / 

= y a W a  +YoWo + (YcA WcA +YcB WcB)/2 (4.6b) 
where 
y '  (Y'a, ' ' ' ' ' = YcA, YcB, Yb)/,  W/ = (W/a, WcA, WcB, Wb) (4.6C) 

In the special case of simple random samples from 
" M R  

the two frames, Oy coincides with the optimal 
regression estimator. For  example, with the three 

., Hr N~ " N H/~ "/4r predictors N A - N A, - lvB, cA - NcB ' we can 
define the auxiliary variables as flk = l{~s(A),, ¢2k = 
l{,~(S)}, ¢3k = I{k~(cA)} - l{k~(cB)~ where s(cJ~), for 
example, is part of the sample s(A) from A which is in 
c. The predictor zero functions can be written as 

g+l = ~] s(A)(1)h~A - NA (4.7a) 
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g¢~2 = E sW)(1) hk, - N 8 (4.7b) 
g¢,3 = Z s(cA)(1) h~  - F., ,(c8)(1) hi, 8 '1 (4.7c) 

where h~  =N A / n A , ht ,8=Ns/n B . Here XA=n A , XB=n~ 1. 

Now, from (4.6), b MR y can be easily computed as 

~yR = (NA/r/A)[ E s(a)Y* + ~,(ca)Y*/2] + (4.8a) 
(NJn~)[  S, ,(b)Y, + '~ ,(c~)Yg/2] - t3[(NA/nA) n~A-(NJn~)  nc~] , 

where ~ .% [N(n~ '"  gr + n;  1. ~.)1-I X 
[Nc(n; ~ Oy a -- ns b>~0)-(Oyc/2 ) ( n 2 1 * ] g a  - n£'*N0)], 

and where 
- 1  * - 1  * - 1  nA = n~ -~ - N~ -~, ne = n~ - N ~  ~. (4.8b) 

This is the optimal regression estimator• 
4.3 Multi-phase Estimation by MR 

We will consider the case of only two phases for 
simplicity• Two phase sampling is often conducted to 
collect inexpensive information about correlated auxili- 
ary variables based on a large first phase sample, which 
is useful at the design as well as the estimation stage of 
the second phase sample• This problem of combining 
information is similar in principle to that of composite 
estimation. There exist GR-type estimators for this 
problem due to S~irndal and Swensson (SS for short, 
1987), Breidt and Fuller (BF for short, 1993), Armstro- 
ng and St-Jean (AS for short, 1994), and Hidiroglou 
and S~irndal (HS for short, 1996), the latter two were 
motivated as calibration estimators. Alternative estima- 
tors can be developed using MR and are currently being 
investigated in collaboration with B. Tang. 

Denoting by z -the auxiliary variables observed 
from the first phase sample s(1), y -the study variables 
observed from the second phase sample s(2), and byx 
-the usual auxiliary variables with known population 
totals 0 x, the predictor zero functions for combining 

^ H T  ^ H T  ^ H T  
information are g¢,(~)= O(~) - 0 x, and g~(2) = 0x • (2) - Ox. (~), 
where x .  includes both x- and z-variables, and the 
subscript (2), for example, denotes that the estimator is 
based on s(2). Note that the HT-estimator based on 
phase 2 sample is not the usual one as it involves 
weights h~ - h~h2,, h~-~ 1 are the inclusion probabilities 
for phase 1 sample and h2~ ~ are the conditional inclu- 
sion probabilities for phase 2 given the phase 1 sample. 

Assuming that y-values are known for the phase 1 
sample, SS first consider a difference estimator using 
the predictor g~(~), and then estimate this first phase 
sample parameter by another difference estimator using 
the predictor g~(2). Thus, they propose a GR-type 
estimator by estimating the difference coefficients using 
superpopulation models. When dealing with several 
phases, BF propose reducing the set of predictors for 
the later phase by retaining only the most recent 
predictors from the earlier phase, the premise being that 
the recent predictors are better. This implies, in 
particular, a two step procedure for two phase sample, 
where first GR-estimators 0 a~ z(~) of 0 z based on s(1) 
using the auxiliary variable x are obtained, and then 
these are used as (random) population controls for s(2) 

data with the initial weights {hk} to obtain a GR-type 
estimator for 0 . Now using (3.5), a BF-type estimator 
can be defined using all the population controls, the 
matrix W in this case being diag (h k, k e s(2)) ; the 
calibrated weights w. take the form hka f  F where a F  
are the adjustment factors. Note that, as in the case of 
composite estimation, the random population controls 
" G R  • 
Oz(~) wall be treated as fixed for defining the working 
covarlance. However, for variance estimation, their 
variability should be accounted for. Like BF, AS 
propose a two step calibration except that at the second 

• A S  step they calibrate the weights hka~ to obtalnhkalka2~ 
A S  such that all the controls 0x~.R(1) are met; a~k, aZk denote 

respectively the adjustment factors for the two steps. 
HS propose a somewhat different two step calibration 
in that at the second step a modified r~ression distance 
function is used to obtain h k(a~k+ a2k -1) from hkalk 
such that the same controls are met. Note that AS use 
hka~k in the denominator of the regression-distance 
while HS use h k. 

All the above estimators are GR-type. However, 
they do not give rise to optimal regression (OR) in 
general for simple random samples (SRS) at each 
phase. With MR, one can ensure (asymptotic) equiva- 
lence to OR for SRS by choosing the working 
covariance suitably. We can define the MR-estimator 
also as a 2-step calibration estimator: the first step is 
the same as in AS (i.e., obtain hl~al, from h~k such that 
the controls 0 x are met), and in the second step, a 
conditional regression calibration for s(2) given s(1) is 
performed to obtain h2~a2k from h2~ such that the 

• ~ G R  
controls x. (1 are met Note that in the second step of 
calibration, t~ae usual "h k is replaced by h2k (compare 
with h of (3.5)) . Also the predictors g~(2) are 
transformed (compare with ,I, of (3.5)) to new (but 

• • * • ^ A H T  ^ G R  
asymptotically equivalent) predictors 0x. (2)--0x* (I)' 
where AHT denotes the adjusted HT-estimator when the 
adjusted weights h/,a~k are used. This allows for a 
simplified expression for the calibrated weights given 
by h,a~kazk. 

In the special case of SRS when al, are simply 
constants (e.g., when the x-predictors consist of only 
the population counting variable), all the above estima- 
tors coincide with the OR estimator. To see this, let 
~,1 = I~s s(2)' ~ k 2  -"  z~,Ik~ s(2), we have the predictor zero 
functions: 

g~l(2) = ~ s(2)(1) h, - N (4.9a) 
gff2(2) = ~ s(2)zl, hi, - F., s(l) zk hlk (4.9b) 

where h~ = N/n  2, h~k = N/nl ,  nl, n 2 a re  respectively 
the sample sizes for the two phases. From (3.5), we 

2 have, with the usual estimates of Oy z , cr z , 

Oy"MR = (N/n2) 2 s(2) Yt, - (byz/b~) g¢,2(2) . (4.10) 
However, if a stratified SRS is used at phase 1, then 

a~k will not be a constant, and the existing methods will 
not be equivalent to OR. This is also the case if phase 
1 sample is used for stratification in phase 2. MR, on 
the other hand, remains asymptotically equivalent to 
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OR. It may be remarked that for multi-frame multi- 
phase surveys, MR can also be defined by using MR- 
multiframe within each phase• 
4.4 Median Estimation by MR 

This is an example of nonlinear finite population 
parameter estimation• In the presence of auxiliary 
information 0 x , a commonly used method is to estimate 
median from the regression calibrated sampling 
weights• MR for nonlinear parameters (see section 3.1) 
also gives rise to this method• Note however that a 
different set of predictors may be desirable for nonlin- 

, . . . ,  

ear parameters, e.g., if thepopulation median 0 x of x 
is also known, then l { x  k < Ox} would be preferable to 
the variable x k used for linear parameters. As men- 
tioned in Section 3.1, justification of MR is based on 
the method of estimating (or generalized zero) functions 
which requires the approximate representation (3.6). In 
the case of median, validity of this representation (with 
f lO) as the density function evaluated at the median 0) 
follows from Francisco and Fuller's (1991) result on 
Bahadur representation for finite population quantiles. 
The sandwich formula (2.8) can be used to estimate the 
variance, see also Binder and Kovacevic (1995). As an 
alternative to the above simple estimator of median, 
more sophisticated estimators are among others due to 
Chambers and Dunstan (1986), and Rao, Kovar, and 
Mantel (1990). In light of the empirical study of Silva 
and Skinner (1995), the simple estimator, however, is 
expected to perform reasonably well. These and other 
related issues are currently being investigated in colla- 
boration with M.S. Kovacevic. 
4.5 Small Area Estimation by MR 

This problem arises when the usual direct survey 
estimates for small areas which use information only 
from sample units within the small area are not stable 
due to small sample sizes. The problem is often 
addressed by using combined estimators which are 
linear combinations of synthetic and direct estimators. 
The synthetic component borrows strength from other 
areas or sources such as past data. In the linear 
combination, the direct estimator is shrunk toward the 
synthetic estimator by means of a predetermined 
shrinkage factor. The choice of this factor is based on 
consideration of the relative impact of bias in the 
synthetic component against the large variance of the 
direct component. Ghosh and Rao (1994) provide an 
excellent appraisal of various methods. In the design- 
based context, popular estimators are the sample size 
dependent estimator (SSD*) of Drew, Singh, and 
Choudhry (1982) and its modification (to be denoted by 
SSD) by S~irndal and Hidiroglou (1989). The SSD* 
estimator for small area (or domain) d is given by 

b ss°* = X a b °It¢ b srN (4.11) 
y d  y d  + (1-Xe) y d  

" D I R  • • " H T  " / ^ H T  
where 0~ as the GR-estlmator 0 . + ~ . ( 0 . - 0  .) 

y a  ,, a a x a  x a  - ' 
• ^ / / / s Y ~ .  r " with /3. as y a W . X . ( X a W . X . ) ,  0 . is the reg esslon- a a a a a z t  y a  ^ ,  

• • • i 0 • t synthetic emmator given by fl, xa w~th fl, as 

/ / , y ,  W ,  X , ( X ,  W, X,) -~ and the factor X a depends on the 
observed sample size (n a) and the desired sample size (n o) 

such that it is 1 if n a > n o, and n a / n  o otherwise. Note 
that the subscript d in fie, for example, denotes that 
only the domain data are used, while the subscript s in;), 
denotes that the full sample data are used. 

The SSD estimator modifies SSD* by using a 
0 M°°D~R in that fie is modified direct estimator, yd , 

replaced by /) Thus _ 0 sYN 
OSSDyd = s ")kd OMOD.DIRyd + ( 1 ) k d )  y d  (4.12a) 

--)kd OHTyd + ,-s ~/  (Oxa - ha ~ r ) .  (4.12Mb) 
This is clearly related to the expression (3.9a) of 0 
for MR estimator in the presence of prior information0" 
about 0, 0* being the synthetic estimator. (Note that 
the form of the SSD estimator can be justified by 
assuming a random small area effect.) This observation 
was used by Singh and Mian (1995) to propose general- 
ized SSD (GSSD) estimators using the MR methodol- 
ogy. The GSSD estimator enhances SSD in several 
ways. For example, aggregate level constraints for 
small area estimators, in that the direct survey estima- 

, b D I R \  
tors t y ) for broad areas should coincide with the sum 
of small area estimators, can be easily incorporated via 

• • • " D I R  " H T  • 
an additional zero functions 0 - E e Ore' with appro- • ~y t 

priate working covarlance with other zero functions. 
This condition can be viewed as part of the auxiliary 
information, and is clearly desirable in practice. By 
contrast, SSD estimators are further adjusted in a 
separate step to satisfy this condition, and consequently, 
the final SSD estimators have no longer the shrinkage 
form. 

Another important enhancement by GSSD is based 
on the observation that SSD of (4.12b) can be computed 
by a modified version of the regression weight calibra- 
tion method. To motivate this, one can visualize 
performing a mass imputation for each small area by 
borrowing data on the study and auxiliary variables 
(along with their sampling weights) from other areas so 
that the sample size n a is boosted to na" (say), and the 
total sample n is boosted to n *. The sampling weights 
of the imputed data for each small area can be adjusted 
so that the total weight matches the area population. 
Now, for weight calibration, a penalized chi-square 
type distance function can be minimized under linear 
constraints to obtain a set of final weights for GSSD. 
The penalty component corresponds to the prior infor- 
mation. 

There are important useful and practical conse- 
quences of being able to use weight calibration for 
computing GSSD. In particular, one could borrow data 
from sources other than the current sample such as past 
surveys for the same area. Moreover, for several key 
study variables, one could put aggregate level con- 
straints simultaneously so that a single set of final 
calibrated weights satisfy all the required conditions and 
can be used for providing estimates for all study 
variables. This will obviously be very convenient in 
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practice for a production system in meeting user 
demands, and for maintaining internal consistency of 
estimates. 
4.6 Outlier-Prone Domain Estimation by MR 

This problem is similar to that of small area estima- 
tion because of the instability of the direct estimator 
except that the instability is due to the presence of 
outlying or influential observations which in effect 
implies that the sample size is small. It is assumed that 
the outliers present in the sample can be identified and 
are representative. It is also assumed as in the case of 
small area estimation that conceptually there exists a 
random outlier-prone domain effect such that the prior 
estimate 0* of 0 can be taken as a regression-synthetic 
estimator. Now, MR method for small area estimation 
can be adapted for the outlier problem. The basic idea 
is to boost the sample by borrowing data on the study 
variable (y) and auxiliary variables (x) along with their 
sampling weights from a suitable source (such as past 
surveys or administrative data) so that the observations 
detected as outliers before are no longer outliers. The 
sampling weights of borrowed (or mass imputed) data 
may be adjusted to satisfy the total population count. 
Note that the above method of borrowing strength to 
reduce the influence of outliers is in principle similar to 
the method of weight reduction commonly used for 
treating outliers. Now, the regression-synthetic estima- 
tor and the modified direct estimator can be obtained as 
in the case of SSD estimator. The outlier-prone domain 
estimator 0,~ R~ for domali a d is defined as a combined 
estimator (4~. 12 ~) where theshnnka" ge factor kdCan now 
be obtained under a working rule as 

X d -- 1 - ~,(do)Ykhk / ~,,(d)Ykh~, (4.13) 
where s(d o) is the subsample containing outliers. Note 
that h, d depends on y and it tends to 1 asn----oo 
because it is assumed that the outlier problem vanishes 
for large samples. This implies, in particular, that 

yd R" will be asymptotically design consistent. Now as 
in GSSD, a modified regression-weight calibration 
method can be used for computing the estimator ~yd R~ . 
However, in order to use final calibrated weights for 
other variables, the shrinkage factor should not depend 
on y. A way out is to define a conservative k d as 
min {~'d(Y)} over a selected set of y-variables. Another 
possibility is to set y~ = 1 in (4.13). This will be 
reasonable if the outlier problem is due to large sampl- 
ing weights and not extreme y-values. Moreover, 
when dealing with several domains, one can easily 
incorporate, as in the case of GSSD, aggregate level 
constraints so that domain estimates OyMff*__ add up to the 
direct estimators O cR at an aggregate level for a set of 

y 

selected y-variables. The resulting final calibrated 
weights can then be used for producing domain esti- 
mates for all (selected or not) y-variables. 

The problem of treatment of outliers has a long 
history. In the context of finite population estimation, 
there exist several alternative methods which are among 

others due to Hidiroglou and Srinath (1981) who used 
the idea of weight reduction, and Chambers (1986), 
Gwet and Rivest (1992) and Lee (1991) who used the 
idea of Huber's M-estimation, to propose outlier-robust 
estimators. For a good review of various methods, see 
Lee (1995). Alternative estimators based on the MR 
methodology and their comparison with other methods 
of outlier treatment are currently being investigated in 
collaboration with H. Lee. 

5. CONCLUDING REMARKS 
Using a design-based framework of zero functions 

in survey sampling, the MR method of estimation was 
proposed as a generalization of the familiar GR method. 
MR generalizes GR in several ways: (i) it provides a 
class of estimates which includes GR for a particular 
choice of predictors and the working covariance, (ii) it 
allows for general predictor zero functions which may 
be difference of two estimates, (iii) it encompasses 
estimation of nonlinear parameters such as median, (iv) 
it can incorporate prior information about parameters, 
and (v) as in GR, it continues to provide a set of final 
calibrated weights which can be used for all study 
variables. It was shown that MR may provide an 
important statistical technique for various problems 
related to combining information such as composite 
estimation for repeated surveys, estimation for multi- 
frame and multi-phase surveys, small area and outlier- 
prone domain estimation as well as in estimation of 
nonlinear parameters. 
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