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within which an estimate of the trend is to be calculated 
for the central time point. 

1 Introduction 
Within the finite window we choose to model the obser- 
vations as 

Many seasonal adjustment procedures decompose time 
series into trend, seasonal, irregular and other compo- 
nents using non-seasonal moving-average trend filters. 
This paper is concerned with the extension of the cen- 
tral moving-average trend filter used in the body of the 
series to the ends where there are missing observations. 

For any given central moving-average trend filter, a 
family of end filters is constructed using a minimum 
revisions criterion and a local dynamic model operat- 
ing within the span of the central filter. These end fil- 
ters are equivalent to evaluating the central filter with 
unknown observations replaced by constrained optimal 
linear predictors. Two prediction methods are consid- 
ered. Best Linear Unbiased Prediction (BLUP) and 
Best Linear Biased Prediction, where the bias is time 
invariant (BLIP). The BLIP end filters are shown to be a 
generalisation of those developed by Musgrave (1964) 
for the central X-11 Henderson filters and include the 
BLUP end filters as a special case. 

The theoretical properties of BLUP's and BLIP's are 
examined. In particular, it is established that the BLIP 
end filters generally have smaller mean squared revi- 
sions than the BLUP end filters. However, unlike the 
BLUP filters, the BLIP filters are no longer independent 
of the parameters in the local dynamic model and so, in 
practice, it is possible that a mis-specification of these 
parameters will lead to BLIP end filters with greater 
mean squared revisions than BLUP end filters. The ef- 
fects of such mis-specification are discussed. Compar- 
isons are also made between these end filters and the 
Musgrave end filters used by X-11, and the end filters 
obtained when the central filter is evaluated with un- 
known observations predicted by global ARIMA mod- 
els. The latter parallels the ARIMA forecast extension 
method used in X-11-ARIMA. Finally these filters are 
evaluated on some New Zealand time series. 

2 Local dynamic model 

The conventional paradigm for trend filter design is to 
consider a moving window of n = 2r + I observations 

Yt = gt  -I- ct (1) 

where the trend gt is given by 

p 

a, -  ZjtJ + 
k = 0  

(2) 

The zero mean stochastic process (t is assumed to be 
correlated, but uncorrelated with et, and ~t, tr 2 are as- 
sumed to be not both zero. In particular we consider 
the situation where the/3j and tr 2 are parameters local 
to the window, but p, n and the model for ~t/tr involve 
global parameters which are constant across windows. 
Thus, although the parameters involved with the mean 
and variance of yt vary across windows, the autocorre- 
lation structure of yt will be a function of time invariant 
parameters in addition to time itself. 

Loosely speaking, the finite polynomial is intended 
to capture deterministic low order polynomial trend 
whereas ~t is intended to capture smooth deviations 
from the polynomial trend. Note that it is the incorpo- 
ration of ~t which distinguishes this local model from 
the standard situation where it is zero. Among the an- 
ticipated benefits of including ~t are lower values of p 
and improved performance at the ends of series. 

Because the window is not likely to be large the model 
will need to involve as few parameters as possible on 
the one hand, while allowing for a sufficiently flexible 
family of forms for gt on the other. With these points in 
mind we choose to model ~t as a (possibly integrated) 
random walk with initial value zero. In particular, if 
A denotes the backwards difference operator satisfying 
A X t  = X t - X t _  1, we have in mind the situation where 
AP+ 1 gt = AP+ l~t is a zero mean stationary process. In 
keeping with this rationale, we shall always assume that 
the levels of integration of the random walk components 
that make up (t do not exceed p + 1. 

This seems an appropriate and parsimonious model 
which should account for smooth deviations from the 
deterministic polynomial trend component. It also pro- 
vides a dynamic trend model for gt which is essentially 
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of the same form as that used in the ARIMA struc- 
tural models that have been successfully applied to eco- 
nomic and official data. (See Bell (1993) and Kenny 
and Durbin (1982) for example.) 

In the local linear case p - 1 a simple dynamic model 
for gt is given by 

Yt = gt + et = flO + t i l t  + ~t + et (3)  

where fl0, fix are constants and ~t is a simple random 
walk satisfying 

~t = ~ t -1  "Jr- 7It 

with ~0 = 0. Moreover et and r/t are mutually un- 
correlated white noise processes with variances tr 2 and 
tr 2 - )~tr 2 respectively. 

In the local quadratic case p = 2 a simple dynamic 
model for gt is given by 

Yt = gt + et = f30 + ~31 t + f12 t2 + ~t + et (4) 

where fl0, ~1, ~2 are constants and ~t is a simple ran- 
dom walk satisfying the same conditions as in the local 
linear model. 

Preliminary analysis indicates that these models have 
properties that can be regarded as representative of 
other more general models of the type discussed above. 

3 Trend filter design at the ends 

Now consider a finite window of width n = 2r + 1 
points centred at time point t and within which the ob- 
servations follow the local dynamic model given in Sec- 
tion 2. We consider the case where the trend gt is to be 
estimated by a given central moving-average trend filter 

g t -  ~ wsyt+8. (5) 
8 - - ' - - 7 "  

In keeping with standard practice, we assume that the 
w8 are constrained by the requirement that 

E{[lt - gt} - 0 (6) 

so that gt is an unbiased estimator of gt. Note that this 
condition is equivalent to the requirement that the w8 
satisfy 

~ w 8 - 1  ~ s J w s - 0  (7) 
8 " - - - r  8 - - ' - - T "  

where 0 < j < p so that the moving average filter 
passes polynomials of degree p. 

At the ends of series the central moving average fil- 
ter (5) will involve future unknown observations. How 
these missing observations should be treated is open to 
question. 

A common and natural approach involves forecasting 
the missing values, either implicitly or explicitly, and 
then applying the desired central filter. The forecasting 
methods used range from simple extrapolation to model 
based methods, some based on the local trend model 
adopted, others based on global models for the series 
as a whole. The latter include the fitting of ARIMA 
models to produce forecasts (see Dagum (1980) in par- 
ticular). The principle of using prediction at the ends 
of series seems a key one which goes back to DeFor- 
est (1877). See also the discussion in Cleveland (1983), 
Greville (1979) and Wallis (1983). 

Yet another way to handle the missing values in the 
window is to employ additional criteria specific to the 
ends of the series. An important requirement, especially 
among official statisticians, is to keep seasonal adjust- 
ment revisions and therefore trend revisions to a mini- 
mum as more data comes to hand. Thus, at the ends of 
series, a natural criterion to consider is 

7" 

R q -  E{( E wsy t+8-  .qt) 2) 
8 ~ ' - - r  

(8) 

where gt is a predictor of ~0t --  ) "~ :=- - r  w s y t + ,  based 
on past data. In general, given a history of observations 
y l , . . . ,  YT, it is evident that Rq is minimised when 

[ t t -  ~ w, gt+, 
8 - ' - - 1 "  

(9) 

where 9t+8 - E(y t+s ly l , . . .  ,YT) denotes the best 
predictor of Yt+8 in the usual mean squared error sense. 
Thus there is a close relationship between the minimum 
revisions approach and that of forecasting the missing 
values in the window. 

The minimum revisions strategy appears to have been 
originally proposed by Musgrave (1964) for the case 
where .qt is restricted to be linear in the observations 
within the window. (See the discussion in Doherty 
(1991).) This approach has also been adopted by Lane 
(1972), Laniel (1986) and will also be adopted here. 
Geweke (1978) and Pierce (1980)established the re- 
sult (9) for the case where .qt is linear in past values 
of the time series (not just those within the window) 
and where the time series follows an appropriate global 
model. However the argument leading to (9) shows that 
in general 9t+8, and hence .qt, need not necessarily be 
linear in the observations. 
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In this paper we adopt the minimum revisions strategy 
based on the moving window paradigm and the local 
dynamic trend model of Section 2. At the ends of the 
series we choose to predict gt - }-~=_~ wsyt+s by a 
linear predictor of the form 

q 

g t -  ~ usyt+s 
8 " - - r  

(10) 

where q - T - t  wi th0  < q < r, T denotes the 
time point of the last observation and the us are de- 
pendent on q. We shall consider two cases. The first 
imposes the condition that .qt be an unbiased predictor 
of Y'~'~:=-r wsyt+s. The second weakens this require- 
ment by considering biased predictors such as those de- 
veloped by Musgrave (1964) for X-11 (see in particular 
Doherty ( 1991 )). 

3.1 Unbiased predictors 

If gt is to be an unbiased predictor of Y'~=_~ wsyt+s 
given by (5) and (7), then the us must satisfy 

q q 

8 " - - - - 1 "  8 ~ - - r  

(11) 

where 0 < j _< p. Thus the asymmetric moving aver- 
age filter implied by (10) passes polynomials of degree 
p. Moreover Rq is now given by 

Rq -- v T E l v  (12) 

where v has typical element 

t 

-- ~ Ws -- It s 
Vs [ Ws 

and 

( - r  < s < q) 
(q < s < r) (13) 

E1 - ~r21 + ft. (14) 

Here I denotes the identity matrix and the covariance 
matrix fl has typical element 

a j k  -- C O V ( ~ t + j  - -  ~ t ,~ t+k  -- ~t) (15) 

for - r  < j, k < r. Note, in particular, that f2 does 
not depend on t, the absolute value of time indexing the 
origin of the window. This natural and important in- 
variance property is a consequence of (7), (11) and the 
assumption that the levels of integration of the random 
walk components that make up ~t do not exceed p + 1. 

For each q appropriate values of the us can now be de- 
termined by minimising Rq subject to (11). As we show 

below, this results in an end filter that satisfies a partic- 
ular form of (9) involving optimal prediction• 

First consider predicting 

Y -  ~ (~sYt+s 
S-------7" 

from Yt-r , .  • • Yt+q by a linear predictor of the form 

} " -  Z u s y t + s  

where q < r and the (is are arbitrary known values. 
Then, in terms of the local dynamic model that applies 
in the window, 1) is the best linear unbiased predictor 
(BLUP) of Y if the us are chosen so that E ( Y  - f ' )  - 0 
(unbiased prediction error) and the mean squared error 
criterion E{ (Y - 12)2 } is a minimum Note that the 
condition E ( Y  - Y)  - 0 is equivalent to the require- 
ment that 

~-~s jvs - 0 (0 < j < p) 
- - 7 "  (16) 

where 

( ~ , - u s  ( - r < s < q )  
v, - $, (q < s < r). " (17) 

Additional notation is needed to present the results. For 
the model specified by (1) and (2) define the n x (p + 1) 
dimensional matrix C and the p-t- i dimensional vector 
e by 

C _ _  

m r  . . .  

1 - r + l  . . .  
• , . , o 

1 r - 1  . . .  
1 r . . .  

( - - T - ) P  

( - r  + 1)p 

( r -  1)p (18) 

t P  

and c - ( 1 , 0 , . . . ,  0) T. Furthermore, define the n × 
(q + r + 1) matrix L1 and the n × ( r -  q) matrix L2 by 
the relation 

I - [L1, L2] .  (19) 

We can now state the following result. 

Theorem 1 Let Yt follow the local dynamic model 
specified by (1) and (2). Given ~ - ((f_r , . . .  ,St) T 
and observations y t - r , . . .  ,yt+q for 0 < q < r, 
the BLUP of ~-~fs=-r ~sYt+s is q Y'~,=-r usyt+, where 
U - -  ( U - r ,  • • • , Uq) T is given by 

u -  L T ( I -  G L 2 ( L T G L 2 ) - I L ~ ) J .  
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Here 

G -  E11 - E l l C ( c T E 1 1 C ) - 1 C T E I  1, 

E1 is given by (14) and C is given by (18). 

In particular the BLUP of  Y"f~=-r (~syt+s is given by 
~rs=_r Js Yt +s where Yt +s is the BLUP of  yt +s for  
q < s < r and yt+s otherwise. 

Replacing the arbitrary Js by the weights ws of the cen- 
tral moving-average trend filter yields the following re- 
suit. 

Corollary 2 Let yt follow the local dynamic model 
specified by (1), (2) and let w denote the vector of  
weights ws for  the central filter used in the body of 
the series with the ws satisfying (7). Furthermore 

let ill q -- Y']s=-r usyt+s be an unbiased predictor of  
~rs=_ r wsyt+s with the us satisfying (11). Then, for  
0 <_ q < r, the values of  us that minimise Rq subject to 
(11) are given by Theorem I with (i - w and 

q 

E u s y t + s -  wsyt+s. 
8 " - - - r  s - - - - r  

Here Yt+s is the BLUP of  yt+s for  q < s < r and yt+s 
otherwise. 

The properties of these end filters are investigated in 
Section 4. 

3.2 Biased predictors 

Again consider the situation where .qt is a linear predic- 
tor of the form (10), but now no longer required to be 
unbiased. Instead we require the bias to be time invari- 
ant in the sense that it does not depend on the absolute 
time t indexing the origin of the window, whatever the 
parameters of the local dynamic model adopted. 

Following the development in Section 3.1 we first con- 
sider predicting Y - y']sr=_r 6sYt+s using a linear pre- 

dictor of the form 1? - ~ q = - r  usyt+s where q < r is 
given and the (is are ~bitrary known values. In general, 
the bias term E ( Y  - Y )  will be invariant to the location 
of the window's time origin t if p - 0 or, ifp > 0, when 

r 

E sJvs - 0 (0_<j  < p )  
s ' - - - r  (20) 

where the vs are given by (17). In the latter case 

E { ( Y -  ~)2} _ ~p2( ~ sPvs)2 + vTE1 v 
s = - - r  (21) 

with E1 given by (14). It is desirable for the mean 
squared error E{ (Y - ~)2} as well as the bias to be 
time invariant. However, because the vs now satisfy 
(20) rather than (16), we need to impose stronger con- 
ditions on ~t. 

These observations lead us to consider a restricted local 
dynamic model for the window centred at t where the 
levels of integration of the random walk components 
that make up ~t do not exceed p. In the case where 
p - 0 this necessarily leads to the requirement that 
~t - 0 and E1 - or21. Given a restricted local dynamic 
model we define l? to be the best linear time invariant 
predictor (BLIP) of Y if the u8 are chosen to satisfy (20) 
and the mean squared error criterion E{ (Y - y)2} is a 
minimum. Here the expected predictionerror E ( Y - f ' )  
and the mean squared error E{ (Y - y)2} do not de- 
pend on t whatever the parameters of the local dynamic 
model concerned. 

Theorem 3 Let yt follow the restricted local dynamic 
model specified above and let Y - ~-]rs=_r (~syt+s 
where ~ -- ( ( f - r , . . .  ,~r) T is known. Given obser- 
vations y t - r , . . .  , Yt+q and q satisfying 0 < q < r, 

^ 

the BLIP of  Y is Y - Y"~qs=-r usyt+s where u - 

( u - r , . . .  , Uq) T is given by 

with 

- 

Here 

~ T g ~ - l c e  - ) - I  T ]~-1 E11 - ]~11 Cp-1 (Cp_l 1 Cp_l • 

2 T O) E1+/~pcpc~ (p> 
  I+N oCo T ( p - O )  " 

and E1 is as given by Theorem 1. The n × p matrix 
Cp_ 1 and the p dimensional vector Cp are defined im- 
plicitly by the partitioned matrix 

C - [Cp-1, %] 

where C is given by (18) and Cp_ 1 is null when p - O. 

In particular the BLIP of  ~ r = _  r (~sYt+s is given by 
Y'~=-r 58Yt+8 where ~h+8 is the BLIP of  yt+s for  q < 
s < r and yt+s otherwise. 

Note that the BLIP predictor given by Theorem 3 has 
the form of a shrinkage estimator since it is exactly the 
same as the B LUP predictor given by Theorem 1, but 
with E1 replaced by E1 + tip2 cpcpT and C replaced by 
Cp_l. Indeed, when t3p - O, the BLIP predictor be- 
comes the B LUP predictor for the reduced model where 
gt is replaced by 

_ 1' -1  + (p > 0) 
gt 

l 0 (p -- O) ' 
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but ~t and et remain the same. 

We now return to the minimisation of the revisions cri- 
terion Rq given by (8) where the w, are the known cen- 
tral filter weights that apply in the body of the series 
and the w, satisfy (7). Given a restricted local dynamic 
model, we choose to predict Y'~r=-r wsyt+8 by a linear 
predictor .qt of the form (10) subject to the requirement 
that the bias of gt is time invariant. The latter is true if 
p - 0 or, when p > 0, if 

q q 

u, - 1 Z sj u, - 0 (22) 
8 " - - - F  8 - - ' - - T "  

for 0 < j < p. Replacing the arbitrary ~, in Theorem 3 
by the weights w, of the central moving-average trend 
filter yields the following result. 

Corollary 4 Let Yt follow the restricted local dynamic 
model specified in Theorem 3 and let w denote the 
vector of  weights w8 for  the central filter used in the 
body of the series with the w, satisfying (7). Further- 
more, let ill q - ~ , = - r  u, yt+~ be a linearpredictor of 
~ r = _  r w, yt+8 with time invariant bias so that the u8 
satisfy (22). Then, for  0 < q < r, the values of u, that 
minimise Rq subject to (22) are given by Theorem 3 
with ~ = w and • 

q r 

$ - ~ - - f "  $ ~ - - r  

Here ~)t+, is the BLIP of yt+s for  q < s < r and yt+, 
otherwise. 

Now E l / i t  2 does not depend on o "~ and l~x need only 
be known up to a constant of proportionality. Thus, un- 
like the BLUP end filters specified by Corollary 2, the 
BLIP end filters specified by Corollary 4 can only be 
made operational when tip2/o.2 is known. Since this will 
rarely, if ever, be the case, estimates of fl~/o.2 of one 
form or another need to be determined from the data. 
Such estimates will, necessarily, differ from their true 
values and it is therefore important to determine the ef- 
fects of mis-specification of/32/o.2. This issue is ad- 
dressed below in Theorem 5 and also Section 4 where 
the properties of these end filters and the estimation of 
fl~/o.2 are discussed. 

Note that Corollary 4 yields the X-11 end filters derived 
by Musgrave (1964) and Doherty (1991) when ~t - 0, 
p - 1, fl~/o.2 _ 4/(~.(3.5)2) and w contains the X-11 
Henderson central filter weights. Thus Corollary 4 pro- 
vides a generalisation and extension of the current X- 11 

end filters. 

The following result considers an alternative form of the 
BLIP end filters given by Corollary 4 which explicitly 

builds on the corresponding BLUP end filters given by 
Corollary 2. In addition the result provides a means of 
exploring the effects of mis-specification of/32/o "2. 

Theorem 5 Let yt follow the restricted local dynamic 
model specified in Theorem 3 and let w denote the vec- 
tor of weights w8 for  the central filter used in the body 
of the series with the w, satisfying (7). Given obser- 
vations y t - r , . . .  , yt+q and q satisfying 0 < q < r, 
let ill - ~ q = - r  us(¢)yt+s be a linear predictor of 
~-]~:=-r wsyt+s where ¢ is an arbitrary scalar, u(¢) - 
( u _ r ( ¢ ) , . . . ,  Uq(¢)) T is given by 

u ( ¢ ) -  LT(I - G L 2 ( L T G L 2 ) - I L T ) ( w  + ¢7) 

and 
7 -  E71c (CTE~- lC)  - l d .  

Here L1, L2, G, E1 and C are as given in Theorem 1, 
and the p + 1 dimensional vector d is zero save for  the 
last element which is unity. Then 

(a) ill(C) is a linear time invariant predictor 
of Y~f =_ r wsyt+, with squared bias fl2¢2 
and the u,(¢) satisfy (22) when p > O; 

(b) the revisions criterion Rq is given in this 
case by 

Rq(¢) - w T H w  h- 2¢TTHw -1- 

¢2(/32 q- d T ( c T E l l C ) - l d  q- 7THT) 

where 

H -  

(c) the optimal end filters of Corollary 2 and 
Corollary 4 are given by u(0) and u(¢0) 
respectively where 

0 - -  - -  

7 T H w  

/32 -t- d T ( C T E l l C ) - l d  q- 7TH7 

minimises Rq (¢). 

An immediate consequence of Theorem 5 is that end 
filters based on BLIP predictors will generally have 
smaller mean squared revisions than those based on 
the corresponding BLUP predictors since Rq(¢o) < 
Rq(O). Moreover 

lim Rq(¢O)  - Rq(O), l i m  ¢o - 0 
~/o~---~oo ~?~/o~----~oo 

so that BLIP end filters converge to their corresponding 
BLUP end filters as/3p 2/o .2 increases. The best possible 
mean squared revisions are achieved when flp2/o.2 _ 0. 
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Then Rq(¢0) is least and, as noted following Theo- 
rem 3, the BLIP end filters become BLUP end filters 
for the local dynamic model with order p - 1, but the 
same stochastic structure. 

Both the BLIP and BLUP end filters are dependent on 
the global parameters specified by p, n and the model 
for ~t/O't. Although these global parameters are suffi- 
cient to determine the BLUP end filters, the BLIP end 
filters further require knowledge of/3p 2/tr 2. The latter 
is a function of local parameters whose values will not 
normally be known in practice and which will need to 
be estimated from the data. In this case it is possible that 
a mis-specified value of fl2p/tr2 could result in a BLIP 
end filter which has greater mean squared revisions than 
its corresponding BLUP end filter. 

Now gt (¢0) depends only on/3~/tr 2 through ¢0 which 
is a one-to-one function of fl~/tr 2. Thus Theorem 5 en- 
ables us to consider the effects of mis-specification of 
/32/tr 2. Let q~0 denote ¢0 evaluated at/~2/5.2, some es- 
timated or target value of/3p 2/o "2. Then, since Rq (¢) is 

a quadratic in ¢, it is evident that Rq(¢O) < Rq(O) if 

and only if q~0 lies between 0 and 2¢0. The BLIP end 
filters will therefore have better mean squared revisions 
than their corresponding BLUP end filters when 

< 2  o.-- 5- ~ + (dT( E i ' IC)  d + HT)/cr 2. 
(23) 

In particular, since Rq(¢0 +¢)  - Rq (¢0 -¢ ) ,  it is suffi- 
cient to select/3~/5.2 so that q~0 is between 0 and ¢0 or, 

equivalently,/~p2/5.2 >__/3p2/t r2. In practice this choice 

should lead to values for/3~/5.2 that, if anything, over- 
estimate fl~/tr 2 thus controlling the mis-specification 
error by shrinking the BLIP end filter towards its BLUP 
counterpart. Note that if/~p2/5.2 >_/3~/tr 2 then 

_ 
.qt(¢o)- (1-   o)gt(0)+ ¢o 

q•0 
(0_< ~o < 1) 

so that .qt (q~0) is a convex combination of the two opti- 
mal end filters. 

The properties of these end filters are investigated in 
Section 4. 

4 Properties of the Filters 

This section considers the properties of the end filters 
specified by Corollary 2 and Corollary 4 which are de- 
signed to minimise the expected mean squared revisions 
between the output of these filters and that of the central 

filters on which they are based. These end filters deal 
with a transition problem that ultimately goes away as 
the current time points are subsumed into the body of 
the series. The minimum revisions criterion therefore 
provides a measure of the total cost of this transition. 

We restrict attention to the important case where the 
window is of length 13 with r = 6 and the central fil- 
ter used in the body of the series is the central X-11 
Henderson filter. Furthermore, we focus on two partic- 
ular local dynamic models likely to be used in practice. 
These are the local linear model (p = 1) given by (3) 
and the local quadratic model (p = 2) given by (4). 

Three end filters are considered: the BLUP end filter 
(or BLIP end filter with/~p2/&2 _ oo), the BLIP end 

filter with/~2/&2 _ 4/(7r(3.5)2) (this gives the X-11 
end filter in the case where p - 1 and A - 0), and the 
BLIP end filter with/3g/5 .2 - 0. As noted in the discus- 
sion following Theorem 5, the smallest value of Rq(¢) 
is achieved when ¢ - ¢o and/32/o .2 - 132/5.2 _ 0. 

Also, i f /~ /5 .2  is chosen so that (23) is satisfied or 

/~p2/5.2 >_ /3~/tr 2, then the largest value of Rq (¢o) is 
Rq(0) which is the minimum revisions for the BLUP 
end filter. These values serve as useful bounds for 

To provide a range of possible values of 13p 2/tr 2 we 
_ _ 

briefly consider the so-called I /C ratio used by X-11 to 
specify the length of the trend moving average adopted. 
Here i and C are the respective averages of the abso- 
lute values of the month to month changes in the (es- 
timated) irregular ct and trend gt. Thus the i / C  ratio 
measures the importance of month to month changes in 
et relative to those in the trend gt. X-11 recommends 
that the central 9 point Henderson filter be used when 
i /C '  < 1, the central 13 point Henderson trend filter 
when 1 < 17/C < 3.5, and the central 23 point Hender- 
son trend filter when f / C  > 3.5. Following Musgrave 
(1964) and Doherty (1991) we consider the local linear 
model and 

I EIAetl 
-C- EIAgt[ (24) 

which can be thought of as the population parameter 
that I /C is estimating. This is readily determined un- 
der Gaussian assumptions as a function of flp2/tr2 and 
A. Simple evaluations show that the values of/32/tr 2 
for which 1 < I /C < 3.5 lie in [0, 4/7r]. This is the 
interval of values for/32/tr 2 that we choose to adopt. 

We now examine the mean squared revisions of the 
given end filters for/32/tr 2 in [0, 4/7r]. Note that it is 
sufficient to consider the extremes of this interval since, 
from Theorem 5, Rq(¢) is linearly increasing in/32 over 
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the interval for given ~b. The mean squared revisions cri- 
terion Rq(60)/tr 2 is plotted in Figure 1 as a function of 
q for a selection of models and for the particular end 
filters considered. 

As expected, the mean squared revisions are greatest 
when q is least with q = 0 yielding the greatest re- 
visions followed by q - 1. The mean squared revi- 
sions for the other values of q are negligible by compar- 
ison. Although not apparent on this scale, Rq(~o)/tr 2 
is not necessarily a monotonic function of q. For ex- 
ample the local quadratic model yields mean squared 
revisions when q = 2 that are typically smaller than 
those for q = 3. This is a consequence of the shape of 
the central X-11 Henderson filter adopted. 

I f / ~ / b 2  has been selected appropriately, I~q (~o)/t r2 
will be bounded above by the mean squared revi- 
sions for the BLUP end filter and below by the mean 
squared revisions for the BLIP end filter with fl~/tr 2 - 

/~ /b2  _ 0. These bounds are plotted in Figure 1 and 
show that there are gains to be had using BLIP end fil- 
ters, although these are likely to be modest in the case 
of the local linear model. As evident from the form of 
Rq(~o)/tr 2 given by Theorem 5, the gains are greatest 
when f/~/tr 2 is least. 

Note that the mean squared revisions generally increase 
as A and p increase. This is of marginal utility in prac- 
tice, since the local model chosen is determined from 
the particular time series concerned. However it is pos- 
sible that a local linear model with large A might de- 
scribe a time series as well as a local quadratic model 
with small A. From Figure 1 it would appear that, in 
such cases, the BLIP end filter for the quadratic model 
may have greater capacity to achieve lower revisions. 

For the local linear model, the X-11 BLIP end filter ap- 
pears to offer only marginal gains over the B LUP end 
filters when ~ / t r  2 satisfies (23). In the local quadratic 
case, the X-11 BLIP end filter is clearly too conserva- 
tive and a lower value of #~/b2 might more profitably 
be considered. For both models, the upper limit of 
~p2/tr2 - 4/1r leads to X-11 end filters with unaccept- 
ably high revisions. This may explain, in part, the rea- 
son why the use of end filters obtained when the central 
filter is evaluated with unknown observations predicted 
by global ARIMA models (ARIMA forecast extension) 
has largely superseded the use of the X-11 end filters 
in practice. The former yield (global) BLUP end filters 
with properties that one might expect are close to the 
(local) BLUP end filters considered here. On the other 
hand, for the local linear model, the i / C  guidelines im- 
ply that the X-11 end filters are inflexibly applied when- 
ever ~ / c r  2 satisfies tip2/tr2 _< 4/7r rather than (23). 

If the BLUP end filters yield results that are comparable 
to ARIMA forecast extension end filters, then it would 
appear that judiciously selected BLIP end filters may 
offer modest performance gains in terms of improved 
revisions. The price of this improvement is a better un- 
derstanding of the time varying values of ~p2/(r2. 

We have carried out some analysis of how the BLIP end 
filters perform on actual data. Some results are given in 
Figure 2 for three New Zealand series which have been 
seasonally adjusted by X-11 and have been modified to 
remove any large outliers. Only results for the local lin- 
ear model case are presented. 

To determine A in the local linear model we fitted 
global ARIMA models to the the modified seasonally 
adjusted series. Using standard diagnostics we selected 
ARIMA (0,1,1) models for building permits and perma- 
nent migration, and an ARIMA (2,1,0) model for ex- 
ports. Means were fitted in each case. The local lin- 
ear model is an ARIMA (0,1,1) model with a mean and 
A is a function of the moving-average parameter/~ and 
hence, implicitly, a function of the first order autocorre- 
lation. If the global model is ARIMA (0,1,1) then A can 
be estimated from the estimate of 0. If the global model 
is not ARIMA (0,1,1) then one approach is to match 
the first order autocorrelation and estimate A via the 
implicit functional relationship holding in the ARIMA 
(0,1,1) case. 

To determine/~/b2 for the BLIP end filters we con- 
sidered two methods. In the first method we estimated 
I /C,  as given in (24), over the window of the cen- 
tral filter and then took the average of these estimates 
and determined #p2/b2 from these. This gave values for 
building permits, exports, and permanent migration of 
.04, .01 and .28 respectively. In the second method we 
searched over a range of values of /~/ t~ 2 while keeping 
A fixed at the value determined by the global ARIMA 
model to find the one which gave the minimum revi- 
sions. This gave values for building permits, exports, 
and permanent migration of .01, .01 and . 16 respec- 
tively. So both methods gave similar values. The BLIP 
end filter in Figure 2 is determined using the second 
method. 

We did the following empirical comparison of the end 
filters. First, for each local window, we calculated the 
trend for the central point of that window using the cen- 
tral filter as in (5). Next for each q, for each local win- 
dow, we calculated the trend using the appropriate end 
filter. For the BLUP and BLIP cases, this meant predict- 
ing the trend as in (10), where the u, are the weights of 
the end filter. For the ARIMA forecast extension case 
this meant predicting the trend as in (9). For now, in 
(9), #t+, is the prediction using the forecast function 
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of the global ARIMA model previously used in deter- 
mining A restricted to data up to and including the lo- 
cal window. We did not refit the ARIMA model for 
each local window as generally both the ARIMA mod- 
els and their coefficients were fairly stable over time. 
The difference between these two trend estimates is the 
revision which occurs as the predicted missing data is 
replaced with actual data. Finally we made boxplots of 
the absolute value of the revisions since the median of 
the absolute value of the revisions provides a robust es- 
timate of the square root of the mean squared revisions, 
which was the criterion used to evaluate the theoretical 
performance of the filters. 

As expected from Theorem 5, the BLIP end filters 
where /~ /#2  is determined from the data, have smaller 
revisions than BLUP filters and smaller revisions than 
the Musgrave end filters used in X-11 (which are BLIP 
end filters for a local linear model with/~p2/b2 set to 
4/(~-(3.5)2). For the exports and migration series, the 
choice o f / ~ / # 2  used in the X-11 end filters is inap- 
propriate, and so here the X-11 end filters have larger 
revisions than the BLUP end filters. 

We have also compared the revisions of BLIP end filters 
and the revisions of the ARIMA forecast extension end 
filters. In the case of exports and permanent migration 
our choice of BLIP end filter would seem to perform as 
well or better than the ARIMA forecast extension end 
filter. For building permits our choice of BLIP end filter 
has about 1% higher revisions than the ARIMA fore- 
cast extension end filter. Perhaps in practice this can 
be regarded as the same. In any case, since in this se- 
ries there are many turning points, this may be a case, 
as mentioned above in the theoretical discussion, where 
the BLIP end filter for the quadratic model may have 
greater capacity to achieve lower revisions, and these 
revisions may be smaller than the revisions of ARIMA 
forecast extension end filter. 
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Figure 1" Plots of the mean squared revisions criterion Rq/O "2 for the BLUP and BLIP end filters based on the 
central X-11 Henderson filter. Here the local linear and quadratic models are specified by A and p, and the solid 
lines correspond to the BLUP end filter. The dashed line corresponds to the BLIP end filter with/~p2/6"2 - 0 in the 
case where f l~ /o  "2 - O. This is the BLUP end filter for the reduced model of order p - 1 and represents the best 

mean squared revisions possible. The dotted lines correspond to the X-11 BLIP end filter (/~2/6"2 - 4/(7r(3.5)2)) 
in the two cases where f l~/o  "2 - 0 and f lg /o  "2 - 4/7r. These limits are derived from recommendations made by 
X-11 concerning I/C ratios. 
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Comparison of End Filters: absolute revisions 
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Figure 2: This analysis uses New Zealand data on the number of building permits issued by Local Authorities for the 
construction of private houses and flats, the value of merchandise exports, and the net number of permanent migrants. 
The series have been seasonally adjusted by X-11 and been modified to remove any large outliers. Using the central 
X-11 Henderson filter in the body, comparisons are made between the various end filters and for the various values 
of q, for the local linear model case. The choice of A is determined from the global ARIMA model fitted to the 
modified seasonally adjusted series. The values of A for building permits, exports, and permanent migration are .6, 
.22 and 7.5 respectively. The choice of ~ / & 2  is determined by searching for values which improve the revisions. 

The values of ~ / & 2  for building permits, exports, and permanent migration are .01, .01 and .16 respectively. Here 
I refers to the BLIP end filter based on the local linear model. Likewise, X refers to the standard X-11 end filter, 
which is a BLIP end filter with ~ / & 2  _ 4/(7r(3.5)2) or .104, H refers to the BLUP end filter based on the local 
linear model. Finally A refers to the filter obtained by using the central filter with unknown observations predicted 
by a global ARIMA model. 
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