
IMPUTING NUMERIC AND QUALITATIVE VARIABLES SIMULTANEOUSLY

Michael Bankier, Manchi Luc, Christian Nadeau and Pat Newcombe
Michael Bankier, 15Q R.H. Coats Bldg., Statistics Canada, Ottawa, Ontario K1A 0T6, Canada

KEY WORDS: Minimum Change Hot Deck
Imputation, Nonresponse, Inconsistent Responses.

1. Introduction

Many minimum change hot deck imputation
systems are based on the imputation methodology
proposed by Fellegi and Holt (1976). For example,
CANEDIT and GEIS at Statistics Canada and
DISCRETE and SPEER at USBC are based on the
Fellegi and Holt imputation methodology.

A New Imputation Methodology (NIM) will be
used in the 1996 Canadian Census to carry out Edit
and Imputation (E&I) for the variables age, sex,
marital status, common-law status and relationship.
A typical edit and imputation (E&I) problem is
displayed in Table 1 for a 6 person failed edit
household (only the first three people are displayed).

Table l:Failed Edit Household
Relationship Marital Status
Person 1 Married 38
Spouse Married 35
Mother Blank 41

In the Table 1, there is a blank response for
marital status, and the age of the mother is
inconsistent with the age of her son (Person 1).
Data borrowed from a household which passed the
edits, is used to impute (see Table 2) a marital
status of widowed for the mother plus increase her
age to 59.

Table 2:Imputed Household
Relationship Marital Status Age
Person 1 Married 38
Spouse Married 35
Mother Widowed 59

The NIM allows, for the first time, the
simultaneous hot deck imputation of qualitative and
continuous or discrete numeric variables for large
E&I problems.

The Fellegi and Holt algorithm first determines
the minimum number of variables to impute and
then performs the imputation, possibly by searching
for donors. The NIM, in contrast, first searches for
donors and then determines the minimum number
of variables to impute. Changing the order of these
operations allows the NIM to solve larger and more
complex E&I problems. The NIM does require
donors, however, to be able to carry out imputation.

In this paper, the relatively simple algorithms
used to implement the NIM in a computationally
efficient way will be illustrated using the above
example.

Section 2 gives the objectives and an overview
of the NIM. Section 3 provides a simple example
illustrating the NIM. Section 4 compares the NIM
to the Fellegi/Holt algorithm. Section 5 gives
additional details of the NIM. Section 6 shows how
to evaluate imputation actions efficiently. Section 7
provides some concluding remarks.

Additional details on the NIM methodology are
given in Bankier, Fillion, Luc and Nadeau (1994)
and Bankier, Luc, Nadeau and Newcombe (1995).
A technical report is available from the authors if
the reader would like more information.

2. Objectives and Overview of the NIM

Based on the discussion in the 1994 paper, the
objectives for an automated hot deck imputation
methodology should be as follows:
(a) The imputed household should closely resemble
the failed edit household. This is achieved, given
the donors available, by imputing the minimum
number of variables in some sense. The underlying
assumption (which is not always true in practice) is
that a respondent is more likely to make only one or
two errors rather than several.
(b) The imputed data for a household should come
from a single donor, if possible, rather than two or
more donors. In addition, the imputed household
should closely resemble that single donor.
Achieving these objectives will tend to ensure that
the combination of imputed and unimputed
responses for the imputed household is plausible.
(c) Equally good imputation actions, based on the
available donors, should have a similar chance of
being selected to avoid falsely inflating the size of
small but important groups in the population (e.g.
persons whose age is over 100).

These objectives are achieved under the NIM by
first identifying as potential donors those passed edit
households which are as similar as possible to the
failed edit household. By this it is meant that the
two households should match on as many of the
qualitative variables as possible while having small
differences between the numeric variables.

90

Households with these characteristics will be called
close to each other or nearest neighbours. (A term
will be underlined when it is first def'med.) Then,
for each nearest neighbour, the smallest subsets of
the non-matching variables (both numeric and
qualitative) which, if imputed, allow the imputed
household to pass the edits, are identified. An
imputation action which passes the edits will be
called feasible. One of these feasible imputation
actions which imputes the smallest number of
variables possible (which will be called a near
minimum change imputation action) is randomly
selected. As a result, the imputed household will be
as similar as possible to the failed edit household
while closely resembling the donor.

These near minimum change imputation actions
can be identified efficiently for each nearest
neighbour being considered as a donor for the failed
edit household as follows:
(a) Only edit rules that one of the possible
imputation actions can fail are retained for each
failed household/nearest neighbour pair. This
results in many fewer edit rules being needed to
evaluate the imputation actions.
(b) Variables most likely to need imputation are
considered first. Thus, blanks/invalids are imputed
first followed by variables which enter the edits that
the household failed and fmally the other variables.
(c) When generating imputation actions for a failed
edit household/nearest neighbour pair, only those
which are
- near the optimum (i.e. are near minimum change)
- and are essentiaUy ne.w. (i.e. no subset of the
variables being imputed would pass the edits)
are evaluated for feasibility. Imputation actions that
are not essentially new are discarded because one or
more variables is being unnecessarily imputed. This
violates the principle of making as little change to
the data as possible.

Some of the concepts in this section are def'med
more precisely in Section 5 and in Bankier et al
(1995).

3. An Example Illustrating the NIM Algorithm

The failed edit household displayed in Table 1
will be used to illustrate the NIM algorithm. The
Table 1 household matches and hence fails the edit
rule in the leftmost column of the Table 3 decision
logic table (DLT), i.e. Person 3 is the mother of
Person 1 (Relat(3) - Mother) but the age
difference between the mother and Person 1 is less
than 15 years (Age(3) - Age(l) < 15).

A search among the passed edit households is

Table 3: Decision Logic Table of Edit Rules
Relat(3) = Mother Y Y - -

Age(3) - Age(l) < 15 Y - - -

Age (3) < 30 - Y - -

Relat (3) = Grandmother - - Y Y

Age (3) - Age(1) < 30 - - Y -

Age(3) < 45 - - - Y

done to identify the nearest neighbours to the Table
1 household. Preference, if possible, is given to
those households which are geographically close.
One of these nearest neighbours is listed in Table 4
below. The five responses in Table 4 that do not
match the responses of Table 1 are underlined. The
distance between failed edit household and the
nearest neighbour (which is a measure of the
number of non-matching variables) is 3 + 0.1 +0.1
= 3.2. The two 0.1 terms are for the two ages that
differ by 2 years (and hence are near matches) while
the count of three is for the other three variables
that do not match closely. More information on the
distance measure is given in Section 5 and Bankier
et al (1995).
Table 4: Nearest Neighbour to Table 1 Household
Relationship Marital Status
Person 1 Married 36
Spouse Married 3._7.7
Mother-In-Law Widowed 59

Most edit rules in Table 3 can be discarded
since they will never be failed by any of the
imputation actions generated by the Table 1 failed
edit household and the Table 4 nearest neighbour.
For example, person 3 is age 41 in Table 1 and age

59 in Table 4. Hence the third proposition (Age(3)
< 30) will never be true and hence the second edit
rule can be discarded. Similarly, neither Table 1 or
Table 4 have any grandmothers present and thus the
third and fourth edit rules of Table 3 can be
discarded. Thus the only Table 3 edit rule
remzining is the one failed by the Table 1
household. When this process is repeated with all
six person household edits (240 edits in 62 DLTs),
only the two edit rules (see Table 5) remain. See
Bankier et al (1995) for more information on this
simplification process.
Table 5" Edit Rules Remaining After Sim~plification
Relat(3) = Mother Y -

Age(3) - Age(1) < 15 Y -

Relat (3) =Mother- in- Law - Y

Age(3) - Age(2) < 15 - Y

Any blank/invalid responses will be imputed.
Thus any edit rules forbidding blank or invalid
responses are not listed in Table 5. The 2 4 - 1 = 15
imputation actions based on the four variables
(Relat(3), Age(l), Age(2) and Age(3)) which enter
the two edits of Table 5 will be evaluated.

91

Imputation actions based on the three variables
(Relat(3), Age(l) and Age(3)) which enter the edit
rule that the Table 1 household failed will be
evaluated first. Imputing Relat(3) or Age(l) alone
or as a pair is not sufficient for the Table 1
household to pass the edits but imputing Age(3) is.
Imputations actions (there are 7 of them) which
involve imputing Age(3) along with one or more of
Relat(3), Age(l) and Age(2) are immediately
discarded since they are not essentially new.

Then the variable Age(2) is introduced. It is
assessed whether imputing it alone or with Relat(3)
and/or Age(l) is sufficient for the Table 1
household to pass the edits. None of these
imputation actions pass the edits. Thus, of 15
possible imputation actions, only the one which
involves imputing Age(3) is retained. This generates
the imputation action displayed in Table 2.

This process of identifying imputation actions is
repeated with a number of other nearest neighbour
households. Let De~ represent the distance from the
imputation action to the failed edit household (i.e. a
measure of how many variables are imputed). Let
Dap represent the distance of the imputation action
to the nearest neighbour used (i.e. a measure of
plausibility). The five imputation actions with the
smallest D o are retained where

Dfpa=aDfa + (1-a) Dap

The parameter a (which can fall in the range (0.5,
1]) is often set to 0.75 or 0.9 to place more
importance on imputing the minimum number of
variables. Then one of these five imputation actions
is randomly selected to be the actual imputation
action used for the failed edit household.

4. Comparison of NIM and Fellegi/Holt

In previous Censuses, CANEDIT, an
implementation of the Fellegi/Holt algorithm, was
used to do E&I. The NIM and CANEDIT
imputation actions were compared for 12,000 failed
edit households. Approximately 98% had the same
number of variables imputed. The majority of the
remaining variables had one additional variable
imputed by the NIM because of the more rigorous
NIM edits based on age rather than decade.
CANEDIT used decade rather than age in the edits
because the computational costs were otherwise too
large.

In a few cases, the NIM will impute more than
the minimum number of variables if this results in a
more plausible imputation action. This is illustrated
in Table 6 below. The household fails the edit that

there should be at least a 15 year age difference
between the parent and the child. The CANEDIT
imputation increases the age of Person 1 from 35 to
45 by changing the decade of birth. This results in
the CANEDIT edit being satisfied that the parent
should be born in an earlier decade than the child.
The NIM changes person 3 to the wife of Person 1

• plus the marital status of the couple is changed.
This creates a more plausible imputation action than
CANEDIT.

Table 6: Imputing More Than the Minimum
Failed Edit Household

Relationship Marital Status Age
Person 1 Divorced 35
Son Single 8
Daughter Widowed 3._66

CANEDIT Imputation
Person 1 Divorced 45
Son Single 8
Daughter Widowed 36

NIM Imputation
Person 1 Married 35
Son Single 8
Pl 's Spouse Married 36

The advantages of the NIM can be summarized
as follows. Its costs tend to increase linearly as the
number of edit rules and variables increase. With
Fellegi/Holt, the costs increase exponentially. With
the NIM, simple algorithms are used while
sophisticated linear programming techniques are
required with Fellegi/Holt. Fellegi/Holt always
imputes the minimum number of variables. The
NIM will occasionally impute more than the
minimum if this results in a more plausible
imputation action. The NIM can be extended fairly
easily to non-linear numeric edits and to derived
variables (e.g. an edit rule "Number of males in a
common-law relationship does not equal number of
females in a common-law relationship" could be
used). The Fellegi/Holt algorithm is not easily
extended.

5. Additional Details of the NIM

The households being edited are sprit into a
number of disjoint strata which are further sub-
divided into disjoint imputation groups that are
processed independently. For example, six person
households form one stratum. This stratum is then
sprit into imputation groups of approximately 20,000
geographically close households each (20,000 is
represented by a parameter which can be changed).
The donor household for a failed edit household
comes from the same imputation group.

92

The edits can be specified either as a group of
conflict rules or as a group of validity rules. Conflict
rules def'me invalid responses (often including
blanks) for individual variables plus responses that
are considered inconsistent for two or more
variables. If a household matches the responses
given by one or more conflict rules, then it fails the
edits. If it does not match any conflict rule, it
passes the edits. Validity rules def'me combinations
of responses for several variables that are considered
valid and consistent. If a household matches the
responses given by one or more validity rules, it
passes the edits. If it does not match any validity
rule, it fails the edits. For the rest of this paper, it
will be assumed that we are dealing with conflict
rules. The algorithms described in Section 6,
however, can be easily extended to validity rules.

Edit rules are specified in more than one DLT
because up to 7000 edit rules are required to
evaluate all possible pairs and permutations of
persons in an eight person household. The conflict
rules in a DLT are assumed to be connected by
"or"s and the DLTs themselves are assumed to be
connected by "or"s. This means that a household
fails the edits if it matches one or more conflict rule
in one or more DLT. For the rest of this paper, it
will be assumed that we are dealing with S DLTs
that are connected by "or"s. The algorithms
described below, however, can be easily extended to
DLTs connected by "and"s.

Within an imputation group, it will be assumed
that F households fail the edits while P households
pass the edits. The responses for the households that
fail and pass the edits will be labelled
by [t=[Vt i] , f = 1 t o F a n d Y p = C V p i] , p = 1
to P respectively. These are I x 1 vectors containing
the responses for the I variables that enter the edit
rules.

It is too costly to evaluate, for each failed edit
household, the imputation actions of all passed edit
households. Often a sufficient number of nearest
neighbours are discovered by examining just the 1000
passed edit households geographically closest to the
failed edit household. Also, usually only the
imputation actions for the closest nearest neighbours
(in terms of the distance measure) have to be assessed
because only they will generate near minimum change
imputation actions.

The distance between a failed edit household and
a passed edit household will be defined as

I

Dfp: E wiDi (Vfi, Vpi)
i - 1

where the weights w i (which are non-negative) can

be given smaller values for variables where it is
considered less important that they match. All these
weights were set to 1, however, when the NIM was
tested.

In the above distance measure, the distance
function D1 (V t i , Vpi) can be different for each
variable i. In the 1996 Census, however, one
distance function willbe used for qualitative variables
while a second distance function will be used for the
numeric variables. For the qualitative variables,
let D i (V ri, Vpi) = 1 if Vti * Vpi (the i ~ qualitative
variable does not match for the two households) and
let D i (Vt i , Vpi) =0 otherwise. For the numeric
a g e v a r i a b l e s , O<D t (V t i , Vpi) g l w h e r e

D i (Vt i , Vpi) will be close to or equal to 0 if the
difference between Vii and Vpi is small while

D i (V t i , Vpi) will be close to or equal to 1 if the
difference between Vtt and Vpi is large. See
Bankier et al (1995) for more details.

Let

Va=diag(6) Vp+diag(! - 6) V t

r e p r e s e n t a p o t e n t i a l i m p u t a t i o n
action V a where / a = [Vai] . Also, d i a g (6)
represents an I x I matrix with 6 running down the
diagonal and zeros elsewhere and 1 represents an I
x 1 vector of l 's. 1 in this paper will always be a
vector of l 's. Its number of rows, however, will
vary depending on the context in which it is used. In
addition, 6= [6 i] is an I x 1 vector of indicator
variables showing which variables will be imputed
where 6 i = 1 if the i ~ variable is imputed
while 5~ = 0 otherwise.

Next, it is desired to write Dtv a in terms of the
imputation action vector 6 ~ . Because 6 is a
binary vector (i.e. the cells of the vector can only
take on the values of 0 or 1), expressing the distance
measure in terms of it makes the optimum imputation
actions easier to determine computationally. It should
first be noted that

I I

Dfa:~_.~ wiDi (Vfi ' Vai) =E wi6 iDi (Vfi" Vpi)
i -1 i =1

I !
= w 6 =E WfP i~i MfPM

i'1
where wfp= [wfpi] is a I x I vector

with wfvi=wiDi (Vfi , Vpi) 20 .
It can be easily shown that Dta+Dap=Dt; . Thus

Dfpa= (2a -i) Dfa+ (1 -a) Dfp
(i)

Let min Df~ represent the minimum value of Df~
when all nearest neighbour, passed edit
households vp and all feasible imputation

93

actions Ya (based on these nearest neighbours) are
considered for that failed edit household V t . Any
feasible, essentially new imputation actions with Df~
= min D ~ will be called minimum change imputation
actions.

Any feasible, essentially new imputation
actions V a which satisfy

D£pa ~ Y rain mfp a (2)

where 7 a l will be called near minimum change
imputation actions. In tests done to date, 7 was set
equal to 1.1. Values of y greater than 1 are
allowed because the near minimum change imputation
actions, for practical purposes (particularly with
numeric variables), are nearly as good as the
minimum change imputation actions. Imputation
actions which are not near minimum change
imputation actions are discarded because the principle
of making as little change to the data as possible when
carrying out imputation would be violated.

In practice, however, it is desired to keep only
the five near minimum change imputation actions with
the smallest Df~. To achieve this, the value of 7 is
adjusted downwards towards 1 as the processing
proceeds.

Then, substituting equation (1) into equation (2)
and rearranging the equation, the only feasible
imputation actions 6 that would be retained are
those where

y min Dfm a- (1-a) Dfp
20~-1 (3)

As mentioned above, the cells of ~ep are non-
n e g a t i v e . And s ince 6 is a b i n a r y
vector, iv/~p6 > 0 . Thus if the fight hand side of
the inequality of equation (3) is negative, it is known
that there are no imputation actions 6 which satisfy
this equation (and hence equation (2)) for
that v t and vp .

The I variables can be classified into four groups
for the Vf and Vp being considered:
(i) Those variables with blank/invalid responses for
the failed edit household will be called Tvoe 1

_ _

variables. It is known that these variables will always
be imputed. Thus the cells of 6 which correspond
to Type 1 variables will equal 1.
(i i) T h o s e v a r i a b l e s w h i c h m a t c h
for Tit and vp will be called Type2 variables. It
is known that these variables will never be imputed.
Thus the cells of 8 which correspond to Type 2
variables will equal 0.
(iii) Those variables which are not Type 1 or Type 2
and which do not enter the simplified edits for

v t and Vp will be called Type 3 variables.

Simplified edits are those remaining after dropping
edit rules that no imputation action of Vt and

Vp matches. It is known that these variables will
never be imputed because they do not enter the
simplified edits. Any imputation action involving
Type 3 variables will not be essentially new. Thus
the cells of 5 which correspond to Type 3 variables
will equal 0.
(iv) Those variables which are not Type 1, 2 or 3
variables will be called Type 4 variables. It is not
known initially whether they will be imputed or not.
Let I4 represent the number of Type 4 variables.

Rewriting equation (3), the only imputation
actions b that will be retained are those where

7 rain D f ~ - (1-0~) Dfp _wlp.zl (4)
2~-I - -

where w~p 4 contains the w~p weights for Type 4
variables while w/tpl contains the wtp weights
for Type 1 variables. In addition, 5 ,= [Sa~] is an
14 x 1 vector which contains the cells of 6 which
correspond to the 14 Type 4 variables.

6. Evaluating Imputation Actions Efficiently

6.1 Defining Groups of Imputation Actions
(a) Let the 2 r, possible imputation actions based on
the I4 Type 4 variables be represented by the columns
of the I 4 x 2 r' matrix 6* .
(b) Reorder the variables in wtp 4 in descending
order (from top to bottom) based on what generation
the variables are. Within a generation of variables,
reorder the variables in w:p 4 in descending order
based on the size of the weights stored in the w:p 4
vector's cells. What generation each of the variables
is will be derived iteratively.
(c) Edit rules that v t fails will be called Generation
0 edit rules. Variables which enter the Generation 0
edit rules will be called Generation 0 variables. All
possible combinations of Generation 0 variables will
be imputed (these are the Generation 0 imputation
actions) and evaluated first in Section 6.2.3.
Generation 0 imputation actions which pass the
Generation 0 edit rules and satisfy equation (4) but
fail some of the other edit rules (the latter will be
called Generation 1 edit rules) will be retained.
Generation 0 imputation actions which fail the
Generation 0 edit rules will be discarded. This is
done because these discarded imputation actions will
still fail the Generation 0 edits regardless of which
additional non-Generation 0 variables are imputed.
Generation 0 imputation actions which pass all the
edit rules (including the Generation 0 edit rules) will

94

not have additional non-Generation 0 variables
imputed because such imputation actions would not be
essentially new. Thus only Generation 0 imputation
actions which pass the Generation 0 edits but fail
some of the other edits should have additional non-
Generation 0 variables imputed. Generation 0
imputation actions which do not satisfy equation (4),
will still not satisfy equation (4) if additional variables
are imputed. Thus, these Generation 0 imputation
actions should be discarded as well.
(d) Variables which enter the Generation 1 edit rules
but which are not Generation 0 variables will be
called Generation 1 variables. All possible
combinations of the Generation 1 variables will be
imputed for the retained Generation 0 imputation
actions (these are the Generation 1 imputation actions)
and evaluated next in Section 6.2.3. Generation 1
imputation actions which pass the Generation 1 edit
rules and satisfy equation (4) but fail some of the
other edit rules (the latter will be called Generation 2
edit rules) will be retained for use in point (e).
(e) Variables which enter the Generation 2 edit rules
but which are not Generation 0 or 1 variables will be
called Generation 2 variables. All possible
combinations of the Generation 2 variables will be
imputed for the retained Generation 1 imputation
actions (these are the Generation 2 imputation actions)
and evaluated next in Section 6.2.3.
(f) This process will continue until Generation g when
no Generation g+ 1 variables are found. This will
occur

- if all Type 4 variables have been assigned to one of

the g generations

- some Type 4 variables have not been assigned to a

generation but there are no Generation g imputation

actions which pass the Generation g edit rules and

satisfy equation (4) but fail some other edit rules.

If some Type 4 variables have not been assigned a

generation, they are said to be not related to the

Generation 0 variables.

(g) Generation 0 variables should have their

imputation actions assessed first because it is known

that at least one Generation 0 variable has to be

imputed for the imputation actions to pass the edits
that ~e failed. Generation 1 variables should be
assessed next because it is known that at least one
Generation 1 variable has to be imputed for
imputation actions, based on the remaining Generation
0 imputation actions, to pass the Generation 1 edits.
This process will be repeated with Generation 2, 3
etc. variables. It is known that some Generation 0
variables will always be imputed. Generation 1, 2 ,
3 etc. variables will generally be imputed with
progressively less frequency until we reach the

variables (if any) that are not related to the
Generation 0 variables. It is known that these
unrelated variables will never enter any near
minimum change imputation actions and hence will
never be imputed. They can be converted to Type 3
variables and the count I4 of the number of Type 4
variables can be reduced accordingly. A further
discussion of the implications of processing variables
in terms of what generation they belong to is given in
Section 6.4.
(h) Reorder the rows in 8" such that the variables
take the same order as in w e p 4 .

(i) Finally, reorder the columns of 8" such that the
matrix equals

* * * 8" ... 8" 8_ =[8 o~ 8~_ _2 _z,] (5)

where sub-matrix 80=0 (a single column of zeros)
while sub-matrix 8i (i > 0) contains all imputation
actions where the i m variable (e0unting from the
bottom of ~ep4) from the vector ~ep4 is imputed
(along with all possible combinations of variables that
occur below the i m variable in ~ep4) but no
variables that occur above the i m variable in ~ep4 are
imputed. The rows of the transpose of 8 " , when
viewed as binary numbers, will be arranged in
ascending order. The imputation actions in sub-
matrix 6~ will be called Imputation Action Group i
or Group i for short in the sections which follow.
(j) The 8" matrix ordered in this fashion will be
illustrated by a simple example. Assume that 14 = 4.
Then 8" , after reordering, will take the following
form:

8" 6" 8" 8* 8* NO _1 ~2 _3 _4
0 0 O0 0000 iiiiiiii
0 0 O0 Iiii 00001111
0 0 ii 0011 0011001 11
0 1 Ol 0101 0101010

In this example, the rows of the transpose of 8"
when viewed as binary numbers, are arranged in
ascending order from 0 to 15 with one row for each
o f the 2 4 --- 16 possible imputation actions.
(k) The i 'm sub-matrix of the above equation (5), i'
= 1 to 14, Can be constructed from the other sub-
matrices using the following equation:

* * 5 * * ,-,

where l il is a I4 x 1 vector with a 1 in the cell
corresponding to the i 'm variable (counting from the
bottom of wep 4) and with zeros elsewhere. In
Section 6.2, various cheeks are done which result in
imputation actions possibly being dropped for the 0 m
to (i'- 1)m subnmtrices. These imputation actions
should be dropped before the i 'm sub-matrix is
generated since this will reduce the number of
imputation actions that it and subsequent sub-matrices

95

contain.
6.2 Assessing Imputation Actions Plus Simplifying
DLTs Further
Sections 6.2.1 to 6.2.3 show an effective method to
determine which imputation actions pass the edits and
which fail the edits while at the same time simplifying
the S DLTs further. Then Section 6.3 shows how to
implement the algorithm of Section 6.2 efficiently.
6.2.1 Initial Comments
(a) Before any imputation actions of the first passed
edit household are assessed, min Df~ will be
initialized to the maximum possible value of Df~ for
that failed edit household and the first passed edit
household, i.e.

min Dfpa= (2a-l)(~p11+~p,l)+ (l-~)Dfp
using equation (1). This maximum value would occur
if all the Type 4 variables were imputed along with
the Type 1 variables. The min Df~ will be updated
during the processing of the first passed edit
household to reflect the smallest value of Df~
encountered. The value of min Df~ at the end of
processing of one passed edit household will be used
at the start of processing of the next passed edit
household for that failed edit household.
(b) The procedures below will be carded out
separately for each passed edit household having
imputation actions assessed for the failed edit
household.
(e) The imputation actions for a passed edit household
will be processed sequentially based on the i = 0 to

8* 14 imputation action groups ~i defined in Section
6.1.
6.2.2 Processing Imputation Action Group i = 0
(a) The sole imputation action in Group i = 0 has no
Type 4 variables imputed. This imputation action will
satisfy equation (4) because the fight hand side of
equation (4) is non-negative. If the right hand side of
equation (4) was negative, the passed edit household
would have been discarded without having its
imputation actions assessed.
(b) Next, this imputation action should be assessed
against the S DLTs to determine if it passes the edits.
If it does, then no further imputation actions have to
be considered since this is the only essentially new
imputation action.
6.2.3 Processing Imputation Action Groups i > 0
(a) Groups i = 1 to 14 will be assessed sequentially
starting with i = 1. Let i = i' represent the group
currently being assessed. It will be assumed in the
discussion below that i' is a Generation g' variable.
(b) Generate Group i' from Groups 0 to i' - 1 using
equation (6) of Section 6.1.
(c) Each imputation action in Group i' will be

assessed against equation (4). If equation (4) is not
satisfied, the imputation action in Group i' is dropped.
This is done since imputation actions in groups with
i > i' generated from the dropped Group i'
imputation action would not satisfy equation (4)
either. Also, the imputation action in the previous
group (i < i') which generated the dropped
imputation action from Group i' should not be used to
generate imputation actions for other groups with i >
i' that belong to Generation g'. This is because,
within Generation g', the ~tp4 weights are sorted in
descending order. Thus none of the generated
imputation actions within Generation g', based on this
previous group imputation action, will satisfy equation
(4). The previous group imputation action, however,
can be used to generate imputation actions for other
groups with i > i' that belong to Generation g' + 1.
It is possible, however, that this previous group
imputation action may be dropped by the checks of
point (f) below before Generation g' + 1 variables
are processed.
(d) Each imputation action in Group i' remaining after
point (e) is assessed against the S DLTs to determine
if it passes the edits.
(d 1) If it passes the edits, the imputation action should
be placed in the list of near minimum change
imputation actions. It should be removed from Group
i' since any other imputation action generated later
based on the removed imputation action will not be
essentially new. It should also be assessed whether
the left hand side of equation (4) for this removed
imputation action is less than the right hand side of
equation (4) if 7 = 1. If this is so, determine D~
for this removed imputation action and set min Df~
equal to this value. In addition, other imputation
actions in Group i' which are not essentially new in
terms of this removed imputation action should also
be removed. Only imputation actions which are
larger than the removed imputation action (when
viewed as binary numbers) should be evaluated to see
if they are not essentially new. This is because, for
an imputation action to not be essentially new, it must
have ones in the same positions as the removed
imputation action plus at least one additional one.
(d2) If it fails edits, it should be retained in Group i'.
(e) If the value of min Df~ is changed in step (d 1),
determine if equation (4) is still satisfied for all
previously retained imputation actions in groups i =
0 to i'. The retained imputation actions include those
identified as near minimum change imputation actions
and those which failed the edits but which were
retained to generate other imputation actions in later
groups. Any found that no longer satisfy equation (4)
should be dropped. Assumed a dropped imputation

96

action comes from Group i" . If the weights
in wtp 4 for variables with i > i" equal or exceed
the weight for i = i" then the imputation action in the
previous group which generated the dropped
imputation action from Group i" is also dropped.
(f) After steps (c), (d) and (e) have been applied to
each imputation action in Group i ' , it will be assessed
- if some imputation actions remaining in Group i'
can be dropped (in step (fl)) because no imputation
actions in groups with i > i' generated from these
dropped imputation actions will pass the edits or
- if any edit rules can be dropped (in step (f2))
because no imputation actions in Groups with i > i'
will match them. Propositions where there is no
variable with i > i' entering will be called i _< i'
propositions. Steps (fl) and (f2) will only be carried
out if there is one or more i _< i' proposition. Edit
rules where only i <_ i' propositions enter will be
called i _< i' edit rules. Step (fl) should be applied
before step (f2) to allow edit rules to be discarded
more quickly.
(fl) Drop any Group i = 0 to i' imputation action
which matches one or more i _ i' edit rules in at
least one of the S DLTs.
(f2) Drop any edit rules which, for each Group i = 0
to i' imputation action remaining, have one or more
non-matches for the i < i' propositions. Then drop
any propositions which do not enter any of the
remaining edit rules. Then identify any of the i > i'
variables which no longer enter any of the remaining
propositions of the DLTs as a result of dropping these
edit rules and propositions. Label these variables as
Type 3 (i.e. they no longer enter the edits) and reduce
the count 14 of Type 4 variables correspondingly.
Additional groups of imputation actions will only be
generated for those variables i > i' which have not
been converted to Type 3 variables.
(g) At the end of the analysis of each Group i'
imputation actions, it will be determined if any
imputation actions remain in Groups i = 0 to i'. If
the answer is no, all near minimum change imputation
actions have been determined for that passed edit
household for the failed edit household. If the answer
is yes, go to step 0a).
0a) At the end of the analysis of the Group i'
imputation actions, processing will continue with
Group i' + 1 if all S DLTs still contain some edits.
If, however, one or more of the S DLTs has had all
its edit rules deleted, steps (hl) and 0a2) will be
carried out. Edits were deleted only if none of the
remaining imputation actions in Groups i = 0 to 14

matched the deleted edits.
(hl) If some DLTs still contain some edits then any
DLTs with no edit rules remaining can be ignored and

processing will continue with the Group i' + 1.
(h2) If no DLTs contain any edits then there are no
more Type 4 variables and all near minimum change
imputation actions have been determined for that
passed edit household for the failed edit household.

6.3 Assessing Imputation Actions Efficiently
(a) The 14 + 1 imputation action groups were
generated and assessed sequentially in Section 6.2.
This was eomputationally efficient because deleted
imputation actions were not used to generate
imputation actions in a later group. Also, edit rules
that were deleted and Type 4 variables that were
converted to Type 3 variables were not assessed by
later imputation action groups.
(b) Splitting the imputation actions into groups and
then evaluating them sequentially has significant
computational advantages as well when evaluating
equation (4) and the DLTs as will be shown in this
section.
(e) First, some notation will be def'med. Assume that
the s ~ simplified DLT (s = 1 to S) has Ms4
propositions and that it lists Js4 edit rules. Let the
total number of propositions and edit rules in the
simplified S DLTs be represented by M4 and J4
respectively. Information on the propositions in the
DLTs will be provided in the following three
matrices:

B - a M 4 x 1 matrix containing, in machine
readable form, the part of the M4
propositions to the left of the sign (e.g.
Relat(3)).

- a M 4 x 1 matrix providing the constant to the
fight of the sign in the proposition. This
constant will either be a response class or an
individual response (e.g. Mother) in the case
of single qualitative variable proposition or it
will be a numeric constant in the case of
other types of propositions.

X - a M 4 x 1 matrix providing the signs
separating the variables from the constants in
the propositions. The following numbers
represent the various signs:
1 - _<
2 - =
3 - <
4 - >
5 -
6 - >

It will be assumed that the propositions in the above
three matrices are arranged by DLT such that the
propositions in the first DLT come first, the
propositions in the second DLT come second etc.
(d) The edit rules associated with the propositions in

97

the s ~ simplified DLT will be represented by the
following matrix:

R s - a M,4 x J,4 matrix recording the pattern of
Y's, N's and blanks for the J,4 edit rules for
the M~4 propositions. The Y's, N's and
blanks will be represented by the following
numbers

1 - Y

- 1 - N

0 - blank or - which means Y or N
(e) A M 4 x 21" , matrix

r*:t o r : r : ,-. ~ ~1 , . 2 ...

will be def'med which contains the condition result
vectors (defined below i n t h i s p o i n t) f o r M 4

propositions of the S DLTs for the 2 r' imputation
actions contained in the matrix 5" . If the m ~h

~

proposition is true for an imputation action then the
cell i n the m th row and in the column
of T* corresponding to that imputation action will be

~

set to 1. Otherwise it will be set to -1.
(f) A J4 x 2 I ' matrix

,... ~i ~ "",,,/4
will be defined which contains the number of non-
matching propositions for each of the J4 edit rules of
the S DLTs and for each of the 2 r' imputation
actions contained in the matrix 5" .

~ 6 ,
(g) The single imputation action contained in ~ 0 will
be evaluated against the propositions contained
in B , c and X to determine the eondition result

~

vector T r Then, T.* will be compared to R s ,~0 " ~ 0 ~

s = 1 to S so that the number of non-matching
propositions can be recorded for each of the J4 edit
rules and stored in _~0" • It will be considered a
non-match for a specific proposition
- if the condition result is 1 in 7"* and the rule being ,,,0

analysed in R s has-1 or
- if the condition result is -1 in T.* and the rule ~ 0

being analysed in Rs has 1.
It should be noted, however, that the values in the
condition result vector _T o and the non-matches
vector N o could have already been generated when
the household was edited.
0a) The method to evaluate the imputation actions for
Groups i = 1 to I4 will now be described. Let i = i'
be the group currently being assessed. Generate the
Group i' imputation actions 5~, using equation (6).
It is easy to see that

_ * ~ * 8 " . - - 8 ~ , _ ~] + 1 ,I/) _

Earlier steps which assessed 5~, 5~ etc. determined
~ . v • • •

the values in the vector v/e~,, [5o 6~ ..-6~_~] .
And the quantity r2/~,1 ~,~~r is~-just a vector

containing the weight of the i 'th variable in each cell.
This vector is added to the already known vector to
d,t rmi . r h o wlu, m

used to determine which imputation actions
in 6~ do not satisfy equation (4) and hence can be
dropped.
(i) Initialize

and

~ ,,,0 ~1 ~ ~ (7)

The number of eolunms in ~ , and _/3~i~ willalways
be identical to the number of columns in ~ ~, .
(j) It is only necessary to update the entries
of T~i, for those propositions where the i '~ variable
enters. This is to be done for each of the imputation

5 " actions appearing in _~, . The processing to be
carried out for a specific proposition and a specific
imputation action is described in point (k) below.
(k) The condition result generated for that proposition
and that imputation action should be compared to the
initial condition result for that proposition and that
imputation action given in equation (7). If the
condition result is unchanged from the initial result,
no more processing of that proposition and imputation
action is required. If the condition result is changed
(it is converted from a 1 to a -1 or it is converted
from a -1 to a 1), the s ~ DLT that this proposition
belongs to should be identified and the edit rules that
the proposition enters (i.e. there is a 1 or a -1 rather
than a 0 in Rs for an edit rule for that proposition)
should be identified. For each edit rule that the
proposition enters, it should be determined if the
updated condition result matches the edit rule for that
proposition. If it does, the number of non-matches
in _/~i7 should be decreased by 1 for that edit rule.
If it does not match, the number of non-matches
in /]r~i~ should be increased by 1 for that edit rule.
(1) Then the next imputation action appearing

5" in ~~/ will be evaluated for that proposition. After
5" all imputation actions appearing in ~i/ have been

evaluated for a proposition, the next proposition that
the variable i' enters will have all imputation actions

5" appearing in ~i/ evaluated for it.
(m) After all propositions that have the variable i'
enter have been evaluated for all of
the 5i , imputation actions and ~ , and _~i' have
been updated, ~ can be assessed to determine
which imputation actions pass or fail the edits.
Let _/~s~ be the sub-matrix of l~i: containing the Js4
edit rules of the s ~ DLT. These sub-matrices will be
evaluated in the following fashion for each imputation
action. If there is one or more edit rules in any of

98

the S DLTs with 0 non-matches, the imputation action
fails the edits. Otherwise it passes the edits.
(n) When evaluating a proposition where u Type 4
variables enter, it is known that there are 2 u possible
imputation actions for that proposition. The 2 u
imputation action condition results will gradually be
generated as Groups i, i = 0 to 14 are evaluated.
When the condition result for one of the 2 u possible
imputation actions is derived, it should be retained so
that the proposition will not have to be evaluated a
second time for that imputation action.
(o) It will be necessary to have a second matrix
similar to _/~i~ which will keep track of the number
of non-matches for the i <_ i' propositions. These
counts are needed for steps (fl) and (f2) in Section
6.2.3.
(p) It should also be noted that it is not absolutely
necessary to reorder the variables at the start of this
algorithm. It is sufficient to assess the imputation
actions starting with the one just involving the
Generation 0 variable with the smallest weight and
then examine variables with progressively larger
generation numbers and weights. Also, when
dropping propositions and edit rules, it is not
necessary to actually delete them from the DLTs. It
may be simpler and computationally more efficient to
just have indicator vectors which keep track of which
propositions and edit rules have been deleted.
6.4 Further Discussion of Generations

After all Generation 0 imputation actions have
been assessed, the only ones which will remain (as
discussed in Section 6.1) are those which pass the
Generation 0 edit rules and satisfy equation (4) but
fail some of the other edit rules (these will be called
Generation 1 edit rules). In addition, all Generation
0 edit rules will have been discarded as a result of
point (f2) of Section 6.2.3.

After all Generation 1 imputation actions have
been assessed, the only ones which will remain (for
reasons similar to those with the Generation 0
imputation actions) are those which pass the
Generation 1 edit rules and satisfy equation (4) but
fail some of the other edit rules (these will be called
Generation 2 edit rules). The remaining Generation
1 imputation actions were generated from Generation
0 imputation actions which passed the Generation 0
edit rules but failed the Generation 1 edit rules.

Because the remaining Generation 1 imputation
actions now pass the Generation 1 (and Generation 0)
edit rules, this shows that one or more Generation 1
variables has been imputed for each of the remaining
Generation 1 imputation actions. Thus all Generation
0 imputation actions have been discarded by the end
of the assessment of the Generation 1 imputation

actions. In addition, all Generation 1 edit rules will
have been discarded as a result of point (f2) of
Section 6.2.3.

After all Generation 2 imputation actions have
been assessed, the only ones which will remain (for
reasons similar to those with the Generation 0
imputation actions) are those which pass the
Generation 2 edit rules and satisfy equation (4) but
fail some of the other edit rules (these will be called
Generation 3 edit rules). The remaining Generation
2 imputation actions were generated from Generation
1 imputation actions which passed the Generation 1
edit rules but failed the Generation 2 edit rules.
Because the remaining Generation 2 imputation
actions now pass the Generation 2 (and Generation 0
and 1) edit rules, this shows that one or more
Generation 2 variables has been imputed for each of
the remaining Generation 2 imputation actions. Thus
all Generation 1 imputation actions have been
discarded by the end of the assessment of the
Generation 2 imputation actions. In addition, all
Generation 2 edit rules will have been discarded as a
result of point (t2) of Section 6.2.3.

This process will continue in a similar fashion for
later generations of variables.

7. Concluding Remarks

The NIM performs minimum change donor
imputation for numeric and qualitative variables
simultaneously in a computationally feasible fashion.
It is applicable to a wide range of surveys. It is in
the final stages of testing prior to processing the 1996
Canadian Census demographic variables. It will be
generalized to do donor imputation for more variables
for the 2001 Canadian Census.

References

Bankier, M., Fillion, J.-M., Luc, M. and Nadeau, C.
(1994), "Imputing Numeric and Qualitative
Variables Simultaneously", Proceedings of the
Section on Survey Research Methods, American
Statistical Association, 242-247.

Bankier, M., Lue, M., Nadeau, C. and Newcombe,
P. (1995), "Additional Details on Imputing
N u m e r i c and Q u a l i t a t i v e V a r i a b l e s
Simultaneously", Proceedings of the Section on
Survey Research Methods, American Statistical
Association, 287-292.

Fellegi, I.P. and Holt, D. (1976), "A Systematic
Approach to Automatic Edit and Imputation",
Journal of the American Statistical Association",
March 1976, Volume 71, No. 353, 17-35.

99

