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Two computer systems are currently available for 
editing continuous, economic data: Statistics Canada's 
General Edit and Imputation System (GEIS) and the 
Census Bureau's Structured Programs for Economic 
Editing and Referrals (SPEER). GEIS, the more general 
of the two systems, uses linear inequality edits and 
provides several imputation options. SPEER uses ratio 
edits which are a special case of linear inequality edits 
and provides only one imputation option. The main 
algorithm of GEIS is a relatively fast extension of 
Chernikova's algorithm for finding extreme points in 
n-dimensional space. SPEER edits are exceedingly fast 
because they do not involve advanced integer 
programming algorithms. The methods of the two 
systems are described and an empirical comparison is 
provided. 

1. INTRODUCTION 
Computer files used for administrative or survey 
purposes may contain large numbers of records, some of 
which contain logical inconsistencies or incorrect data. 
Pritzker, Ogus, and Hansen (1965) describe the nature 
of the problem. Errors can arise because methods of 
creating records in files are not consistent, because 
questions are not understood, or because of transcription 
or coding problems. In many situations, data files are 
edited using custom software that incorporate rules 
developed by subject-matter specialists. If the 
specialists are unable to develop the full logic needed 
for the edit rules, then the subsequent edit software is in 
error. If programmers do not properly code the rules, 
then the software would be in error. Developing 
software from scratch each time a data base is 
redesigned is time-consuming and error-prone. It is 
better to have a system that can describe edit rules in 
tables that are read and utilized by reusable software 
modules. The tables could be more easily updated and 
maintained than complex if-then-else rules in computer 
code. The software would automatically check the 
logical validity of the entire system prior to the receipt 
of data during production processing. 

Fellegi and Holt (1976), hereafter FH, provided 
the theoretical basis of such a system. FH had three 

goals that we paraphrase: 

1. The data in each record should be made to satisfy all 
edits by changing the fewest possible variables(fields). 
(FH1) 
2. Imputation rules should derive automatically from 
edit rules. (FH2) 
3. When imputation is necessary, it should maintain the 
joint distribution of variables. (FH3) 

The key to the FH approach is understanding 
the underpinnings of goal 1. Goal 1 is referred to as 
the error localization problem. In the FH model, a 
subset of the edits that can be logically derived from the 
explicitly defined edits (called implied or implicit edits) 
are sufficient to solve the error localization problem. 

The purpose of this paper is to describe two 
automatic edit and imputation systems that have been 
developed for continuous, economic data and to provide 
some empirical results. The first system is the Census 
Bureau's Structured Programs for Economic Editing and 
Referrals (SPEER) that performs ratio editing and 
balancing (assuring that items add to totals). The 
second system is Statistics Canada's Generalized Edit 
and Imputation System (GEIS) based on linear 
inequality edits. GEIS is more general because linear 
inequality edits include ratio edits and balance edits. 

The outline of the paper is as follows. In 
section two, we give some background on the Fellegi- 
Holt model of editing. The third and fourth sections 
describe SPEER and GEIS, respectively. In the fifth 
section, we describe the empirical data that are used in 
comparisons and, in the sixth section, we provide the 
results of these comparisons. The final two sections 
consist of a discussion and a summary. 

2. THE FELLEGI-HOLT MODEL OF EDITING 
Fellegi and Holt (1976) were the first statisticians to 
show that implicit edits are sufficient to determine 
ranges for imputed values that would satisfy the edits. 
Prior edit models failed because they only made use of 
explicit edits. The implicit edits contain essential 
information about explicit edits that may not fail for a 
record that fails other explicit edits and are needed for 
imputing values so that the original non-failing edits do 
not fail the record with the newly imputed values. We 
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denote the set of explicit edits plus the set of implicit 
edits needed for error localization by E c. Let £2 K be the 
subset of E c that involves only fields 1, 2 .....  K. The 
following theorem is the main error localization result 
of FH. 

Theorem 1 (FH). If yi °, I = 1, 2 . . . . .  K-l, are, 
respectively, some possible values of the first K-1 fields, 
and if these values satisfy all edits in f~K-~, then there 
exits some value YK" such that yi °, I = 1, 2 . . . . .  K, 
satisfies all edits in ~K. 

By reasoning inductively, we can fill in yi °, I = 
1, 2 ..... K-1, with values yi °, I - K ..... N, such that yi °, 
I = 1 ..... N, satisfies all edits in E c. Since the ordering 
is arbitrary, we can assume that any subset s and any set 
of values yf, j ~ s, that satisfy edits in E c with entering 
fields in s can be completed to a record that satisfies all 
edits in E c. In the imputation terminology of Little and 
Rubin (1987), a completed record is one in which all 
missing items are filled in. In edit/imputation, we fill in 
items if they are blank and can fill nonblank items with 
replacement value-states if the original nonblank items 
are involved with edits that fail. If r = {yi °, I = 1 .. . . .  
N} is a record that fails a set of edits E and s is the set 
of fields that enter the edits in E, then we can find a 
minimal cardinality subset s~ of s so that {y(', j ~ s~ } 
can be completed to a record that satisfies all edits. If 
we consider weights ci, I = 1 .. . . .  N, then we can find 
the minimal weighted subset s~ of s. We observe that 
E c is a set of edits that is sufficient for determining the 
minimal number of fields (i.e., the set Sl) that must be 
imputed to change (complete) an edit-failing record to 
one that satisfies all edits. 

In practice, generating implied ratio edits is 
easy and different groups have been able to develop FH 
ratio edit systems. While generating implicit linear 
inequality edits is straightforward, practical error 
localization is not easy because of the large number of 
implicit linear inequality edits and the exorbitant amount 
of computation needed for an integer-programming 
solution to the error localization problem. 

3. SPEER 
The SPEER edit system is designed for ratio edits of 
continuous economic data. The first version of SPEER 
was written by Brian Greenberg (Greenberg and Surdi 
1984, Greenberg and Petkunas 1990) and the current 
version was written by William Winkler (1996). The 
computational algorithms, much of the imputation 
methodology, and the FORTRAN source code in the 
current version are new. If variables are defined by Vi 
, I = 1 .....  N, then ratio edits take the form: 

L~. i < V i / Wj < Uij (3.1) 

and balance edits take the form 

W i - Wj = 0, (3 .2 )  

I~S 

where S is a proper subset of the first N integers and 
j~ S. Simple algebra allows the reexpression of the two 
ratio inequalities in (3.1) as two linear inequality edits 
and the equality in (3.2) as two linear inequality edits. 
The bounds Lij and Uij are determined b y  analysts 
through use of prior data. A special methodology and 
program D_MASO facilitates analysts' determination of 
bounds. A newer bound-determination methodology 
based on the Exploratory Data Analysis technique of 
bounded fences (Thompson and Sigman 1996) appears 
to give somewhat better bounds than D_MASO and 
requires less human intervention. 

The current version of SPEER only allows 
individual fields to be restrained by at most one balance 
equation. Extensive review of the edits in use for 
economic surveys at the Census Bureau has shown that 
well over 99% of fields in different surveys need to be 
restrained by one or fewer balance equations. Whereas 
creating algorithms and writing software for general, 
multilevel balancing are quite difficult, the algorithms 
and computer code associated with the one level of 
balancing in SPEER are quite straightforward. 

SPEER software consists of three main 
programs. The first generates implicit edits (bounds) 
and checks the logical consistency of the ratio edits 
only. An auxiliary simplex program checks the logical 
consistency of the set of ratio and balance edits. The 
second program generates regression coefficients for the 
equation V l = Bl2 V 2 + E that are used in the imputation 
module of the main SPEER program. The main SPEER 
program also uses the implicit edits and the raw data 
file as inputs. Prior to imputation, the main SPEER 
program generates failed implicit edits that can be 
derived from combinations of ratio and balance edits. 
These extra implicit edits, which we call induced edits, 
are used to restrict imputation ranges further than the 
restrictions placed by ratio edits only. The induced 
edits assure that imputed values satisfy ratio and balance 
edits. 

Due to the simplicity of algorithms, SPEER 
code is exceedingly fast. Generating 272 pairs of 
implicit edit bounds in each of 546 industrial categories 
requires a total of 35 seconds on a Sparcstation 20 and 
115 seconds on a 75 MHZ Pentium. Because ratio edits 
are inherently straightforward, most SPEER code is easy 
to understand and maintain. The code is completely 

82 



portable. Using SPEER on other machines merely 
requires copying FORTRAN source code and 
recompiling it. Documentation is minimal, consisting 
primarily of instructions on how to run the code. 
SPEER documentation and source code are free and 
available from the second author by request. 

4. GEIS 
Statistics Canada's Generalized Edit and Imputation 
System (GEIS) adheres to the FH tenets as does the 
SPEER system. The solutions, however, are quite 
different. The first prototype of the system was created 
by Sande (1979)- the current version of GEIS is 
documented in Kovar, MacMillan and Whitridge (1991). 

First, subscribing to the FH assumption that 
errors happen at random and with relatively low 
probabilities, we conclude that joint probability of 
multiple errors is very low. This makes the first FH 
tenet attractive: to minimize the number of fields to 
impute, or, optionally a weighted number of fields. We 
note, however, that GEIS solves this problem without 
explicitly generating all the implied edits, unlike 
SPEER. 

Secondly, in GEIS, the imputation problem is 
addressed using nearest neighbor (hot deck) method. 
(Other imputation methods are also offered for the 
convenience of users.) While the nearest neighbor 
method does not explicitly make use of the edits to 
generate the imputations, the edits are used to identify 
the clean records which can be used for imputation, thus 
satisfying the second FH tenet, that is, that, the subject 
matter officers need not explicitly generate the (if-then- 
else) imputation rules. 

Thirdly, as all variables that need imputation 
for a given record are (usually) taken from the same 
donor record, and since the plausibility of the imputed 
values is verified by checking that the would-be imputed 
record passes all edits, we assume that the joint 
marginal distributions are not perturbed too seriously. 
As such, the third FH principle is satisfied. 

In more detail, first with respect to error 
localization, GEIS proceeds as follows. The user 
defines an acceptance region by means of linear 
inequality edits which establish the relationship among 
the variables. Linear programming techniques are 
brought in to establish internal consistency, non- 
degeneracy, and non-redundancy of the edit set (Kovar, 
MacMillan and Whitridge 1991). Any n-tuple, 
corresponding to a given observation, can then be 
verified to either lie within the acceptance (feasibility) 
region or not, corresponding to the notion of the record 
passing the set of edits, or not. For records that do not 
pass the edits, a minimum number of fields to be 
imputed (FH1) is identified by means of a modified 

Chernikova's algorithm (Chernikova 1964, 1965, Sande 
1979- Schiopu-Kratina and Kovar 1989). 

Briefly, the edit set can be described as 

AV~b (4.1) 
V>O 

where A is a matrix of coefficients of the linear 
inequalities corresponding to the edits, b is a column 
vector of the corresponding constants, and V is a 
column vector corresponding to a given record. For 
records V which pass all the edits, the system (4.1) is 
satisfied, for failing records, (4.1) is not satisfied. The 
problem is to minimize the cardinality (number of 
nonzero entries) of the correction vectors y and z, such 
that the dot product of y and z is zero, and, 

A (y-z) <b-AV 
y-z~-V (4.2) 

y>O 
z>O 

which can be written as 

where 

-5) 

Sande (1979) and Schiopu-Kratina and Kovar (1989) 
show that a solution can be obtained using the 
Chernikova's algorithm, by examining (in a suitably 
controlled manner) the extreme points of the system 
(4.2) in the variables (y,z)', since V is a constant 
referring to the particular failed record in question. 
Note that missing values can be represented by any 
value falling outside of the feasible region of system 
(4.1), for example, by -1. The reader is referred to 
Schiopu-Kratina and Kovar (1989) for details relating to 
the actual implementation used in GEIS. 

We note again, that GEIS does not make use of 
implied edits to find the solution to the error 
localization problem. While the system can generate 
implied edits (using Chernikova's algorithm applied to 
the dual system of (4.1)), this is done for diagnostic 
purposes only. Implied edits are used in GEIS only to 
let the user get a feel for the edits that were actually 
specified. In most real applications, the number of 
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implied edits is much too large to be useful for 
diagnostics, let alone error localization. Along the same 
lines, the extreme points of the system (4.1) are 
generated in order for the user to be able to assess the 
efficiency of the edits: the extreme points indicate to the 
user the most extreme records that would pass the edits, 
and may indicate where more restrictive edits are 
needed. 

Secondly, with respect to imputation, GEIS 
offers two broad categories of imputation. In either 
case, the user is not required to write if-then-else 
imputation rules (FH2). As part of the first category, 
several "imputation estimators" (GEIS Development 
Team, 1990) are offered. These allow the user to use 
historical imputation, ratio imputation, and mean 
imputation among others, in order to impute the fields 
identified in the error localization step, one at a time. 
Note that while often intuitively appealing, these 
methods do not ensure that the resulting record will pass 
all the edits. The reader is referred to Kovar and 
Whitridge (1990) and Cotton (1991) for more details. 

The principal method of imputation in GEIS is 
a hot deck approach using the nearest neighbor 
methodology. For every record in need of imputation, 
all clean records are searched, and the closest one to the 
recipient is used to impute the error localized cells, 
provided the resulting imputed record passes all edits. 
If not, the next closest record is tried, and so on. Of 
particular note is the fact that all variables are donated 
simultaneously, thus preserving (in principle) the data 
distributions as much as possible (FH3). As well, since 
all edits must pass before the imputation is accepted, the 
resulting records are guaranteed to be 'clean'. (If this 
is not possible, the record remains unimputed.) Note 
again, that this is not the case when imputation 
estimators are used. 

In theory, all recipient records must be 
compared, in terms of a distance, to all potential donors. 
To reduce this problem to a manageable size, an 
efficient k-d tree algorithm is used to search the donor 
population (Kovar and Whitridge 1990, Cotton 1991). 
The overhead incurred in constructing the search tree is 
recuperated with even the smallest of donor decks and 
very few recipient records. Because the k-d tree is 
constructed by splitting the donor population around the 
median of the variable with the largest range, an 
appropriate transformation of the data and a suitable 
distance measure must be used. For this reason, all of 
the data are transformed to uniform marginals 
(standardized rank-order statistics), and the L-infinity 
norm (also known as the minimax distance) is used 
(Sande 1979). More precisely, the distance between two 
records, V~ = (Wsl . . . . .  Vsn ) and V r -- (Wrl . . . . .  Vrn ) is 
given by 

d~= max Ita- t,~l = 

h-.o, i=I 

trt) h 

(4.3) 

where tsi = Fi  -l (Vsi) is the transformed value of the i'th 
variable of the data record V~ in question, and F i is the 
empirical distribution function of the i'th variable based 
on all the useable (non-missing and valid) observations. 

The set of fields used to calculate the distance 
d between a failing record and a clean record is a 
subset of the fields not identified to be imputed on the 
recipient record. These fields are referred to as the 
matching fields in GEIS. The actual set of matching 
fields is found by means of linear programming 
techniques which identify the reduced set of edits which 
are involved in the definition of the acceptance region 
for the particular failed edit record (with the fields to 
impute as the only unknowns). Only the active variables 
not identified for imputation are retained as matching 
fields. See Schiopu-Kratina and Kovar (1989) for more 
details. 

Finally, we point out that GEIS relies heavily 
on the data management functions of the ORACLE 
RDBMS. Currently it runs under MVS, Unix and DOS 
operating systems, though the applications that would 
make use of a DOS environment would have to be 
limited in size. By contrast, applications the size of the 
Canadian Census of Agriculture (about 300,000 records 
and in excess of 400 variables) have been successfully 
processed by GEIS under MVS. To process such a 
large problem, the Agriculture Census was broken into 
subcomponents that were processed separately and the 
subcomponent solutions were combined to get the final 
results. A confirming run at the end assured that the 
final results satisfied edits and balance equations. 
Preprocessing work was done to assure that solutions 
(possibly suboptimal) could be obtained by the approach 
of breaking into subcomponents and then recombining. 
GEIS (without the proprietary source code) is available 
for 25,000 Canadian dollars, on an institutional l icence 
basis. 

5. E M P I R I C A L  EVALUATION 
A portion of a Canadian agriculture survey comprising 
some 1700 records and 10 variables was segregated 
from the final, pre-publication files. The variables on 
the file include a record identifier, the value of land 
under cultivation (a frame variable assumed known for 
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the whole population), and the response variables: 
income, expenses, assets, as well as some of their 
components (inc_pl, inc_p2, inc_p3, exp_pl and 
exp_p2). 

Due to confidentiality reasons, this data set 
could not have been used for this study. Instead, an 
artificial population resembling the real one was created, 
by generating the land variable so that its distribution 
resembles the observed one, matching in particular the 
mean and the variance. The other key variables were 
generated conditionally on the land variable, following 
the relationships observed in the true population. 
Means, variances, ranges and correlations of the 
synthetic population resemble those of the true 
population quite faithfully. One thousand records were 
created, which satisfy all of the edits specified below. 
The data set containing this synthetic population is 
referred to as the 'clean data set'. 

Starting with the clean data set, nonresponse 
and errors were introduced in 30% of the records, with 
a probability inversely proportional to the value of the 
land variable. More specifically, the probability of 
nonresponse or error for the i ~ record was set to Pi = 

1 - exp (cxi), where x i is the value of the land variable 
for the record in question, and c is a constant calibrated 
so that an expected proportion of 30% flagged units be 
attained. This scheme corresponds more closely to 
reality than a purely random selection, as larger units 
generally receive more attention during follow-up, and 
thus tend to contain less errors. For the records that 
were flagged to be perturbed, one of a number of 
actions was taken. These actions included deleting one 
of income, expenses, or assets, or any combination of 
them, including the possibility of 'total nonresponse', 
i.e., only the identifier and land variables remaining on 
the file. About half of the 30% of the identified units 
were subjected to such incidences of nonresponse. For 
the remaining 15% of units, errors of various types were 
introduced. These included switching of variables, 
destroying the additivity and subadditivity relationships, 
etc. The land variable was not modified on any record, 
as it was assumed to be a 'frame' value. Every attempt 
has been made to ensure that the errors generated 
resemble those encountered during the actual production, 
both in terms of quantity as well as type. 

The resulting data set was dubbed the 
'unimputed file'. As expected, the means of the clean 
records on the unimputed file are significantly higher 
than the corresponding means on the clean data set, 
ranging from an increase of 9% for assets, 12% for 
expenses, to 13% for income, due to the nonrandom 
nature of the error generating mechanism. The effect of 
the errors introduced can be seen in Table 1 below, by 
comparing columns 1 and 3. Clearly a number of 

outliers were generated as a result of variable switching 
- not an unusual situation in practice. 

1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 
10) 
11) 
12) 
13) 

Finally, the following edits were postulated. 
All fields > 0 
income = inc_pl + inc_p2 + inc_p3 
exp_pl < expenses / 2 
exp_p2 < expenses / 2 
expenses < 1.25 income 
exp_pl + exp_p2 < expenses 
(inc_pl + inc_p2) / income > 0.5 
5,000 < income < 300,000 
assets < 1,000,000 
land > 10 
land < 1,500 
income < 500 + 3 expense 
income < 500 land 

These edits bear a close resemblance to those actually 
used in production. Some, as edit 6, for example, are 
redundant, but are specified for ease of readability, 
rather than mathematical completeness. Others are 
implied, such as inc_p3 < income / 2. This edit set was 
used within GEIS without modification. 

In the case of SPEER, slight modifications 
were needed because the software only allows for ratio 
edits and simple types of balancing. In particular, edit 
6 was deleted, edit 7 was handled by creating a dummy 
variable which is a sum of inc_pl and inc_p2, and, edit 
12 was modified to income < 3.1 expenses, i.e., income 
/ expenses < 3.1. Bounds were handled ahead of time, 
by setting out of bounds variables to missing. 

Both systems generated the fields to impute 
automatically as described in the preceding sections. 
Default imputation actions were performed. That is, 
donor imputation was used in GEIS, and ratio 
(regression) imputation was performed in SPEER. The 
resulting data sets are referred to as the 'GEIS imputed' 
and the 'SPEER imputed' files, respectively. 

6. RESULTS 
In both cases, the setup of the programs, including the 
necessary edit modifications, the importing and 
exporting of the data sets into appropriate formats, 
variable definition, etc., was completed in less than one 
day. The actual error localization and imputation runs 
were completed quickly. SPEER needed approximately 
3.8 seconds on a Sparcstation 20 and GEIS needed less 
than 2 minutes on a Hewlett-Packard G60 which is 20- 
40% faster than the Sparcstation 20. 

In comparing SPEER and GEIS, we considered 
the number of fields that needed to be imputed and the 
quality of the aggregate statistics from the final imputed 
data base. For the number of fields, GEIS performed 
better. Both GEIS and SPEER identified the same 277 
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records as failing edits. GEIS and SPEER produced 
identical sets of fields to impute in 121 cases and 
equivalent sets of fields to impute in 112 cases. In the 
remaining 44 cases, GEIS required imputation of one 
less field than SPEER. All 44 cases were associated 
with the balance equation INCOME = INC_P1 + 
INC_P2 + INC_P3. 

The imputed files were compared to the clean 
file in terms of 1) mean differences (i.e., differences of 
means) in order to verify whether the imputation actions 
were able to re-establish the true means, 2) correlation 
structures in order to check whether correlations 
between key variables were affected, and 3) mean 
absolute differences (MAD) in order to quantify the 
performance at the record level. These are summarized 
in the two tables at the end of the paper. 

7. DISCUSSION 
With both SPEER and GEIS, the means of the imputed 
data were quite close to the means of the original clean 
data. The correlation structure was also preserved, 
particularly with SPEER whose imputation method takes 
the correlations into account directly. Results of an 
experiment (not shown in this paper) in which the 
nonresponse and errors were generated with equal 
probabilities (rather than proportionally to the inverse of 
the land value) were even better. Furthermore, results 
of a study conducted at Statistics Canada using the real 
population, and following exactly the same approach as 
above except that the SPEER runs were not done, were 
virtually identical, and in most instances better. This 
indicates that the artificiality of the data set used does 
not compromise the results of this study in any way. 
Both software systems were easy to handle - neither can 
be preferred on that basis alone. SPEER does not 
require any additional software and is marginally more 
portable. SPEER was designed to be part of a general 
economic edit system that includes many general 
options for industrial coding and imputation that are 
specific to Census Bureau surveys. It was designed to 
have code that can be modified by Census Bureau 
programmers. SPEER was never designed and 
documented in a fashion that would make it easily 
useable by third party users. Due to its limitation to 
ratio edits, extra work is needed to use SPEER on the 
empirical example of this paper. Extensive review of 
more than 100 surveys and censuses in the economic 
area of the Census Bureau have not identified any 
situations in which general linear inequality edits are 
needed. All of these survey systems require ratio and 
balance edits only. 

GEIS has many additional imputation options 
that SPEER does not have. The use on nearest-neighbor 
imputation in GEIS allows for easier handling of 

secondary variables for which explicit ratio 
relationships, needed by SPEER, are harder to come by 
and may be better at preserving distributional properties 
of data in some situations. 

The set up time with either SPEER or GEIS is 
relatively negligible. Both 'imputers' used the software 
in its most generic form, i.e., as designed, with little or 
no knowledge of the underlying data structure of the 
unimputed file or the subject matter content. Both were 
able to create an imputed file within hours of receiving 
the unimputed file and the set of edits. In practice, the 
specific file of edits and the set up of the systems can 
be done before the data to be edited are available. 

8. SUMMARY 
GEIS is to be preferred due to the generality of its 
algorithms, the quality of its documentation, the number 
of imputation options, and the fact that it is specifically 
designed for third party users. Because of the close 
performance of both systems, the practical choice 
between the two will likely be made based on more 
pragmatic reasons such as the computing environment 
that is used and the availability of programmers for 
auxiliary tasks. 

ACKNOWLEDGEMENTS AND DISCLAIMER 

The authors are grateful for the help provided by Pierre 
Caron of Statistics Canada in generating the population 
and running the GEIS programs. The opinions of the 
second author are his own and do not necessarily reflect 
those of the U.S. Bureau of the Census. 

REFERENCES 

Chernikova, N.V. (1964), "Algorithm for Finding a 
General Formula for the Non-negative 
Solutions of a System of Linear Equations," 
USSR Computational Mathematics and 
Mathematical Physics, 4, 151-158. 

Chernikova, N.V. (1965), "Algorithm for Finding a 
General Formula for the Non-negative 
Solutions of a System of Linear Inequalities," 
USSR Computational Mathematics and 
Mathematical Physics, 5, 228-233. 

Cotton, C. (1991), "Generalized Edit and Imputation 
System Functional Description," Statistics 
Canada Technical Report. 

Fellegi, I. P., and Holt, D. (1976), "A Systematic 
Approach to Automatic Edit and Imputation," 
Journal of the American Statistical System, 71, 
17-35. 

86 



GEIS Development Team (1990), "Generalized Edit and 
Imputation System Specifications," Statistics 
Canada Technical Report. 

Greenberg, B. G., Draper, L., and Petkunas, T., "On- 
Line Capabilities of SPEER," in Symposium 
90: Measurement and Improvement of Data 
Quality, Statistics Canada, 235-244. 

Greenberg, B. G., and Surdi, R. (1984), "A Flexible and 
Interactive Edit and Imputation System for 
Ratio Edits," SRD report RR-84/18, U.S. 
Bureau of the Census, Washington, D.C., USA. 

Greenberg, B. G., and Petkunas, T. (1990), "Overview 
of the SPEER System," SRD report RR-90/15, 
U.S. Bureau of the Census, Washington, D.C., 
USA. 

Kovar, J.G., MacMillan, J.H. and Whitridge, P. (1991), 
"Overview and Strategy for the Generalized 
Edit and Imputation System," Statistics Canada, 
Methodology Branch Working Paper BSMD 
88-007E (updated in 1991). 

Kovar, J.G. and Whitridge, P. (1990), "Generalized Edit 
and Imputation System: Overview and 
Applications," Revista Brasileira de 
Estadistica, 51, 85-100, Rio de Janeiro. 

Little, R.J.A. and Rubin, D.B. (1987), Statistical 
Analysis with Missing Data, J. Wiley: New 
York. 

Pritzker, L., Ogus, J., and Hansen, M. H. (1965), 
"Computer  Edit ing Methods--Some 
Applications and Results," Bulletin of the 
International Statistical Institute, Proceedings 
of the 35th Session, Belgrade, 395-417. 

Sande, G. (1979), "Numerical Edit and Imputation," 
Proceedings of the 42nd Session of the 
International Statistical Institute, Manila, 
Philippines. 

Schiopu-Kratina, I. And Kovar, J.G. (1989), "Use of 
Chernikova's Algorithm in the Generalized 
Edit and Imputation System," Statistics Canada, 
Methodology Branch Working Paper BSMD 
89-0O 1E. 

Thompson, K. J. and Sigman, R. S. (1996) "Statistical 
Methods for Developing Ratio Edit Tolerances 
for Economic Censuses," American Statistical 
Association, Proceedings of the Section on 
Survey Research Methods, to appear. 

Winkler, W. E. (1996), "SPEER Edit System," 
computer  system and unpublished 
documentation, Statistical Research Division, 
U.S. Bureau of the Census, Washington, D.C., 
USA. 

87 



Table 1' Means, mean differences and MAD's  (away from the clean file) for the response variables, expressed both 
in absolute terms ($) and, in parentheses, relative increase with respect to the means of the clean file (%). 

Variable Clean Unimputed data SPEER imputed data GEIS imputed data 
data 

Clean All 
records nonmiss. 

only records 

Mean Difference MAD Mean Difference MAD 

income 70194 79384 335738 
(13.1%) (378%) 

70101 -93 1327 69848 -346 1885 
(-0.13%) (1.89%) (-0.49%) (2.69%) 

inc_p 1 34237 38722 
(13.1%) 

33855 -382 1697 33393 -844 2121 
(-1.12%) (4.96%) (-2.47%) (6.20%) 

inc_p2 27957 31248 
(11.8%) 

27850 - 107 1449 28144 187 1861 
(-0.38%) (5.18%) (0.67%) (6.66%) 

inc_p3 8000 9414 
(17.8%) 

8395 395 978 8311 311 997 
(4.94%) (12.2%) (3.89%) (12.5%) 

expenses 51298 57786 139407 
(12.6%) (172%) 

51001 -297 1021 51457 159 1348 
(-0.58%) (1.99%) (0.31%) (2.63%) 

exp_pl 13025 14922 
(14.6%) 

13120 95 362 13157 132 495 
(0.72%) (2.78%) (1.01%) (3.80%) 

exp_p2 12482 13907 
(11.4%) 

12407 -75 581 12486 4 771 
(-0.60%) (4.66%) (0.03%) (6.18%) 

assets 347950 380535 348016 
(9.4%) (0.02%) 

345343 -2607 6767 345928 -2022 9501 
(-0.75%) (1.94%) (-0.58%) (2.73%) 
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Table 2: Correlations between key variables, before and after imputation, and, in parentheses, relative difference between the 
pre- and post-imputed values (%) 

Variable pair Clean data Unimputed data SPEER imputed 
data 

GEIS imputed data 

Clean records All nonmissing 
only records 

land - income 0.8354 0.8342 -0.0081 0.8354 0.8340 
(+0.00%) (-o.17%) 

land - expenses 0.7965 0.7981 -0.0227 0.7977 0.7905 
(+0.15%) (-0.75%) 

land - assets 0.6068 0.6110 0.6117 0.6171 0.6089 
(+1.70%) (+0.35%) 

income-  expenses 0.9594 0.9598 -0.0047 0.9556 0.9545 
(-0.40%) (-0.51%) 

income - assets 0.7059 0.7252 0.0114 0.7119 0.7062 
(+0.84%) (+0.04%) 

expenses - assets 0.6824 0.6989 -0.0012 0.6836 0.6750 
(+0.17%) (-1.08%) 
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