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1 Introduction 

This paper presents the methodology used in the 
development of Statistics Canada's generalized systems 
for sampling and estimation. These two systems are 
known as GSAM and GES. 

expressions from the unique combinations of their 
values. For a continuous variable, the rules are created 
by using either an algorithm or applying a specified 
partition of the variable values. Examples of algorithms 

in GSAM include the Dalenius-Hodges cumulative 

rule and a simple univariate clustering procedure that 
minimizes the mean square error of the variable of 
interest. 

The methods in GSAM include traditional approaches 
for stratification, allocation and sampling as well as 
some new methods for the sampling of periodic surveys. 
Estimation is based on the concept of calibration to 
known auxiliary totals. The framework developed for 
the GES allows the specification of a wide family of 
calibration estimators for one-stage designs. We also 
introduce a new proposal for two-phase estimation for 
future implementation in GES. 

2 Sampling 

Sampling involves two basic components: sample 
design and selection. In sample design, the sampling 
unit is defined and the frame is established. The frame 
consists of the sampling units belonging to the 
population of interest. The frame is stratified to produce 
reliable estimates for variables of interest. The sample 
size is then determined based on a sample allocation 
and selection method. Stratification and allocation 
methods are described in sections 2.1 and 2.2. 

Sample selection picks a sample based on the allocation 
and selection method. In repeated surveys, the sample 
may be rotated in each survey period to minimize 
response burden. Sample selection is described in 
section 2.3. From time to time, the frame is also updated 
for births, deaths and classification changes. 

2.1  Stratification 

The units in the frame are stratified using a set of rules 
that define the strata. A rule is a compound set of 
logical expressions. The stratum rules are based on 
categorical or continuous variables on the frame. 

In the case of categorical variables, such as geography 
or industry, stratum rules are defined by creating simple 

2 .2  Allocation 

Two methods are used to determine the allocation for 
single stage designs under simple random sampling 
without replacement. The first is known as a power 
allocation. It has been proposed by a number of authors 
including Bankier (1988). The number of units in each 
stratum is obtained as the solution to the following 
minimization problem. 

Min Z , (X, ,  u CV(~,)) 2 

X2 q 9 
h 9 SI-t 

= Min ~_~,, Y[ n,, (2. I ) --z-z7- Ng (1 - fh) ~ 

subject to ~_~hC,,nh < C 

and lj, < n h <_u h 

This allocation requires information on the variable of 
interest y and an auxiliary variable x for which the 

stratum totals X h are known. There is a constraint 

based on the fixed overall sample cost (c) and 

restrictions on the sample size in each stratum. The cost 
of sampling each unit in stratum h is given by c h . The 

upper bound u h is usually the stratum population size 

Nj, while the lower bound l h is set based on the 

required precision for the estimates. The exponent q 
allows an allocation between two extremes. It provides 
a Neyman allocation when q = 1 and x = y .  On the 

other hand, q = 0  gives an allocation with 

approximately equal coefficients of variation for the 

strata if the ratios S h / ~ ,  do not vary significantly and 

the sampling fractions are small. 

The other allocation method is motivated by the need to 
determine the minimum sample cost to meet specific 
reliability measures in the estimation of selected 
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variables. These constraints are formulated in terms of 
the coefficient of variation (CV) for the estimated 
population totals of variables y(,) ..... y(~) ..... y(,,). As 

before, lower and upper bounds may be included in the 
problem definition. This leads to the following 
allocation problem. 

Min ~_~hChnh 

subject to CV(~i)) < v(;) for i = 1,2 .... m (2.2) 

and lh < nh < Uh 

Each specified upper bound v(~) imposes a constraint 

on the CV of the estimated total of variable y(~). This 

constraint may be written as follows. 

~/Z,, (1 - f h ) N,~ S,~(i ) / n  h 
< v(~) (2.3) 

Y~) 

In both methods, a proxy variable is used in place of 
2 

Y(i) to estimate the stratum population variance Sh(~) 

and total Y~i). Therefore, the resulting allocation only 

provides a good estimate of the required sample sizes. 
In practice, not all of the CV constraints may be met 
with the actual sample selected. However, the 
differences between the realized and required CVs 
should be small for most samples. 

The solution to both of these problems is obtained by an 
algorithm developed by J. Bethel (1989) and extended 
by V. Estevao (1993) to include the lower and upper 
bound constraints. 

2.3 S a m p l e  Se lec t ion  

The selection method must yield workable selection 
probabilities for estimation and variance. It must also 
cope with a changing universe, accommodate rotation to 
reduce response burden and handle classification 
changes. The methods that were considered included 
Bernoulli sampling, rotation groups and collocated 
sampling. 

For Bernoulli sampling, Brewer (1972) introduced the 
idea of assigning a selection number to each unit. The 
selection number is simply a random number from the 
uniform distribution U(0,1). Those units with a 
selection number in the sampling interval or window 

[0, fh] are in the sample. The advantage of this 

procedure is its simplicity. However, the sample size in 
each stratum is random and this can be a problem for 
small strata. 

The rotation group method, given by Hidiroglou, 
Choudry and Laval6e (1991), distributes the units in 
stratum h into Ph rotation groups. Each rotation group 

gets an assignment order and each unit is assigned to a 
rotation group using this order. Those units in the first 

Ph panels are in the sample where Ph = L fh X Ph J and 

[. x J is the integer portion of x. Both Ph and Ph are 

calculated from the sampling fraction fh, the length of 

time a sampled unit stays in the sample t(in) h and the 

amount of time it remains out t(out) h . 

Collocated sampling is similar to Bernoulli but it 
includes one additional step. The units of each stratum 
are randomly assigned selection numbers equally 

spaced on the interval [0,1 ] according to the following 

formula. 

rank(ui ) - 8  h 
V; = for i in stratum h (2.4) 

Nh 

where 

and 

u i,8 h are random values from U(0,1), 

rank(ui ) is the order of u~ among u, ,u 2 . . . . .  UBh 

Nh is the number of units in stratum h. 

The value of 8 h is used to provide a random start in the 

distribution of the units on the [0,1 ] interval. 

In subsequent periods, new units or births are assigned 
selection numbers by applying (2.4) to this group of 
units, with the number of births in the stratum replacing 

NIt • 

Two common features of the above procedures are: 

(i) the use of a sampling interval to determine 
which units are selected; and 

(ii) rotation of the sampling units. 

These features are explained for the specific case of 
collocated sampling. Initially, the sampling window is 

[0, fh ] where fh is the sampling fraction. Using a 

fixed sampling fraction for selecting the sample does 
not always result in a fixed sample size for repeated 
survey periods because of changes to the frame over 
time. 

For a repeated survey, sample rotation may be used to 
reduce response burden. Sample rotation is performed 
by simply moving the sampling window to allow new 
units to replace part of the sample. The amount moved 
is given by the rotation increment r h using the 

following formula. 
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r~,=min f ~ ~ ' ,  ( 1 - f h )  
t(in)h t(out)h 

(2.5) 

Here, t(in) h is the time that a unit should remain in the 

sample and t(out) h is the minimum time it should be out 

of the sample once it has been rotated out. Both 

requirements are met if r h = fh . Otherwise, the time 
t(in) h 

in sample exceeds t ( i n )  h . 

With the addition of new units, the removal of units and 
changes to the sampling parameters and stratification, 
the selection numbers may no longer be equally spaced 

on [0,1 ]. As a result, there may be a large difference 

between the required sampling fraction and the 
observed sampling fraction calculated from the actual 
number of units in the sample. Rebalancing 
reestablishes equally spaced selection numbers and 
aligns them relative to the current sampling window to 
retain as much of the sample as possible within the 
sampling window. The rebalance methodology is an 
extension of the work done by R. Carpenter (1990). 

This approach is based on a simple rationale for 
minimizing response burden. If the sampling fraction 
has increased, the oldest units not in the sample are the 
first to be added into the sample. If the sampling 
fraction has decreased, the oldest sample units are 
removed. The easiest way to see this is to consider the 
simple case of a stratum where the population has not 
changed from the previous period but the sampling 
fraction changes between periods. Suppose the previous 
sampling fraction is f0 and the sampling window is 

[t0,10 ]. The following diagram shows the position of 

the new sampling window if f0 either decreases to f~ or 

increases to f2. 

These units are dropped from 
the sample if the sampling 
fraction decreases to I~ . 

0 

This unit is added if 
~ t ,  .Io ~ the sampling fracti°n 

:,1~-~- tl - ~ -~  increases to f2. 

o--~o.o.. .  . . . . .  + - - o - ~  . . . . . . . .  -q  

1 

to 12 

After rebalancing, the sample size ( the number of units 

in the sampling window ) is n h = Lfh x N h + u,,.J, where 

uj, is U(0,1). The observed sampling fraction is as close 

as possible to the required sampling fraction fh" The 

difference between fh and the observed sampling 

fraction nh/N h always satisfies the following condition. 

0_~ 
Irl h 1 

< ~ (2.6) 
Nh 

3 Estimation for  One-Stage Designs 

The Generalized Estimation System uses auxiliary 
information to produce estimates for one-stage designs. 
The underlying theory was developed by S~irndai, 
Swenson, and Wretman (1989) and the framework for 
this implementation is described in Estevao, Hidiroglou, 
and S~irndal (1995). This theory is based on regression 
estimators known as GREG (Generalized Regression 
Estimator) and their extension to the wider family of 
calibration estimators. Most estimators used in survey 
practice, including the post-stratified and raking ratio 
estimators, are special members of the GREG. In this 
paper we present one-stage designs. The extension to 
multi-stage designs has been given by Estevao, 
Hidiroglou, and S~irndal (1995). 

3.1 One-Stage Element Sampling 

Consider the estimation of the total Y of variable y over 
the population of elements given by U -{1 ..... k ..... N}. 

A probability sample s is selected from U with inclusion 
probability x k for k ~ s. These provide the sample 

design weights w~ = l / x  k for k ~ s. Without the use 

of any additional information, the estimated total of Y is 
given by the x-estimator below. 

f'~ =E, wkyk (3.1~ 

Suppose the following information is known for a set of 
? 

auxiliary variables given by x k = (x~k ..... xik .... x l k ) for 

k ~ s .  

{xk} for k ~ U or X = ~_,uxk (3.2) 

This auxiliary information is used to obtain new sample 
weights ff~ =wkg k under the calibration approach 

proposed by Deville and S~irndal (1992). The 
multiplicative adjustment g~ is known as a g-weight or 

calibration factor. The idea behind this approach is to 
find a set of weights ~ that satisfy the calibration 

equations given below. 

~. ,  ~kXk = y___,uXk (3.3) 

These equations are simply a restatement of the 
requirement that the estimates for the auxiliary totals 
equal the known totals. In general, there are many sets 
of weights that satisfy these equations. The optimal set 
of weights ~ should be close to the original design 
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weights in order to retain the sampling properties of the 
sample design. This means that the values of g~ should 

be close to 1 for most elements in the sample. 

A least squares distance function is used to provide a 
measure of the distance between w k and the ~k" The 

calibration problem can be stated as follows. 

Min ,~__~,. ck (wk - wk )2 
2 w  t 

subject to y__<,. ~ x k = Y---~u x~ 

(3.4) 

The positive values c~ provides a more general 

weighting of the individual terms of the distance 
measure. Many of the traditional estimators are 
obtained by assuming c k = 1. With a single positive 

auxiliary variable x~, putting c k = x ~  leads to the 

simple ratio estimator when x~ > 0.  

The solution to the calibration problem can be written 
for each k e s as follows. 

p 

ff,~ : w~{ l+(~_.vxk-~F.,,.w~x k) T -I Xk/Ck} 

where T = (~__, ,WkXkX ~/C k ) 
(3.5) 

In terms of the calibration factors gk, we have the 

following for each k e s.  
p 

gk = I+(,~__,uX~ --~., ,~.W~Xj,) T - '  x k / c  k (3.6) 

Using the weights ~k from the calibration, the GREG 

estimator of Y is then given by the expression. 

t3 = ~.~ ~k Yk (3.7) 

It is easy to show that the simple expansion and ratio 
estimators are obtained under the following 

specifications for x~ and c 

xj, c~ gk ~" 

Expansion 1 1 N N . ,  

Ratio x k x~ X X 

L L 
The variance of I ) depends on the residuals from the 
linear regression of y~ on x k . If the residual variation 

is small, then I ) is a more efficient estimator than t3~ 

This is true whether or not the linear regression 

provides an appropriate fit. An estimate of the variance 

of I ) can be obtained by the method proposed in 
S~irndal, Swensson, and Wretman (1992). 

v(I)) = ~__~k~,~__~,~.,Wk,(WkW,--1)(g~ek)(g,e,) (3.8) 

where w~/= (rt~/)-I withrt~/= P ( k a n d l e s )  (3.9) 

'ti and e k = y~ - x k 

= y ~ - x ; r - t ( Z . , . w k x ~ , y k / c  k ) 

The conc.ept of calibration based on totals for the entire 
population can be extended to individual groups of the 
population such as strata or post-strata. In either of 
these cases, we have a partition of the population into 
mutually exclusive and exhaustive groups U~ ... . .  Up ,... 

U p .  Let us assume the following auxiliary information 

is available within each group. 

(i) x~, =(Xlk  . . . . .  X i ~ .. . .  x lk)for k ~Sp (3.10) 

(ii) Xp =~_~v, xk 

It is possible to carry out the calibration within each 
group and obtain a new set of weights ~k for 

estimation. For each k ~ S p we have the following. 

t 

~ = X k - -  ,__.,~.% w k wk{  l + ( Z u ,  ' WkXk)  Tp '  x ~ / c k }  
(3.11) 

where/ '/ ,  = (~.,, 
J 

These weights are not the same as those obtained by 
calibration over the entire population. The two 
approaches lead to two familiar types of estimators. 

When we partition the population into mutually 
exclusive and exhaustive groups, we obtain a separate 
estimator. When the population is the only calibration 
group, we get a combined estimator. For the ratio 
estimator, we have the following results. 

Separate Ratio .--. Xp 

Combined Ratio _~X I) ~ 

The only difference between a stratified and a post- 
stratified estimator is in the definition of the calibration 
groups. Stratified estimators are obtained when the 
calibration groups correspond to the strata or groups of 
strata. Post-stratified estimators are produced when the 
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calibration groups are other than strata or groups of 
strata. Note the similarity of the formulas for the 
stratified and post-stratified ratio estimators. 

Stratified Ratio Xh }"~h 

X ~ p  Post-stratified Ratio ~ r  

More general estimators are obtained by an arbitrary 
partition of the population into calibration groups or 
specifying different auxiliary variables in each group or 
setting arbitrary values for c k The only requirement is 

that we must know the auxiliary totals for the variables 
in each of the defined groups. 

3.2 One-Stage Cluster Sampling 

Under one-stage cluster sampling, a sample s of clusters 
is selected and all elements in these clusters form the 
sample of elements. For each cluster i ~ s and element 
k ~ i we have w; = w~. where w~ = 1/x~. For this type 

of design, it is possible to have auxiliary information for 
the elements or the clusters. The calibration concepts 
can be extended as follows. 

If auxiliary information is available for the clusters, we 
can partition the clusters into calibration groups Up for 

which we know x i for i~Sp and ~ju, xi. Then we 

find the cluster weights w~ within each group that solve 

the calibration problem on the cluster auxiliary data. 

z.,X'.,.,, c~( I~ - w~ )2 
Min 

2wi (3.12) 

subject to ,~__,,,, ff, ixi = ~--,v,, x i 

This leads to the following estimator of the total of y 
over the population of elements. 

: y__,.,,z, y_,,., y, : (3.13) 

The variance of this estimator can be obtained from 
section 3.1 with residuals given as follows. 

e, = - x ; D  
(3.14) 

= lc,)-l(Y_,,w,x,i';,.Ic,) 
A similar approach is used when the auxiliary 
information is known for calibration groups formed by a 

partition of the elements. This leads to the formulas 
shown in section 3.1. 

It is important to note that these two approaches are 
based on partitions of different populations. A partition 
of the elements allows the elements of a cluster to be 
assigned to different calibration groups. Even when the 
groups are the individual strata, the difference in the 
level of the auxiliary information leads to different 
estimators. Consider the following example with strata 
as the calibration groups for the elements and the 
clusters. 

Clusters x , : l  c i : l E u  Xi : N,, f , :  ~,  Nh ~,~ 
.---,it gra, 

Elements x, : 1  c k :1  E u X  ' :M, ,  ~,=y MI, ~ 
z - - ' h  M~ h 

In this example, we have the same calibration groups 
and definition of auxiliary variable. The known totals 
Nh and Mj, represent the number of clusters and 

elements within the stratum population. With the 
auxiliary data at the cluster level we obtain the separate 
expansion estimator. At the element level, we get the 
ratio to size estimator. 

4 Estimation for Two-Phase Designs 

Two-phase sampling as pointed out in Cochran (1977) 
is a powerful and cost-effective technique. The 
incorporation of available data at the population and 
first phase levels in the estimation process usually 
yields substantial reductions in the variance of the 
estimates. The gain will depend on the correlation 
between the auxiliary data and the variables of interest. 
Some of the uses of auxiliary data in this manner at 
Statistics Canada are given in Armstrong and St. Jean 
(1993), and Hidiroglou et. al (1995). The specific 
estimation procedures in these papers have been 
recently generalized by Hidiroglou and S~irndal (1995), 
providing a unified theory for two-phase sampling with 
auxiliary information. This general theory for two-phase 
sampling is easily amenable to programming and it will 
be eventually incorporated into Statistics Canada's 
Generalized Estimation System. As in Section 3, the 
approach is via calibration. 

A first phase probability sample s~ (s~ c_ U) is drawn 

from the population U = {1 ..... k ..... N} such that each 

unit k has probability x~ of inclusion in the sample. 

Given that s~ has been drawn, the second-phase sample 

s 2 (s 2 c_s~ c_U) is selected from s~, with selection 
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probabilities rtkt., ' . The first-phase sampling weight of 

unit k is denoted as W~k - 1/rt~k and the second phase 

sampling weight is Wzk = 1/rtk~, . The overall sampling 

weight for a sampled unit k ~ s~ is w2 = W~k Wzk. 

Assuming that the full data auxiliary vector is x k , we 

' ,  ' )' Here, is a vector decompose it as x k = (Xtk Xzk • Xlk 

for which information is available up to the full 
population level, and Xzk is a vector for which 

information is available up to the level of the first 
sample only. Both types of information are important. 
The following table summarizes our assumptions on the 
auxiliary information available for estimation. 

Set of units 

Population 

First phase sample 

Second phase sample 

Available Data 

{X,k } for k ~ U or ~__~vX~k 

{ (X~k,X2k) } for k s s~ 

{ (X~k,Xzk, Yk) } for k e s 2 

Given that the design weights are w~, we seek a set of 

weights ~ that lie as close to them as possible. These 

weights can be obtained through two successive stages 
of calibration using the function given in section 3. 

The first phase calibration factors are denoted as g~k, 

while the second phase calibration factors are given by 
g2k" The calibration with respect to both phases 

produces overall calibration factors g~ =glJ, gZk for 

k ~ s 2 . As a result we have: (i) first phase calibrated 

weights ~ k =  Wlkglk for k e s~" (ii) overall calibrated 
, • 

weights ~ = W 2 g k  for k e s  2, where w k=w~kw2k is 

the overall sampling weight. 

First phase calibration (from s, to U). 

Use the first phase sampling weights {W~k:k E SI} as  

starting weights. Let {C~k:k e s~} be specified positive 

weights. Determine first phase calibrated weights ~k 

by minimizing 

)~ 
Clk (Wlk -- Wlk (4.1) 

~ " '  2 w I k 

subject to 

Zs~JlkXlk=ZuXIk (4.2) 

where the total .~__.uX~k is assumed to be known. Since 

the total .~--,v x2k is not known at the population level, it 

is not part of the restrictions. The calibrated weights are 

~)lk = Wlkglk for k s s~ with 

)' -' / (4.3) g,k--l+(y_~vX,k--~__~,.W,kX,k T I x,~ C,k 

where 
! 

W'kXlkXik (4.4) r' = Z , ,  

S e c o n d  p h a s e  c a l i b r a t i o n  ( f r o m  s 2 to s I ). 

We use as starting weights {ff~,kW2k'k ~ S2}. The second 

phase calibration improves the weights by including 
information available from the first phase sample. 
Depending on the specification of the calibration the 

overall calibration factors g2 can be expressed either 

multiplicatively as the product of the first phase and 
second phase factors, or additively as a linear 
combination of these factors. These two formulations 
correspond to two different GLS distance functions. 

Case A (Mult ip l icat ive  g-factors)" Starting with the 
weights ~kWzk, determine the overall calibrated 

weights ~2 by minimizing 

_ " )2  
Z s .  C 9 k ( 1 ~ 2  - -  WlkW2k (4.5) 

- 2~,kWzk 

subject to the second phase calibration equations 

(4.6) 

where {C2k'k E $2} are specified positive weights and 

x k =(X~k',Xzk' )'. The weights resulting from this 

calibration define the overall calibrated weights. They 
are given for k e s 2 as 

ff£ = ff~,kWzkg~ = W,kg, kg~ (4.7) 

where 

M_ _ 1 +  N" " - g '  "~ ~ (T- M)- 'x  k / c, k (4.8) 

and 

p 
T~_ M = ~__<,. W'k W~-kXkXk (4.9) 

C2k 

The calibration given by (4.6) assures that the first and 
second phase estimates of the unknown population total 

of x2 agree. The overall calibration factor is g~ - g, kg2~" 
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The factors C2,/ff',,W2k are not necessarily all positive. 

This is because g~k can be zero or negative. The 

following modification to distance function (4.5) 
eliminates this problem. 

Case B (Additive g-factors): An alternative for the 
second phase calibration is to replace (4.5) by 

" - ' *  ~ ) 2  

Z s .  C2k (Wk -- WIkWzk 
2w~ (4.10) 

where {c2k'k ~ $2} are specified positive weights. Note 

that the factors c2~/w ~ are always positive. The overall 

calibrated weights resulting from minimizing (4.10) 
subject to (4.6) is 

~ = w; (g,~ + g2 A - 1) (4.11) 

where 

g2 A : 1 + (y_,.,. ~ , ~ x , -  ~_..,._w,,w2~xx)'(Tza)-'xk / c2, (4.12) 

for k ~ s2 with 

* p 

TA:~_~o wkxkx~ (4.13) 
C2k 

This yields the overall calibration factor 

g~ = g,k +g2 A - 1. 

Summarizing Cases A and B, the overall calibrated 

weights are ~ = w~g~ where 

g~ = Iglk + gzAk -- 1 for Case A 
M (4.14) 

L g~k g~_~ for Case B 

Comparing the expressions for g~ and g2 A, we note 

that the only difference between them lies in the 

weighting applied in the matrices T2 M and Tz a . 

The final calibrated weights are then given by 

~2 = w~ g~, where w~ - w,, w2~ is the product of the 

first and second phase sampling weights. The resulting 
estimator of Y that incorporates the two levels of 
auxiliary information is given by 

~': ~_<,. ff,~y~ (4.15) 

As in Section 3, it is possible to extend this theory to 
incorporate auxiliary information for mutually exclusive 
and exhaustive calibration groups at the population 
level and at the level of the first phase sample where 
these two partitions may be quite different. The details 
are provided in Hidiroglou and S~irndal (1995). 

The variance estimator of the two-phase regression 

estimator I 3 is given in S~irndal, Swensson, and 
Wretman (1992). It is calculated as a total of two 
components, one for each phase, according to the 
following formula 

V(~'):Z~.,.oZ,~.,.oW2k,(W,~W,,--W,k,)(g,~.e,k)(gl,e,,) 
_ 

+Zk~.,.oZt~.,. W, kW,,(W2kW2t--W2k,)(g2,e'_k)(g2,e21) 
_ 

(4.16) 

where the weights wl, = 1/rc~. and wl, / = 1/folk / with 

rt ~1 = P(k and I e s~) are associated with the first phase 

of sampling, and w2t = 1/rt2k and w._k / = 1/rt2, / with 

rt,., t = P(k and l ~ s,_ls~) are their respective 

counterparts for the second phase. Note that for k = 1, 
we have Wlk ~ = Wl~ and w~_k / = w2, in (4.16). 

The two sets of residuals required for this variance 
estimator are as follows. 

^ 

el, = Yk -- x~kB! for k ~ s I (4.17) 

and 

e2k = )'k - x~/}~_ for k ~ s,_ (4.18) 

where 

Z " " } WlkXlkY2~ + Z , . ,  WkXlk (y[ -- .~'2k ) (4.19) 

with :Yzk = x:/}2 and 1}2 : T,_-' y_~,, W~SkXk)'k 
C2k 

(4.20) 

1 for C a s e A  
where 8~ = 

g~k for Case B 
(4.21) 

5. Domain estimation 

The ideas in sections 3 and 4 are easily carried over to 
the estimation for domains. Let U~ (U~ c_ U) denote a 

domain of U. The total of variable y in Ud may be 

written as Y ( d ) - ~ v ,  y k = ~ v y ( d )  where y k ( d ) i s  

defined as follows. 

{0 k i f k ~ U , '  
Yk (d) = if k ~ U d (5.1) 

The calibrated weights can then be used to produce an 

estimate l)(d) for the domain total based on the 

observed sample. For the two-phase design of section 4, 
we use the formula given by (4.15) to produce the 
estimator of Y(d) as follows. 
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13(d) = ~ , ,  ~; Yk (d) (5.2) 

The variance of estimator (5.2) is obtained by formula 
(4.16), provided Yk is replaced throughout the 
calculations with y~(d). This means that the residuals 

in the formula, e~ and e2k, become the following. 

e~k(d ) -- Yk(d)--X~ki~t(d) for k ~ s~ (5.3) 

and 
p ^ 

e2k(d ) = yk(d)-xkB2(d) for k e s 2 (5.4) 

where Bl(d) and /}2(d) are calculated from the 

expressions (4.19) and (4.20) for /}~ and /}2 by 

replacing y~ by Yk(d). 

6. Summary 

The methods provided in this paper are the basis for the 
development of the Generalized Sampling and 
Estimation Systems. We have attempted to build a 
general framework for these systems by using current 
and relevant methodologies and implementing these 
through a modular approach. The calibration framework 
of the GES is the result of this kind of generalized 
approach to development. However, there is much work 
to be done to build on this foundation. 
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