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1 I N T R O D U C T I O N  

The Third National Health and Nutritional Exam- 
ination Survey (NHANES III) was designed to pro- 
vide statistics on the health and nutritional status 
of the civilian, noninstitutionalized U.S. population 
aged 2 months and older. It is the seventh in a se- 
ries of similar surveys conducted periodically by the 
National Center for Health Statistics (NCHS). Data 
were collected over two three-year periods, 1988-91 
(Phase 1) and 1991-94 (Phase 2), with a total sam- 
ple size of approximately 40,000; national estimates 
are produced for each three-year period and for the 
entire six years. NHANES III is a complex, multi- 
stage area sample with oversampling of young chil- 
dren (under 5), the elderly (60+) Mexican Ameri- 
cans and African Americans; details of the design 
are given by Ezzati et al. (1992). 

The unique feature of NHANES is that data were 
collected through actual physical examinations of 
the sampled persons. This examination strategy is 
both a strength and a weakness. The strength lies 
in the wealth of scientific data that were gleaned 
about a wide variety of health characteristics; the 
full exam included detailed body measurements, 
blood and urine samples, a pregnancy test, mea- 
surements of blood pressure and bone density, fun- 
dus photography, a dental exam, etc. The weakness 
of this strategy is its cost, both in terms of operating 
expense and in the burden placed on survey respon- 
dents. The examinations were conducted in mo- 
bile examination centers (MEC's) staffed by medi- 
cal professionals. These centers had to be contin- 
ually moved throughout the country to serve each 
geographic cluster of sampled persons. The high 
cost of MEC relocation meant that relatively few 
primary sampling units could be used. Moreover, 
because of the inconvenience associated with go- 
ing to the MEC and completing the exam, nonre- 
sponse rates for the examinations were understand- 
ably high; despite the monetary incentives offered 
to participants, a substantial proportion of the sam- 
pled persons did not show up. 
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Figure 1: Unit nonresponse in NHANES III 

Rates  and patterns of n o n r e s p o n s e  

The basic patterns of nonresponse in NHANES III 
are shown in Figure 1. The data collection oc- 
curred in three stages: (a) a household screening 
interview to obtain the age, sex, and race/ethnicity 
of each member of the sampled household, which 
determined the selection probabilities for each per- 
son in the final stage of sampling; (b) a personal 
home interview for each sampled person, with ques- 
tions pertaining to health status, medical history, 
diet and other health-related behaviors; and (c) 
the physical examination in the MEC. If after re- 
peated attempts the data collectors were unsuc- 
cessful in obtaining a screening interview, demo- 
graphic information on household members was ob- 
tained from neighbors. As a result, age, sex, and 
race/ethnicity are known for all persons in the fi- 
nal dataset; there are no missing values for these 
variables. At the personal home interview stage, 
however, only 33,994 (85.6%) of the 39,695 sam- 
pled persons were successfully interviewed. None of 
the non-interviewed persons were scheduled for ex- 
amination in the MEC. Among the interviewed per- 
sons, 30,818 (90.7%) later showed up for the MEC 
exam; the examination rate was thus 30,818/39,695 
or 77.7% of the entire sample. 

Rates of nonresponse varied appreciably by cer- 
tain characteristics of the sampled persons. For il- 
lustration, the variation in rates by person's age, 
by race/ethnicity, and by household size is shown 
in Table 1. 

In addition to the unit nonresponse described 
above, individual variables from the personal home 
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Table 1: NHANES III response rates by age, 
race/ethnicity and household size ( N I N  = 

not interviewed, I N M -  interviewed but no 
MEC exam, M E C  = MEC exam) 

N I N  I N M  M E C  

Overall 14.4 8.0 77.6 
Age 

under 5 5.5 5.9 88.6 
5-16 8.8 5.2 86.0 
17-39 15.8 6.2 78.0 
40-59 20.3 6.8 72.8 
60+ 21.2 15.5 63.3 

Race/ethnicity 
non-Hispanic Black 13.0 5.6 81.4 
Mexican-American 12.2 5.9 81.8 
Other 16.6 10.8 72.6 

Household size 
1-2 20.8 12.9 66.3 
3-4 13.9 7.2 78.9 
5+ 9.0 4.6 86.4 

Table 2: Overall missingness rates for select 
NHANES III variables 

Variable % missing 

Self-rating of health status (17+) 
Family income (all ages) 
Body weight at exam (all ages) 
Systolic blood pressure at exam (5+) 
Serum cholesterol (4+) 
Drusen score (40+) 

18.8 
21.1 
21.6 
28.1 
29.4 
41.3 

interview and MEC exam exhibited varying rates of 
item nonresponse. Immediate reasons for item non- 
response included refusal to answer specific ques- 
tions, inability to participate in certain examina- 
tion procedures, examinations that  were terminated 
early because the subject had to leave, and so on. 
Together, the unit and item nonresponse led to 
missingness rates for key survey variables of 30% 
or more. Overall missingness rates for a few select 
variables are shown in Table 2. Some variables are 
missing by design for certain age groups; for ex- 
ample, bone density measures were not taken for 
youths under 20. Therefore, the missingness rates 
in Table 2 are calculated as a percentage of the sam- 
pled persons eligible to receive the question or pro- 
cedure. 

P r e v i o u s  w o r k  

In previous NCHS health examination surveys, unit 
nonresponse at the personal home interview and 

MEC exam stages was handled by classical meth- 
ods of reweighting. The nonrespondents were re- 
moved from the sample, and the respondents'  sam- 
ple weights--representing the reciprocals of the 
marginal probabilities of inclusion in the sample m 
were adjusted to make the total weights in reduced 
sample agree with those of the original sample 
within cells defined by age, race/ethnicity, house- 
hold size, and other variables that  seemed to be 
related to unit nonresponse. Relatively little was 
done to compensate for item nonresponse. NCHS 
staff imputed missing values for some variables on a 
limited basis, but these imputations were for inter- 
nal agency use only; data files released to the public 
contained missing value codes for all item nonre- 
sponses. Decisions about how to analyze the in- 
complete data  were essentially left to the data  user. 

The NHANES imputation project 

In 1992, NCHS assembled a team of researchers 
to investigate a variety of alternatives to the cur- 
rent practice, including multiple imputation (Ru- 
bin, 1987). This project will culminate in Fall, 1996 
with the release of multiply imputed NHANES III 
research data  files to the public. In the remainder 
of this paper, we review the major elements of this 
effort: exploring the feasibility of multiply imput- 
ing a substantial number of examination variables 
(Section 2); a simulation study to assess the perfor- 
mance of the multiple-imputation procedure over 
repeated samples (Section 3); results from the sim- 
ulations (Section 4); and discussion of some theo- 
retical and practical issues surrounding the produc- 
tion and public release of these multiply imputed 
microdata files (Section 5). 

2 E X P L O R A T O R Y  W O R K  

Brief summary of 1993 paper here. Describe the im- 
putat ion procedure and the analysis that  led us to 
decide to impute missing values for all interviewed 
persons, but reweight for the noninterviews about 
whom relatively little is known. 

3 S I M U L A T I O N  P R O C E D U R E S  

P u r p o s e  

In 1994-1995 we conducted a simulation study 
to evaluate the performance of our multiple- 
imputation procedures. Our procedures were for- 
mulated within a Bayesian framework and were 
based on a probability model which was, at best, 
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only approximately true. The primary goal of the 
simulation was to evaluate the performance of the 
imputation procedures from purely frequentist per- 
spective, without reference to any particular model. 
For example, we wanted to learn whether multiple- 
imputation 100 ( I - a )% interval estimates in typical 
applications would really cover the stated quantity 
100(1-c~)% of the time over repetitions of the sam- 
pling and imputation procedure. A secondary goal 
of the simulation was to compare the performance 
of multiple-imputation procedures to those of ad 
hoc methods that would be employed by the ma- 
jority of data users if no multiple imputations were 
provided. Below we review the key elements of the 
simulation study and summarize the results we have 
obtained to date. 

C o n s t r u c t i n g  a p o p u l a t i o n  

Perhaps the most challenging aspect of the simu- 
lation was to create an artificial population from 
which we could draw actual NHANES-like sam- 
ples. One possible approach was an adaptation of 
the bootstrap: Draw units with replacement from 
the current NHANES data to create samples of 
roughly the same size as the current data. We de- 
cided against this approach for a number of rea- 
sons. First, we feared that the samples would be 
quite unrealistic; they would exhibit excessive du- 
plication of units, and thus would fail to adequately 
reflect the diversity and variablity found in realistic 
populations, particularly in the tails of the popu- 
lation distributions. Moreover, we feared that  the 
summary statistics obtained from bootstrap resam- 
pling would not reflect realistic levels of variabil- 
ity over repeated samples. Another possibility was 
to use a computer to generate pseudorandom val- 
ues from an actual multivariate probability model. 
This approach was also rejected, because of the ob- 
vious dangers that the population model would be 
too simplistic and would resemble the imputation 
model too closely. 

In the end, we created an artificial population by 
pooling data from NHANES III, Phase 1 and three 
previous NCHS examination surveys: HANES I 
(1971-74), HANES II (1976-80), and HHANES 
(1982-84, Hispanic Americans only). We first iden- 
tified a set of ten examination variables whose def- 
initions were consistent across the four surveys: 
standing and sitting height, weight, systolic and 
diastolic blood pressure, total serum cholesterol, 
hemoglobin, hematocrit, iron, and total iron bind- 
ing capacity. We then extracted the adults (20+) 
from each survey with complete data on all ten 

exam variables. In addition to these ten, we 
also retained twelve pre-exam variables: age, sex, 
race/ethnicity (3 levels), geographic location (13 
levels), household size, marital status, years of ed- 
ucation, poverty index, self-reports of ever hav- 
ing been diagnosed with diabetes and heart attack, 
and self-reported height and weight. These pre- 
exam variablesmwith the exception of self-reported 
height and weight--had a modest number of miss- 
ing values. Self-reported height and weight, how- 
ever, were missing for all cases from HANES I be- 
cause these questions were not asked in that  survey. 
Missing values in the pre-exam variables were im- 
puted by hot-deck procedures that  made minimal 
parametric assumptions (Schafer, 1994a). The end 
result was a population of cases more realistic than 
any probability model that we could have invented, 
because each case in the population represented a 
person from an actual health examination survey. 
Moreover, the population size (31,847 cases) was 
considerably larger than the samples that  we drew 
(about 6,000 cases per sample), so the problems any 
problems associated with duplication of units were 
greatly reduced. 

W e i g h t i n g  the  p o p u l a t i o n  

Without further adjustments, the 31,847 cases 
would not have been representative of any pop- 
ulation of real interest. To remedy this situa- 
tion, we assigned the cases to 48 population strata, 
cross-classifying them by age (20-59, 60+) and 
24 non-overlapping race/geography cells. We then 
reweighted the cases so that the total weight within 
each stratum represented a projected population 
count for the year 2000 obtained from the U.S. Cen- 
sus Bureau. Unit i in stratum h received population 
weight 

- 1  
, 7r i 

wi - Nh ~'~jEh 7rj -1 

rounded off to the nearest integer, where Nh is the 
projected count and ~-1 is the original weight of 
unit i in the survey from which it came. 

D r a w i n g  s a m p l e s  

From this adjusted population, we drew strati- 
fied random samples to mimic essential features of 
NHANES III. The overall expected sample size was 
fixed at 6,000 to ensure that the expected number of 
sample cases in each stratum amounted to no more 
than one third of the actual number of population 
cases; this total of 6,000 was then divided among 
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the 48 strata in proportions occurring in NHANES 
III, Phase 1, to obtain the expected sample sizes 
nl ,  n 2 , . . . ,  n4s. Each sample was drawn as follows: 
For i - 1, 2 , . . . ,  31,847, case i was included in the 
sample mi times, where mi was drawn from a bino- 
mial distribution with index w~ and success proba- 
bility nh/Nh, i E h. This method differed slightly 
from typical stratified sampling schemes in that the 
realized sample sizes ill, f i2, . . . ,  ?248 w e r e  random 
rather than fixed. After selecting a sample, we cal- 
culated sample weights 

Nh 
wi = - -  for a l l i E h .  

n h  

These sample weights allowed us to get unbiased 
estimates of population means. Consider a popula- 
tion mean for a survey variable Y, defined as 

Q = E i  w"iYi (1) 
Eiw~  ' 

where the sums are taken over the population. An 
unbiased complete-data estimate of Q is 

~) = E~ w~y______t~, (2) 
E i  wi  

where the sums are taken over all units in the sam- 
ple. Notice that the denominator of Q does not 
vary, because the wi always sum to the size of the 
artificial population, 

48 N h  48 

h - 1  iEh .,,n • h--1 

P a t t e r n s  of  n o n r e s p o n s e  

After drawing a sample, we imposed nonresponse 
on the sample units by a nonparametric hot- 
deck procedure based on data from NHANES III. 
The interviewed adults (20+) from NHANES III, 
Phase 1 were classified into a contingency table 
by race/geography (24 levels), sex, age (4 levels) 
and household size (3 levels). Any cell containing 
fewer than five persons was collapsed with adjacent 
cells. Each sampled person drawn from the arti- 
ficial population was matched to an NHANES III 
donor selected at random from the relevant cell, and 
the donor's response pattern was assigned to the 
sampled person. The variables used to define the 
cells of this hot deck were completely observed in 
NHANES III; thus the resulting nonresponse mech- 
anism was ignorable in the sense defined by Rubin 
(1987), because the probabilities of missingness de- 
pended only on quantities that were observed. 

Multiple imputation 

After imposing patterns of missingness, we multi- 
ply imputed missing values five times under a rela- 
tively simple version of the general location model 
(Schafer 1994c). The model included all ten exam 
variables, plus seven of the twelve pre-exam vari- 
ables: age, sex, race/ethnicity, household size, ge- 
ography, and self-reported height and weight. The 
other five pre-exam variables were deliberately left 
out. Some recent criticisms of multiple-imputation 
methodology have focused on distortions that may 
arise when a data analyst focuses on a relationship 
between an imputed variable and another covari- 
ate not included in the imputation model (e.g. Fay, 
1992). By using these omitted variables in subse- 
quent analyses, we could see whether the apparent 
inconsistencies between the imputation and analy- 
sis models would have any discernible effect. 

Limitations 

Our simulation procedure had several important 
limitations. First, the population and resulting 
samples did not reflect the geographic clustering 
that is present in NHANES III due to the relatively 
small number of primary sampling units. To cap- 
ture this structure would have required additional, 
and probably unrealistic, modeling assumptions or 
data not available from previous N CHS surveys. 
Second, the procedure used to create missingness 
corresponds to a purely ignorable mechanism; the 
simulation provides no information on the impact 
of possible deviations from ignorable nonresponse. 
Realistic nonignorable alternatives could be speci- 
fied in the future, preferably based on information 
from real followup interviews of nonrespondents. 

4 S I M U L A T I O N  R E S U L T S  

We repeated the entire proceduremdrawing a sam- 
ple from the population, imposing missingness, and 
generating five multiple imputations--a total of 
1,000 times, and proceeded to analyze the perfor- 
mance of multiple-imputation inferences for a vari- 
ety of estimands. The basic method for multiple- 
imputation inference, due to Rubin (1987), pro- 
ceeds as follows. Let Q be a population scalar 
quantity of interest. For a particular sample, let 
Qj be the point estimate and x / ~  the standard er- 
ror obtained from the j th  imputed dataset, j - 
1 , . . . , m  - 5. Specific formulas for Qj and Uj 
will depend on the nature of Q, and will be de- 
scribed below. The combined point estimate is sim- 
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ply the average of the individual estimates, Q - 
m m-1 ~"~.j=t QJ" The uncertainty associated with (~ 

has two components. The within-imputation com- 
ponent, is the average of the squared standard er- 
rors, 0 - m -1 ~"~jm__ 1 Uj. The between-imputation 
component is the sample variance of the m esti- 

/D, 
mated coefficients, B - ( m -  1) -1 ~j=l  (QJ - ~ ) 2  
The total variance is T = 0 + (1 + m -1)B. For a 
crude confidence interval, we can refer to the nor- 
mal curve, 95% C.I. ~ (~ 5= 1.96 v/T. For a better 
approximation, we refer to a t-distribution with v 
degrees of freedom, where 

v - - ( m - l )  1 +  ( m + l ) B  

For diagnostic purposes, it is helpful to calculate 
two additional quantities: the relative increase in 
variance due to nonresponse r = (1 + m-1)B /U ,  
and the estimated fraction of missing information 

r + 2 / ( v + 3 )  
7 -- . (3) 

r + l  

A crucial assumption underlying this procedure 
is that the a valid complete-data inference can be 
obtained with a normal approximation; that  is, if 
(~ and U represent the point and variance estimates 
that  would be used if the data were complete, then 

(0 - Q ) / v ~  ~ N(O, 1) (4) 

would be approximately true, so that the complete- 
data interval (~ 5= 1.96v/U would have approxi- 
mately 95% coverage. 

R e s u l t s  for m e a n s  and  p r o p o r t i o n s  

If Q represents a population mean (1), then (2) is 
the natural complete-data estimate. A variance es- 
timate for (2) appropriate in stratified samples is 

U ~ 

48 

E 
h = l  N•]• S~ (5) 

5,h 

where N = ~-~h Nh  is the size of the artificial pop- 
ulation, and 

1 E ( y  ' _ ~h)2 
S~ = n h - - 1  

iEh 

is the ordinary sample variance calculated from the 
sample units within stratum h (e.g. Cochran, 1977). 
This method applies to a population proportion as 
well, simply by defining a binary survey variable 
taking values 0 or 1. 

This method can also be extended to a subdo- 
main mean, the average of a survey variable for a 
subset of the population. Define 

r 1 if unit i is in the subdomain, 
xi = ~ 0 otherwise 

I and y~ = xiyi. The subdomain mean for the popu- 
lation is 

= E ~ t y ~  
q yTw,~, 

where the sums are taken over the population. An 
approximately unbiased estimate of Q is 

E,  w,y~ ? 
O =  ~,,w,~ = -~' 

where ? = E~ w~y~, 2 = E~ w ~ ,  ~nd the sums 
are taken over all units in the sample. This estimate 
is only approximately unbiased because the denom- 
inator is random. An appropriate Taylor-linearized 
variance estimate is 

72 ? 
1 ~ ( ~ ) +  l Y ( ) ( ) -  2 Cov(Y )~) 

u - x-~ ~ ~ ' ' 

where 

4. [ 1 
1)'(t;') - ~ N~ ~h(~a - 1) ' 

h = l  iEh 

and similarly for ~r(~) and Cov(Y,)~). 

We evaluated nominal 95% interval estimates 
for the means of the ten exam variables, along 
with the proportions of persons falling into six cat- 
egories according to standard NCHS definitions: 
hypertensive, high cholesterol, underweight, over- 
weight, severely overweight, and anemic. This was 
done for the entire population, within 3 categories 
of race/ethnicity, and within 24 cells of age by 
race/ethnicity by sex, for a total of 16× (1+3+24) = 
448 means. In 1,000 independent repetitions, the 
average coverage of an actual 95% interval is 950 
with a standard deviation of ~/1000(.95)(.05) = 6.9. 
The average coverage of our multiple-imputation in- 
tervals over all 448 estimands was 949.3, not signif- 
icantly different from 950. 

The coverages tended to vary more in the do- 
mains with smaller sample sizes; a plot of coverage 
by the average sample size is shown in Figure 2. 
This suggests that departures from 95% coverage 
for some estimands could be due in large part  to 
failure of the normal approximation for the com- 
plete data (4), not a shortcoming of multiple im- 
putation itself. It is useful to compare the perfor- 
mance of the multiple-imputation intervals not only 
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Figure 2: Coverage of multiple-imputation (MI) in- 
terval estimates for 448 means by logarithm (base 
10) of the average domain sample size 
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Figure 4: Coverage of multiple-imputation (MI) in- 
terval estimates for 448 means by average fraction 
of missing information 
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Figure 3: Coverage of complete-data (CD) ver- 
sus multiple-imputation (MI) interval estimates for 
448 means, with points (507, 824), (608,799), and 
(479,876) not shown 
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Figure 5: Coverage of available-case (AC) ver- 
sus multiple-imputation (MI) interval estimates 
for 448 means, with points (443,824), (703,928), 
(530,779), (579,862), and (383,876) not shown 

to the baseline of 95%, but to the actual coverage 
of the normal-based intervals (~ + 1.96v/'U that one 
would have used if no data were missing. A plot of 
the coverages of the multiple-imputation (MI) inter- 
vals versus their complete-data counterparts (CD) 
is shown in Figure 3. The two coverages are posi- 
tively correlated; the performance of MI is indeed 
tied to the performance of CD. Somewhat surpris- 
ingly, among the estimands for which the CD inter- 
vals exhibited gross undercoverage--and especially 
for the three pathological cases that fell outside the 
plotting region--the MI intervals performed sub- 
stantially better than their CD counterparts. It 
seems that the process of deleting some observa- 
tions, and then imputing them under the general 
location model, actually made the sampling distri- 
bution of the resulting point estimates more nearly 
normal. On the other hand, there were no esti- 
mands for which CD did well but MI did poorly. 

With multiple imputation, we expect in general 
that as the fraction of missing information (3) for 
an estimand increases, the number of imputations 
needed for the MI procedure to perform well should 

also go up. In this simulation, however, the perfor- 
mance of the MI intervals based on five imputations 
did not appear to deteriorate with increasing miss- 
ing information. A plot of MI coverage by average 
fraction of missing information is shown in Figure 
4. The least squares fit (dashed line) is nearly in- 
distinguishable from a horizontal line through 950 
(solid). 

Finally, we also compared MI to what secondary 
NHANES data users are likely do if no imputa- 
tions are provided. This procedure, which we call 
the available-case (AC) method, is to simply omit 
the nonrespondents and calculate weighted averages 
and proportions from the cases that remain. The 
coverage of MI and AC is compared in Figure 5. 
The coverages are again positively correlated, with 
MI doing substantially better when AC exhibits 
gross undercoverage; there are no cases for which 
AC does well but MI does not. For the five cases 
that fell outside the plotting region, MI was very 
helpful in correcting the disastrous performance of 
AC. The coverage of AC averaged 928.4 with a stan- 
dard deviation of 51.81, which is significantly below 
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950 (z = -8.82) if the 448 means are regarded as a 
sample from a population of estimands. 

R e s u l t s  for quantiles 

In addition to means and proportions, we investi- 
gated the properties of MI intervals for quantiles. 
From a medical and public-health standpoint, quan- 
tiles are important for establishing ranges consid- 
ered to be normal and abnormal. From a statistical 
point of view, they are interesting because of their 
nonlinear functional form. 

To obtain point estimates and standard errors 
for quantiles, we applied a variation of an approx- 
imate method described by Woodruff (1952). Let 
F(y) denote the population cumulative distribution 
function for a continuous survey variable Y, so that 
Q = F -1  (p) is the pth quantile. Woodruff's method 
is based on the fact that Q1 <__ Q <_ Q2 if and 
only if F(Q1) <_ p _ F(Q2), because F and F -1 
are strictly increasing. Rather than finding a confi- 
dence interval for the Q directly, we found an inter- 
val (pl, p2) for the proportion of the population be- 
low the sample estimate Q, and took the estimated 
Plth and p2th quantiles as the endpoints of the con- 
fidence interval for Q. Then, appealing to the large- 
sample normal approximation for quantiles (Fran- 
cisco and Fuller, 1991), we used v ~  = ( Q 2 -  Q1)/4 
as a complete-data standard error, where Q1 and 
Q2 are the p i th  and p2th sample quantiles. 

To calculate a sample quantile, we ordered the 
sample values yi,. . . ,y,~ from smallest to largest, 
carrying along their respective sample weights wi. 
Denote the ordered values by Y(i), and their respec- 

tive sample weights by w(i). Then Q, the estimated 
pth quantile of Y, was taken to be y(j), where j was 
the greatest integer such that 

J 
v'z..,i=t w(i) < P. 

The true quantile Q was calculated in the same 
manner, using the values of yi from the population 
and the corresponding population weights w~. 

Finally, to improve the properties of interval es- 
timate (Pl,p2), particularly in the vicinity of 0 or 
1, we applied a normal approximation on the logit 
scale. The estimated logit is 

9 + . 5  ) 
= l o g  ' 

where ]Y and X are the estimated number of suc- 
cesses and estimated total population size, respec- 

tively, in the domain of interest. A linearized esti- 
mate of the variance of ¢ is 

- 2  
( t  + ,5 - + 

Y(¢)  = \ 2 + 1  

+ - ? + .5) 

? + .5 (2 - ? + .5) -2 Cov(?, 2). - 2  ) C + I  

The interval estimate (pl, p2) was found by applying 
the inverse logit transformation e¢/(1 + e ~) to the 
endpoints of ¢ + 217x/2(~). 

This method for quantiles assumes that the un- 
derlying distribution function F is continuous. Be- 
cause of rounding, however, the variables in our ar- 
tificial population were actually quite discrete; most 
of them took values on a relatively coarse grid. 
This discreteness, when combined with the occa- 
sional duplication of population units in the sam- 
ples for certain strata, caused the interval estimates 
for quantiles to perform rather poorly for most of 
the variables before missingness was imposed. Two 
variables for which the CD intervals were fairly well 
behaved were body mass index (weight/ht 2) and to- 
tal serum cholesterol, so we report the results for the 
50, 90, and 95th percentiles of these two variables 
in the total population, by sex (2 classes), by age (3 
classes), and by race/ethnicity (3 classes)--a total 
of 2 x 3 x (1 + 2 + 3 + 3) = 54 quantiles. 

Plots of the coverage rates for MI showed pat- 
terns similar to those of Figures 2-5; the only no- 
table difference was a slight tendency for the MI 
coverage to increase with the fraction of missing 
information; the MI intervals based on five im- 
putations appear to become more conservative as 
rates of missing information rise. Summaries of 
the performance of CD, AC, and MI averaged over 
the quantiles are shown in Table 8.3 and 8.4 for 
body mass index and total cholesterol, respectively. 
These tables report the bias of the point estimate as 
a percentage of the standard error for CD; the aver- 
age standard error as a percentage of the standard 
error for CD; and the coverage of the 95°£ intervals. 
The final row of each table gives the average per- 
centage of cases deleted in the AC method, and the 
average fraction of missing information for the MI 
method. The results for MI are very encouraging. 
The MI point estimates are less biased than those 
for AC. The MI intervals are on average 8-9% nar- 
rower than those for AC, yet have higher coverage 
probabilities. The CD and AC intervals show some 
undercoverage, whereas the coverage of the MI in- 
tervals equals or exceeds the nominal rate. 
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Table 3: Average performance of CD, AC, and MI 
for 27 quantiles of body mass index 

CD AC MI 
bias (% of CD se) -5.76 -5.39 -1.27 
standard error (% of CD) 100 109 99 
coverage 935.9 9 3 4 . 6  950.2 
missing (%) 0 16.7 12.6 

Table 4: Average performance of CD, AC, and MI 
for 27 quantiles of total serum cholesterol 

• CD AC MI 

bias (% of CD se) -10.1 -16.3 -8.75 
standard error (% of CD) 100 109 101 
coverage 919.9 9 1 7 . 8  960.4 
missing (%) 0 16.0 19.6 

R e s u l t s  for r eg res s ion  c o e f f i c i e n t s  

Finally, we are now able to report some limited re- 
sults for coefficients in a logistic regression model. 
Our goal was to assess the performance of MI for 
some complex estimands that  may be of interest to 
secondary data users. We also wanted to perform 
a realistic analysis involving variables not used the 
imputatat ion procedure, to see whether inconsis- 
tencies between the imputer's and analyst's model 
would create difficulties for MI. For the complete- 
data procedure, we adopted the weighted point esti- 
mate and linearized variance estimate for stratified 
samples used by SUDAAN, a popular commercial 
software package for the analysis of survey data; 
details of the procedure are given by Shah et al. 

(1993). 

We decided to focus on an effect of possible sci- 
entific interest: the odds ratio relating ever having 
been diagnosed with diabetes to an indicator for 
hypertension derived from the exam blood-pressure 
readings. Persons having been diagnosed with dia- 
betes tend to be very different from those who have 
not in terms of basic demographic variables (e.g. 
age), so a simple comparison of blood pressure by 
diabetes status may not accurately reflect the un- 
derlying relationship; we need to control or adjust 
for these demographic differences. Therefore, we fit 
a logistic model for diabetes status that included 
indicator variables to distinguish among 24 cells of 
age by sex by race/ethnicity, plus a main effect for 
hypertension. Note that  diabetes status had been 
used in the imputation procedure. 

Results for the coefficient are shown in Table 5. 
The average rate of missing information was 17%. 

Table 5: Average performance of CD, AC, 
and MI for logistic regression coefficient re- 
lating hypertension to diabetes (population 
coefficient .3691) 

CD AC MI 

Avg. estimate .3722 .3750 .3091 

Avg. standard error .1645 .1832 .1631 

Coverage 948 938 941 

In this example, neither AC nor MI does badly. The 
point estimate for MI appears to be biased toward 
zero, which was anticipated because the response 
variable did not appear in the imputation model; 
the bias is not large, however, in comparison to the 
average standard errors. Despite the apparent bias, 
the intervals from MI are still slightly superior to 
those from AC; the MI intervals are narrower, yet 
have higher coverage. These findings are consistent 
with the theoretical results of Meng (1995) and Ru- 
bin (1996), who discuss the possibility of superef- 
ficient MI estimates that perform better than any 
procedure based on the observed data alone, be- 
cause the imputer has an opportunity to introduce 
extra information through an intelligent specifica- 
tion of the imputation model. Further results for 
regression coefficients will be available in the near 
future. 

5 M U L T I P L Y  I M P U T E D  
F O R  P U B L I C  R E L E A S E  

DATA F I L E S  

P r o d u c t i o n  

The combined data from both phases of NHANES 
III have recently become available, and we are now 
in the process of creating a multiply-imputed data 
file for public release. This file, intended for reser- 
ach purposes, will contain five imputations of more 
than 60 basic variables for the 33,994 interviewed 
persons; the 5,071 noninterview cases will be han- 
dled by a reweighting procedure as described by 
Ezzati and Khare (1992). The imputation method 
will quite similar to that described in Section 2, but 
with two important exceptions. 

The first major difference is that  we are now im- 
puting missing values for the entire NHANES III 
sample; all age groups are now present. It would 
be difficult to describe the data for all ages by a 
single general location model, because some of the 
assumptionsmin particular, the homogeneity of co- 
variance structures across demographic cells--will 
be seriously violated. It is unreasonable to believe, 
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for example, that  body measurements for infants 
could be modeled with the same residual variances 
as for adults, because the magnitude of the mea- 
surements is so different. Moreover, the variables 
that  are collected in the NHANES III home inter- 
view and exam vary markedly by age; many com- 
ponents are missing by design for certain age cat- 
egories. To simplify matters, we are splitting the 
dataset by age and modeling each age group sepa- 
rately. 

A second major difference between the new im- 
putation methods and the procedure described in 
Section 2 is that  a larger number of variables is now 
involved. For example, among the body measure- 
ments we are now imputing variables such as sitting 
height, head circumference, replicate measurements 
of skin folds, etc. As a result, in some age groups 
it is not possible to model all the variables simul- 
taneously; our computing power is still too limited. 
Moreover, the data themselves appear too limited 
to support a single joint model for all variables at 
once. 

To overcome the difficulties inherent with a sin- 
gle joint model for all variables, we are adopting a 
two-stage imputation procedure. In the first stage, 
we impute lower-dimensional summaries of each of 
the major examination components: body measure- 
ments, blood pressure, lipids, etc. These summaries 
include variables that  are known to be strongly re- 
lated to data from other components (e.g. height 
and weight), and/or  composite measures that  cap- 
ture essential features of the component variables 
(e.g. the first few principal components). The sum- 
mary measures for all components are modeled and 
imputed jointly under a general location model that  
includes demographic and geographic indicators. In 
the second stage, the remaining variables withinin 
each component are imputed conditionally given de- 
mographic and geographic indicators and the im- 
puted values from the first stage. The second-stage 
models for each component are assumed to be con- 
ditionally independent of one another. In this way, 
we are attempting to preserve the most important 
aspects of the joint distribution of variables within 
each component, and the most important aspects 
of the relationships among the components. 

D o c u m e n t a t i o n  

The public release will be accompanied by docu- 
mentation. One main purpose of this documen- 
tation is to educate users about how to analyze a 
multiply imputed dataset. The booklet will include 
simple examples of analyses with results that  can 

be easily reproduced, so that users can gain con- 
fidence that they are implementing the procedures 
correctly. A second, equally important, purpose of 
the documentation is to inform users of the assump- 
tions underlying the imputation method. No single 
set of multiple imputations should be expected to 
work for all analyses; the best we can hope for is 
to impute under a model that is general enough for 
a variety of possible uses, and make users aware of 
the model's shortcomings so that they will be less 
likely to use the imputations for a purpose for which 
they were never intended. 

C o n c l u s i o n s  

In this application of multiple imputation, we are 
imputing under a model that is, at best, only ap- 
proximately true. Yet a growing body of evidence 
suggests that these model-based imputations are 
more than adequate to provide valid inferences for 
a variety of statistical analyses. The fact that  the 
modeling assumptions are being applied not to the 
entire dataset, but only to its missing part, is one 
reason why we should expect the method to be quite 
robust to departures from the imputation model. 
By releasing multiply-imputed data files, NCHS is 
providing a valuable service to secondary data users 
who might otherwise lack the resources to imple- 
ment statistically sound missing-data procedures on 
their own. 

6 R E F E R E N C E S  

Cochran, W.J. (1977) Sampling Techniques, Second edi- 
tion, New York: Wiley. 

Ezzati, T. and Khare, M. (1992) Nonresponse adjust- 
ments in a national health survey. Proceedings of the 
Social Statistics Section, American Statistical Associa- 
tion, 203-208. 

Ezzati, T., Massey, J., Waksberg, J., Chu, A. and Mau- 
rer, K. (1992) Sample desig~n: Third National Health 
and Nutrition Examination Survey. Vital Health Statis- 
tics, Series 2, No. 113, National Center for Health 
Statistics. 

Ezzati-Rice, T., Johnson, W., Khare, M., Little, R., Ru- 
bin, D. and Schafer, J.L. (1995) A simulation study to 
evaluate the performance of model-based multiple im- 
putations in NCHS health examination surveys. Pro- 
ceedings of the Annual Research Conference, Bureau of 
the Census, 257-266. 

Fay, R.E. (1992) When are inferences from multi- 
ple imputation valid? Proceedings of the Survey Re- 

36 



search Methods Section, American Statistical Associa- 
tion, 227-232. 

Francisco, C.A. and Fuller, W. (1991) Quantile estima- 
tion with a complex survey design. Annals of Statistics, 
19, 454-469. 

Meng, X.L. (1995) Multiple-imputation inferences with 
uncongenial sources of input (with discussion). Statis- 
tical Science, 10, 538-573. 

Rubin, D. B. (1987), Multiple Imputation for Nonre- 
sponse in Surveys, New York: Wiley. 

Rubin, D.B. (1996) Multiple imputation after 18 years. 
Journal of the American Statistical Association, 91, 
473-489. 

Schafer, J.L. (1994a) Imputation of missing interview 
variables prior to the MI simulation study. Unpublished 
memorandum to National Center for Health Statistics, 
7/19/94.. 

Schafer, J.L. (1994b) Recommendations on sampling 
strategy for multiple-imputation simulation study. Un- 
published memorandum to National Center for Health 
Statistics, 7/5/94. 

Schafer, J.L. (1994c) Imputation model and procedures 
for the MI simulation study. Unpublished memorandum 
to National Center for Health Statistics, 7/21/94. 

Schafer, J.L., Khare, M. and Ezzati-Rice, T.M. (1993) 
Multiple imputation of missing data in NHANES III. 
Proceedings of the Annual Research Conference, Bureau 
of the Census, 459-487. 

Shah, B.V., Folsom, R.E., LaVange, L.M., Wheeless, 
S.C., Boyle, K.E., and Williams, R.L. (1993) Statisti- 
cal methods and mathematical algorithms used in SU- 
DAAN. North Carolina: Research Triangle Institute. 

Woodruff, R.S. (1952) Confidence intervals for medians 
and other position measures. Journal of the American 
Statistical Association, 47, 653-646. 

37 


