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Introduction 

It is well known by survey practitioners that wide 
weight variation is not good. If a respondent with a 
relatively large weight is an outlier the resulting 
estimate may be inappropriately skewed. However, 
weight variation is not always bad. Unequal 
probabilities result in unbiased estimates that have 
weight variation. Consider optimal allocation in 
stratified sampling when the variance of the 
characteristic of interest is different from one stratum 
to the next. The optimal allocation results in an 
unbiased minimum variance estimate that has weight 
variation. Why do we consider wide weight variation 
bad? The problem is that most surveys have multiple 
purposes and many estimates are computed other than 
those Ior which the sample design was targeted. Some 
of these estimates may be for subsets of the total 
population so that the optimal allocation for the total 
population does not produce optimal results. There 
may be tabulations from a stratified design that 
overlap strata producing biased estimates with too 
much weight variation. Statistically the problem is to 
choose the estimation procedure that produces the 
lowest mean square error (the variance of an estimate 
plus the square of its bias). A biased estimate can 
have lower mean square error than an unbiased 
estimate if its variance is enough lower than the 
variance of the unbiased estimate to compensate Ior 
the bias. 

Variance considerations 

If the sampling fractions of a stratified sample diverge 
Irom optimum allocation, the variance is increased. 
Since in most surveys there is interest in several 
population characteristics which may vary in their 
between strata variance relationships, for variance 
considerations we will look at the situation when the 
optimum allocation would be proportional( equal 
variance in each stratum). Proportional allocation 
results in unbiased weights which are the same in 
every stratum. If disproportionate weights are used, 
say, to correct Ior diflerential nonresponse, the 
variance of an estimate is increased. For any fixed 
spread Irom the lowest to highest weights and for any 

fixed smallest weight, the maximum loss in reliability 
of estimates is attained when all of the remaining 
weight is subject to the highest weight (Kish, 1965). 
Thus, for any fixed ratio of the largest stratum weight 
to the smallest stratum weight the greatest loss in 
efficiency occurs when there are only two strata. Thus 
the extreme case of two strata is considered here. 

For Sample balancing each stratum receives a weight 
that is equal to the proportion of the population that 
is in the stratum divided by the proportion of the 
sample that is in the stratum. The resulting weights 
are such that the weighted sample size is equal to the 
actual sample size. In most polls the sample is 
generated to be proportional by demographic groups 
(equal probability) but ends up disproportional due to 
differential nonresponse. Consider two demographic 
post strata with a ratio of the larger balancing weight 
to the smaller balancing weight of k. ]n addition 
denote the proportion of the sample that is in the 
stratum with the larger balancing weight as a. The 
ratio of the variance using the balancing weight to the 
variance of the unweighted sample mean is given by 
(Hanson, 1969): 

R -  (l+a(kZ-1))/(l+a(k-1)) e. 

The maximum value of R occurs when a - 1/(k+l). 
For [his value of a, R - (k+l)2/4k. Table 1 gives the 
maximum a and R values for selected k values. 

Table 1 

k Max. a Max. R 
1.5 0.4 1.041 
2.0 0.333 1.125 
3.0 0.25 1.333 
5.0 0.167 1.8 
7.5 0.118 2.408 
10.0 0.091 3.025 
15.0 0.0625 4.267 
20.0 0.048 5.513 
25.0 0.038 6.76 

It can be shown that if a is at its maximum value and 
the balancing weight for stratum 2 is k times the 
balancing weight for stratum 1, then the proportion of 
the pqpulaLion is the same in both strata. 
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Mean Square Error Analysis 

The variance considerations are not of much practical 
use since it will almost never be the case that the 
variance of a item of interest is the same in both 
strata. Due to differential nonresponse, the unweighted 
estimate is biased. Consider two post strata each 
comprising one half of the population and a simple 
random sample of size 1000 selected from the entire 
population. The responding sample of size 1000 is post 
stratified into the two strata. The resulting sample in 
each stratum is a conditional random sample from 
that stratum. For this analysis the resulting sample in 
each stratum will be considered fixed and not treated 
as a random variable. Due to differential nonresponse 
the sampling rates in the two strata are not the same. 
For the unbiased estimate over the two strata the ratio 
of the stratum 2 weight to the stratum 1 weight is 
denoted as j. This estimate uses the balancing weight 
calculated by dividing the stratum population 
proportion, .5, by the stratum sample proportion. We 
want to pick a value k and change the balancing 
weights so the ratio of the weights is reduced to k 
subject to the constraint that the weighted sample size 
remains at 1000. 

Denote: 

n l + n2 = n = 1000; stratum sample sizes 
Wi = .5 = proportion of population in stratum i, i = 12 
wl = stratum 1 weight = .5/(nl/lO00) 
w2 = stratum 2 weight = .5/(n2/1000) 
pi = proportion of stratum i population with the 
characteristic of interest; qi = 1-pi 

For a given j, jwl - w2 implies that nl = 
(jWln/(W2+jW1)). 

The variance of the unbiased estimate, Pu, is given by: 

Var(Pu)- 
(n lwl2p 1 q l + n2w2ap2q2)/n a. 

We pick a k < j so that w2 ' -  kwl' where wl' and w2' 
are adjusted weights for stratum 1 and 2 such that 
nlwl' + n2w2' - n - 1000. As a result: 

wl' - n/(nl+n2k). 

The biased estimate, Pb, uses the weights wl' and w2'. 
We have' 

Bias(Pb)= p l(wl'nl/n-Wl)+p2(w2'n2/n- 

W2), and 

Var(Pb)= 
(n lw l'2p 1 q l + n2w2'ep2q2)/n 2. 

The Mean Square Error (MSE) of Pb = Var (Pb) + (Bias 
(Pb))^2. 
We are interested in the ratio, R = MSE (Pb)/Var(Pu). 
If R is less than 1 the reduction in variance in Pb 
resulting from reducing the weight ratio is not offset 
by too much bias so that Pb is better. ]f R is greater 
than 1 then the increase in bias is too much and Pu 
is better. 

The ratio, R, of the mean square error of the biased 
estimate with weight ratio of 10 to the variance of the 
unbiased estimate with weight ratio of 15 was 
computed for 36 combinations of the proportion of 
persons in stratum 1 with the characteristic of interest 
and the proportion of persons in stratum 2 with the 
characteristic of interest between .4 and .65. For 
example, if the stratum 1 proportion (p l ) is  .45 and 
the stratum 2 proportion (p2) is .5, this ratio is .713. 
This means that the biased estimate produces an 
estimate with about 29 percent less mean square error 
than the unbiased estimate. On the other hand, if the 
stratum I proportion is .45 and the stratum 2 
proportion is .65, the ratio is 1.10; the unbiased 
estimate is better. When the difference between p l 
and p2 is high, a given level of weight reduction 
produces a higher mean square error ratio (less 
improvement by weight reduction) due to a greater 
concern with bias. Note that the ratio of the mean 
square errors is the same if P1 = P2. This is because 
if the proportions are equal, both estimates are 
unbiased and the within stratum variances are 
identieal. The average R value over all combinations of 
pl andp2 considered for a unbiased weight ratio of 15 
and a biased weight ratio of k = 10 was .831. 

This entire process was repeated for all possible 
integer k values down to 1. The unbiased estimate 
weigh!, ratio remained fixed at 15. Then everything 
was repeated for unbiased estimate weight ratios of 25, 
20. 1'0, 7.5, and 5. The proportion of the sample in 
stratum 1 was changed appropriately each time to 
produce the desired unbiased weight ratio. Table 2, 
below,: !gives the results in terms of the k value that 
produced the lowest average ratio of the mean square 
errors over the 36 combinations of P1 and P2. The 

• ~ , 

biased estimate using this integer weight ratio 
produces an estimate with a lower mean square error 
than any higher or lower integer k value less than or 
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equal to j. This is because there are variance 
improvements winning out over bias up to a point 
where the change in weights becomes enough to result 
in to much bias. 

Table 2 

Unbiased Optimal Minimum 
Weight Weight MSE 
Ratio Ratio Ratio 

j k R 
25 14 .738 
20 12 .783 
15 lO .831 
10 8 .893 
7.5 6 .921 
5 4 .969 

Model Based Considerations 

Consider a two strata model with i = 1,2 indicating 
strata and j = 1 to ni indicating sample size. Suppose 
yij given i are distributed independently as Bernoui]li 
random variables with mean pi and variance piqi. 
Further suppose that p i -  (po, o 2) also independently. 

Now Var( Zyij/ni ] i ) = piqi/ni (denote this Vybari). 
Also 

E(pl-p2)'-2 = Var(pl-p2) = Var(pl) + War(p2) = 
202 
which implies that (p 1-p2),.2/2 is an unbiased 
estimate of 02. 
Stokes (1989) suggests a shrinkage estimator for the 
case of equal sample size in the strata. She states 
that there is no conceptual difference in finding 
shrinkage estimators when sample sizes vary among 
strata. Ghosh and Meeden (1986) provide suggestions 
for the case of different sample sizes. 

Based on the ideas of Stokes (1989)let wsi denote the 
shrinkage weight for stratum i while as before wi 
denotes the unbiased weight. Then 

wsi = Bi + (1 -Bi)wi with 

Bi= 
Vyb ari/(Vyb ari + (p I- p2)2/2). 

The amount of shrinkage is determined by the relative 
variability of ybari and pi. When Vybari is small 
compared with 02, sample units in the ith stratum will 
retain most of the weight they would for the unbiased 
estimate. On the other hand, if 02 , which describes 
the expected diversity of strata means, is very small 
relative to Vybari, sample weights in the ith stratum 

will be shrunk to almost 1 ( the unweighted mean over 
the strata effectively uses weights of 1 in all strata for 
no weight variation). The sum of the shrinkage weights 
over all the sample in the two strata (nlwsl + n2ws2) 
will not equal n unless B1 = B2. If this is desired all 
shrinkage weights can be multiplied by the appropriate 
constant. This would not change the ratio oI the 
weights. 

The :r:atio of the stratum 2 shrinkage weight to the 
stratum 1 shrinkage weight for the same combinations 
of p l, and p2 examined in the Mean Square error 
analysis above was computed for an unbiased weight 
ratio of:25. For example, when p l is .6 and p2 is .55 
the ratio of the shrinkage weights is about 4.92. The 
average ratio over all 36 combinations was 10.1. ]n 
addition ,the average ratio excluding the 6 
combinations for which pl =p2 was 12.0. The later is 
shown since if the stratum means are the same the 
optimal shrinkage weight is 1 in both strata which has 
a large decreasing effect on the average shrinkage 
weight and is unlikely to happen very often in practice. 

This was repeated for unbiased weight ratios of 20, 15, 
10, 7.5, and 5. Results are shown in Table 3. 

Table 3 

Ratio of Shrinkage Weights 

Unbiased Overall Average 
Weight Average excluding 
Ratio pl=p2 

J 
25 10.1 12.0 
20 8.9 10.5 
15 7.4 8.7 
lO 5.7 6.6 
7.5 4.6 5.3 
5 3.4 3.9 

The ratios in the last column of Table 3 are similar to 
the optimal weight ratios of Table 2. 

Conclusion 

The amount of weight variation that is optimal for a 
equal probability poll depends on the amount of 
differential nonresponse (unbiased weight ratio) and 
strata: differences in characteristics of interest. 
Although many practitioners would like a magic 
number, it appears that the optimal weight ratio 
depends on these parameters. If stratum proportions 
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are in the ranges studied here then the largest 
unbiased weight ratio for any pair of strata can be 
used to find an optimal weight ratio. However, if 
stratum differences are greater, more weight variation 
is probably called for. 
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