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1. INTRODUCTION 

There is a well-documented problem of inflated 
significance levels if classical multinomial-based 
procedures are used when testing hypotheses on 
categorical data from complex surveys. Because of this 
problem, a variety of procedures have been developed 
specifically for survey data. However, the rationale for 
these procedures is generally based on asymptotic theory. 
It is thus important that there be thorough investigation of 
the finite population characteristics of these methods. 

A few Monte Carlo studies have been reported in the 
literature. One of these, by Thomas and Rao (1985, 
1987), looked at available procedures for a goodness of 
fit test under two-stage cluster sampling. Many people 
assumed that their results can be generalized to the test of 
independence in two-way tables. The first objective of 
this current study is to validate this assumption. 

As well, a number of different procedures are now 
available for testing independence that were not 
considered in the goodness of fit study. The second 
objective of this study is to look at their finite sample 
properties. 

A summary of the study is presented below. Full details 
are given in Thomas, Singh and Roberts (1995). 

2. DESIGN REQUIREMENTS 

2.1 Notation required 

Consider an r× c contingency table, with ~j, i=l,2,...r, 
j=l,2,...c being the individual cell probabilities, and ~ ,  
i =l,2,...r, and ~zj, j=l,2...c being the row and column 
marginal probabilities respectively. These probabilities 
may be represented in vector form as 

" / 1 ~ = ( 7 ~ 1 1  . . . .  ,~rc )/ 7 1 ; R = ( ' / ~  1 ,...~r )/ and ~c=(~z 1,"" ~ ) /  . . ' . ~ . • 

The independence hypothesis can be expressed in two 
equivalent forms: 
1)the residual form - Ho: h~j=~j-~.~.j=0 
and 
2) the loglinear form - H 0- ln(~j) = g* + g1(0+ g2tj)" 
The different formulations give rise to different statistics 

The following three different sets of design effects, and 

functions of them, are relevant when examining the 

characteristics of the different test statistics: 

1) )'R(k)' k= 1,2 .... (r-  1), the eigenvalues of the design 

effect matrix D R=P~')-IV~ ') arising from the test of 

goodness of fit on the row marginals gR, where V R 

denotes the covariance matrix of consistent estimates of 

the row marginals, Pn denotes the corresponding 

multinomial covariance matrix, and the superscript (t) 

denotes a trimmed matrix, obtained by deleting the last 

row and column of the matrix in question. The mean of 

the ~'R(k)will be denoted by h R . 

2) ~C(k), k=l '2 ' " ' (c -1) '  the eigenvalues of the design 
effect matrix arising from the test of goodness of fit on 
the column marginals_ gc • The mean of the ~C(k)Will be 
denoted by 2,c. 
3) 8 k, k =1,2 .... ( r -1)(c-1) ,  the eigenvalues of the 

generalized design effect matrix 191 corresponding to the 

test of independence. D I can be expressed in the form 

D i = n(Z/D ~IZ)-1 (Z/D ~1V(It)D ~1Z), where n is the size of 

sample taken, Z is the completion of the design matrix for 

the independence form of the loglinear model, V(¢0 is the 

covariance matrix of a consistent estimate of~,  and D i s  

a diagonal matrix with the elements~ =~z~  on its 
q I .  . j  

diagonal. 

The mean of the 6 kwill be denoted by 6. A measure of 

the variation among the6 k will be denoted by a(6), which 

is defined as a ( 8 ) = [ ~  6~/v~ - 111/2, with 
1 

v=(r- 1)(c- 1). 

2.2 Model requirements 

The model must be a plausible representation of two- 
stage sampling, and be capable of: 

m 

(1) modelling different row and column design effects, ie. ~. R * )~ c" 
m w 

(ii) modelling a range of values of 6 for given values of ~'R 

and k c . 
m 

(iii) modelling unequal design effects, ie. some ZR(k)*).R, 

some )~C(k)*k c, some 6 k,8. 
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(iv) providing independent control of a(6)over a range of 

values of~,w~, c, and 6. 

(v) modelling patterns of marginal probabilities other than 

the equiprobable case, ni.=l/r , r~s=l/c, Vid.  

(vi) modelling deviations from Ho:r~o=r~; r~ s, so that the 

powers of the competing procedures can be assessed. 

3. GENERATING CLUSTERED DATA 

Several models of two-stage cluster sampling were 
considered for this study, but those found in the literature 
seemed intractable to use for satisfying the modelling 
constraints described in 2.2 above. A new model, based 
on a "modified logistic normal" distribution, was 
therefore developed for use in this study. 

Given cell probabilities ~z o, i =1 .... r, j =1 .... c, the 
modified logistic normal (MLN) model generates 
(rc x 1) vectors of non-integer pseudo-counts rnkthat 

satisfy E(mk)=mg.  The cell probabilities can be 
generated either under the independence hypothesis from 
preset marginals r~ n and rr. c, or, if deviations from 
independence are to be simulated, using the Bahadur 
representation 
~;o = gi.Tz.j +p0[Tzi.(1-gi.)]l/Z[g.j(1-g.jT)] 1/2 , with -1 _< pij_< 1 . 

An estimator ~ of~ was found that is consistent as L-.oo 
and that exhibits the variance inflation that is 
characteristic of two-stage clustering. As well, a 
convenient expression for the asymptotic variance V of~ 
was developed which was used to design the experiment 
and define the required parameter settings. A consistent 
estimator for V was also found. 

As stated in 2.2 above, the model must allow for 
experimental control of the various parameters. It was 
found that these parameters cannot be freely selected. 
Thus, a method based on the ideas of linear programming 
was used to determine an envelope of admissible values 
of 6 and a(6)for selected values of the marginal 
probabilities, ~R and ), c . 

4. THE MONTE CARLO STUDY 

4.1 The Test Statistics Examined 

The following statistics for testing row-column 
independence were examined in the study. More 
complete descriptions are given in the full paper. 

1) The Pearson X 2 and the loglikelihood G z tests 

2) First-order Rao-Scott corrections to X 2 and G 2, 
2 2 

denoted by X~ and G 

3) An F-based version and conservative F-based version 
2 c, denoted of X c and an F-based version of G 2 

, 2 FG 2 respectively FXZ~, F Xc,  and 

4) The second-order Rao-Scott correction to X z and G 2, 
2 respectively denoted by X~ and G s 

2 2 
5) F-based versions of X s and G s ,  
FX~ and FG s respectively 

denoted 

6) A corrected X z test due to Fellegi, denoted X2F 

7) Fay jackknifed procedures applied to X z and G 2, 
2 (Fay, 1985) denotedX 2 and G j 

8)Two Bonferroni procedures: Bf(R) consisting of 
(r-1)(c-1) simultaneous tests on cell residuals and Bf(LL) 
consisting of the same number of simultaneous tests 
constructed from a loglinear representation of the 
independence hypothesis 

9) Two Wald procedures: X~,(R)being based on cell 
residuals and X~v(LL)being based on a loglinear 
representation of the independence hypothesis 

10) F-based versions of the two Wald procedures 
described in 9), denoted Fw(R ) and Fw(LL ) respectively 

11) A modified Wald test based on an heuristic suggested 
by Morel 

12) Singh's Q(r) procedure applied to the Wald 
procedures described in 9), denoted 
Q (r)(R) and Q (r)(LL)respectively (Singh, 1985) 

13) F-based versions of the 2 procedures described in 12), 
denoted FQ (r)(R) and FQ (r)(LL) respectively 

14) An alternative to Singh's stabilization of the Wald 
test, called EV 1, that uses a ridge-type adjustment of the 
eigenvalues. Four versions of the procedure are explored, 
using both chi-squared and F-based forms of both the 
residual and loglinear Wald statistics, and are denoted 

2 2 F~/(R V1) Xw(R, EV1), Xw(LL, EVI) ,  , E , 
and F~(LL, EV1) 

15) A second eigenvalue adjustment procedure, denoted 
EV2, that is based on a logarithmic transformation of the 
eigenvalues. It also results in four distinct versions, 
denoted in the same way as in 14), except with "EV 1" 
replaced by "EV2". 
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4.2 Parameter Settings for 3 × 3 Table 

The major part of the study assessed the relationship of 
the parameters ~R' ~c' 8, and  a(6) to the performance 
of the selected test statistics using a 3 x 3 table with 
marginal probabilities 

~R = ~c = ( 1/2,1/3,1/6)/" 
For this table, separate Monte Carlo experiments were 
carried out for each of the 52 admissible parameter 
combinations shown in Table 1. Each experiment 
consisted of 4000 Monte Carlo trials, and generated 
results for L-100, 70, 50, 30 and 15 clusters, each with 
20 conditional multinomial draws per cluster. The cluster 
data were generated using a strategy similar to that 
reported by Thomas and Rao (1987); in particular, 100 
independent clusters were first generated for each Monte 
Carlo trial and then each succeeding sample of L clusters 
was selected as a subset of the previous one. 

For the study of Type I error control, data were generated 
to conform to the null hypothesis of independence. For 
the study of power, data were generated under an 
alternative hypothesis, using cell probabilities obtained 
from the Bahadur representation given in 3 above, with 

9o=9=.03. 

4.3 Other Parameter Settings Examined 

Those test statistics exhibiting good Type I error control 
and acceptable power for the 3 × 3 table were tested on a 
3 x 3, a 3 x 4, and a 4 × 4 contingency table using a 
single combination of study parameters given by 
~R=~C---6-2.0, a(6)=0.75, and  m=30. Probabilities for 
three-category margins were the same as for the main 
experiment. For four-category margins, probabilities 
were set equal to 
~R =~c =(1/3,5/18,2/9,1/6)/. 
To compare test powers across the 3 tables, cell 
probabilities under the alternative hypothesis were 
obtained using 9=0.02, 0.0125, and  0 .01 .  

4.4 Empirical Measures Used 

The Type I error control and power of each test statistic 
were assessed using empirical significance levels (ESL' s) 
and empirical powers (EP's) respectively. These are the 
proportions of Monte Carlo trials leading to rejection of 
the independence hypothesis, when the data are generated 
under the null hypothesis and under the alternative, 
respectively. Both ESL's and EP's were recorded for 
nominal test levels ranging from t~=0.1% to tt=10%. 
Because all test statistics were calculated on the same data 
and because of the subsetting to obtain different cluster 
counts, ESL's and EP's for the same statistic across 

different values of L are therefore positively correlated, 
as are ESL's and EP's for different statistics measured 
using the same number of clusters. 

4.5 Approaches Used to Summarize Results of Type I 
Error Control for 3 × 3 Tables 

(I) Regression summary: 
As an aid to summarizing and understanding the results 
of the Monte Carlo experiment, the regression equation 

(ZR+Zc) ZR-Zc 
ESL=~o + ~ , ( ~  - 1) + [321 

2 2 
w 

+ ~33(6 - 1) + ~34a(6 ) + ~3sa2(6) 

+ ~6L + ~7/L + error 

was fitted by ordinary least squares to the ESL's 
corresponding to a nominal test level of 5%. A separate 
equation was fit to the 260 observations for each test 
statistic obtained from the 52 parameter combinations and 
the 5 values of L. As a result of the study design, ESL's 
for a given test statistic are independent across different 
combinations ofthe parameters ~'R, ~c, 6 and  a(6), but 
are correlated across the 5 values of L used with each 
parameter combination. Thus, observations of ESL for 
each parameter combination form independent clusters of 
5 correlated observations, with the result that OLS 
estimates of the standard errors of the regression 
parameters are biased. Appropriate standard error 
estimates were obtained using PC-CARP under the 
assumption of equally weighted independent clusters. 
The following different techniques were among those 
then used to interpret the regression equations: 
1) The standard expression for R 2 was used as a measure 
of fit of the equations. 
2) Different test procedures were compared by examining 
fitted significance levels for particular values of the 
independent variables. 
3) The joint effect of subsets of the parameters was 
studied by evaluating the minimum and maximum of 
their joint contribution to the regression function over all 
combinations of the parameters 

II) Overall comparison of ESL's 
While the fitted regression equations provide an overview 
of the extent to which a given test procedure controls 
Type I error and the extent to which the ESL is affected 
by the various study parameters, and also reveal 
important differences among major classes of test 
procedures, a detailed comparative assessment of 
individual procedures requires a direct examination of the 
ESL's themselves. This was done by calculating and 
examining average ESL's over all combinations of 
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m m m 

~R, ~'c and 6 for different values of L and a(6) 

III) Comparison of ESL's over a Values 
For those test statistics that appear to provide adequate 
control of significance levels at a=5%, based on the 
methods described above, a comparison of ESL's at 
a -  1% and a = 10% was done, for a selection of values of 
the study parameters. 

4.6 Approaches Used to do Power Comparisons 

For a statistic to be considered viable, it must provide 
good control of Type I error over a wide range of 
conditions and also must provide adequate power under 
the conditions likely to be encountered in practice. To 
assess the power of those test statistics appearing to have 
good Type I error control, EP's averaged over the 52 
parameter combinations for each cluster count were 
compared. As well, for selected parameter settings, EP's 
adjusted for Type I error were compared, in recognition 
of the fact that statistics that are susceptible to Type I 
error inflation will, in the non-null case, have an apparent 
power advantage. 

5. STUDY RESULTS: CONTROL OF TYPE I 
ERROR AND P O W E R  

A summary of the Type I error control of the better 
procedures is shown in Table 2, for the three sizes of 
contingency tables explored. The following general 
comments may be made on the basis of Table 2 and of the 
other results given in the full report. 

1) The regression equation described in 4.4(I) is a useful 
summary of the relation between the ESL and the 
parameters under study, with R Z being well above 70% 
for most procedures. The one procedure with a low R 2 _ 
Bf(LL) - has this characteristic because it maintains 
excellent control of Type I error at the 5% level, so that 
there is relatively little variation around the mean to 
explain. 

2) The ESL's of most test procedures are not highly 
sensitive to different values of ~'R, Xc, and 6. 

3) The ESL's for most test procedures increase with 
increased variability in the cell deffs, as measured by 
a(6). 

4) Test procedures vary in their degree of sensitivity to 
a(6) and number of clusters. 

5) For those test procedures with both a residual version 
and a loglinear version, the loglinear versions generally 
have better Type I error control. 

6) Do not use X z, G z, X~v(R) ' or X~(LL), since all have 
wildly inflated Type I error rates over a wide range of 
conditions. 

7) Do not perform a test of independence, using any of 
the test procedures studied, at nominal levels lower than 
5%, since the control of Type I error seems very poor in 
that range. 

8) Only a limited exploration of the power properties of 
the test statistics has been done to date. However, it is 
already obvious that, for those procedures with both a 
residual and loglinear version, the loglinear version has 
much better power. 

9) The loglinear Bonferroni procedure and the eigenvalue 
adjusted procedures outperform their competitors with 
respect to Type I error for all three table sizes considered. 

10)Similarly, the loglinear Bonferroni procedure is the 
most powerful procedure for all 3 contingency tables and 
all values of L. 

6. CONCLUSIONS AND RECOMMENDATIONS 

One major aim of this study was to determine whether or 
not Thomas and Rao's (1987) conclusions regarding 
goodness-of-fit tests can be extended to tests of 
independence in two-way tables, under cluster sampling. 
Their main conclusions do apply, although there are some 

2 minor differences, such as FX~ outperforming X s with 
respect to Type I error control- the opposite to which was 
found for the goodness-of-fit test. 

The second objective of this study was to examine in 
detail several families of test procedures not considered 
by Thomas and Rao. The most striking conclusion of this 
phase of the study was the success of the Bonferroni 
procedure Bf(LL), which provided the best control of 
Type I error and the highest power across the full range 
of parameters under study. The second best from the 
point of view of Type I error control was the procedure 
Fw(LL,EV1), while the runner-up in terms of power was 
the Singh procedure FQ(r)(LL); however, both 
procedures have the disadvantage of depending on 
external parameters that cannot be estimated from the 
data. 

In recommending a test procedure to a practitioner, 
several issues must be considered. Purely on the basis of 
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Type I error control and power, the Bonferroni procedure 
Bf(LL) would be the method of choice. However, some 
practitioners might prefer a more familiar test procedure, 
and in addition, might be reluctant to use other test 
statistics that depend on preselected constants. They 
would therefore choose among the procedures previously 
considered by Thomas and Rao (1987). The results of the 
current study show that the second order Rao-Scott 
procedure FX s provides reasonable control of Type I 
error and adequate power, and is thus a viable choice. 
There is some further evidence that its control of Type I 
error improves with table size, which is an attractive 
characteristic. It should also be noted that when complete 
survey information is not available, as is frequently the 
case in practice, practitioners would be forced to use one 
of the two F-based first order Rao-Scott procedures which 
require information only on cell and marginal design 
effects. It has been shown in this study that the 
conservative variant F *XZcan be useful whenever large 

c 

variations in design effects are to be expected. 

Provided the number of clusters is greater than thirty, 
Fay's jackknifed test G s remains a competitor whenever 
full survey design information is available, and might be 
regarded as a natural procedure to be used when survey 
inference is tied to a replication strategy. Practitioners 
who are accustomed to using Wald-based procedures can 
improve on the standard Wald test by using a loglinear F- 
based procedure, or if they are comfortable with tests that 
depend on preset parameters they can select either 
FQ(r)(LL) or Fw(LL; EVI). The former is the more 
powerful of the two, whereas the latter provides excellent 
control of Type I error, and good power. It should also 
be noted that an attractive feature ofFw(LL; EV1) is that 
it can be implemented with only a minor modification to 
existing software, since it is a simple multiple of the 
parent Wald statistic. 
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Table 1 

Test Values of A.a, Ac, 6 and a(6) for the 
Monte Carlo Experiment on 3 x 3 Table 

~R 

1.5 

1.5 

2.0 

2.0 

2.0 

2.5 

~c 

1.5 (0.25) (1) 2.25 

3.0 

2.25 

2.25 (o.25) 3.0 

3.0 

3.0 

1.75 

2.0 

1.75 (0.25) 2.25 

2.5 

3.0 

2.5 (0.25) 3.25 

a(~) 

0.5 

0.8 

0.5 

o.a (o.~) o.7 

0.7 (0.1) 1.0 

o.3 (o.1) o.7 

(1) To be read as: 1.5 through 2.25, in increments of 0.25. 
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T a b l e  2 

EmpiricM Significance Levels (1) as u Function of Tuble Dimension, for c~ - 5%; 
)~R-  )~c - ~ i -  2.0, a ( (~) -  0.75. 

Test 

x7 
FXf 
F*X~ 
xf 

Gj 
BI(LL) 

r (R) 
Fw(LL) 
X2(LL;M) 

FQ(T)(LL); 

Fw(R; EV1); 

Fw(LL;EV1); 

Fw(LL; EV2);  

Table Dimension 
, ,  

3 x 3  3 x 4  
L 

15 30 70 
12.4 10.3 9.5 
10.9 9.6 9.3 

6.5 7.4 8.4 
9.5 8.1 7.6 
7.8 7.4 7.3 
9.5 7.3 6.0 
5.8 5.2 5.0 

9.1 8.2 6.7 

L 
15 30 70 

10.6 9.2 9.3 
8.9 8.5 8.9 
3.5 5.8 7.9 
6.4 6.3 6.9 
4.8 5.8 6.6 
9.1 7.1 6.5 
4.9 4.6 4.9 

8.8 9.0 8.0 

4 x 4  
L 

15 30 70 
11.1 9.3 8.3 

9.8 8.7 8.0 
2.6 5.2 6.4 
5.6 5.8 5.5 
4.3 5.3 5.4 
8.8 7.4 5.8 
4.5 5.5 4.9 

8.6 10.8 9.1 

E ~ o l  

- .05 
e - .02 

k - 1  
k - . 5  

k - 1  
k - . 5  
k - .25 

k - 1  
k - . 5  
k - .25 

6.5 6.9 6.0 
7.9 8.3 6.7 

3.6 4.3 5.1 
3.9 5.1 5.5 
5.8 6.8 6.0 

4.0 4.8 4.4 
5.8 5.9 5.3 

3.1 3.4 ;3.6 
4.:3 5.0 4.4 
5.0 5.8 5.1 

2.6 3.2 3.5 
4.0 4.9 4.4 
5.0 5.7 5.0 

5.6 6.9 6.6 
3.1 7.1 7.5 

2.2 4.0 5.5 
3.2 4.5 5.7 
3.1 5.5 5.9 

3.9 4.6 4.9 
5.5 6.2 6.4 

2.5 3.2 3.9 
3.8 4.6 5.;3 
4.7 5.5 5.9 

2.1 3.0 ;3.7 
3.5 4.4 5.2 
4.6 5.5 5.9 

6.3 7.5 7.1 
0.1 4.1 6.6 

1.1 3.4 3.9 
1.3 4.4 5.5 
1.4 5.2 6.1 

4.2 5.2 4.7 
6.1 7.2 6.4 

2.7 3.2 3.2 
4.1 4.7 4.6 
5.1 6.0 5.7 

2.4 2.8 3.6 
3.8 4.6 4.5 
5.0 6.0 5.7 

RMS (5%) (2) 

5.1 
4.3 
2.1 
2.2 
1.6 
2.8 
0.4 

3.8 
1.7 
2.7 

1.8 
1.5 
1.6 

0.6 
1.2 

1.8 
0.6 
0.6 

2.1 
0.8 
0.6 

(1) Monte Carlo s tandard  error for ESL's of magnitudes 2.5%, 5%, and 10% are 0.25%, 0.35% 
and 0.47%, respectively. 

(2) Pooled root mean square deviation from the nominal 5% level. 
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