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be shown that for many linear 
i. BACKGROUND estimators, an estimator using 

multiple simple random samples can be 
For some users, a complex made almost as precise as the original 

sample design can limit the estimator. 
accessibility of the data and can even In particular, let d be a sample 
result in the incorrect use of a data from any invertible sample design, 
base. By using an inverse sampling such as a stratified design. Let T d 
algorithm, complex survey data can be denote an estimator calculated from 
converted into a resampling setting the sample d, and let T,i denote the 
where each sample is a simple random equivalent estimate calculated from 
sample (srs). An inverse sampling one simple random sample obtained from 
algorithm to draw a simple random the sample d using the inverse 
sample from a stratified sample was algorithm. Then if 
described in Hinkins, Oh, and Scheuren 
(1994). By resampling from a E(T, i lsample d) = Td, 
stratified sample, one can produce a 
simple random sample as if it had been and if k independent simple random 
selected from the original population, samples are chosen from the sample d, 
This approach is customer-driven; it then the estimator 
makes complex data bases more k 

l~T.i accessible. There are, however, two ~.. = 
serious drawbacks to this methodology. 

First, the resampling algorithm 
may be computer intensive. This has variance 
difficulty becomes less of an obstacle 

Vat(T.1) - Var ( T d) 
every day, as fast, cheap computing = Var(T d) + 
becomes more and more accessible, k 

A more serious problem is that 
the power or the precision of the One can make the variance of T** 
resulting statistic may be seriously arbitrarily close to the variance of 
reduced, because of sample size the original estimator, Td, by making 
limitations. In the case of a cluster k large, i.e. by selecting enough 
sample of k clusters each of size M, simple random samples. More 
the size of the largest srs that can generally, one can show that this 
be selected is k. In the case of a result holds for vectors of estimates 
stratified sample with sample sizes nh, and their associated covariance 
the largest simple random sample that matrices. 
may be selected is of size min{nh}. By The simple random samples are 
subsampling from the stratified independent conditional on the 
sample, power is lost both by original sample d, but they are not 
decreasing the sample size, and by unconditionally independent. This 
losing whatever increase in precision makes the estimation of the variance 
was due to stratification. This of T** a problem. A method for 
difficulty may be overcome by 
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calculating unbiased estimates of the of using balanced repeated replication 
variance of T-** was also given in and having the form" 
Hinkins, Oh, and Scheuren (1994). 

Many important statistical t// = _~ 1 (~ij - Pi.P.j )2 
techniques, such as regression and -.~ b Pl.P.j 
contingency table analysis, were 
developed largely in an liD world. To where i/b is an estimate of the 
use these techniques in the setting of "effective sample size". When 
sample surveys, it is often assumed 
that the sampling process makes the b = ~__~ ~__~ 
observed random variables IID. ~ ~-~ ~-~ P/j ( l-Pij)^ 
Further adjustments are needed in 
complex survey settings and much then t'' is approximately distributed 
attention has been paid to the sample as a chi-square with one degree of 
design' s impact on linear and freedom. 
nonlinear statistics. In this paper, In this paper we consider an 
we consider the chi-square test of alternative approach of resampling 
independence based on a stratified from the stratified design to get a 
sample, and compare our method with sequence of simple random samples. 
the approach suggested by Fellegi These samples are conditionally 
(1980) and Scheuren (1972). independent, but unconditionally 

dependent samples. It needs to be 
2. THE PROBLEM determined how to combine these 

samples to test the null hypothesis, 
Consider a 2x2 contingency i.e. how to calibrate the test to 

table. Let Pij denote the proportion achieve the desired level. 
of the populatlon in cell ij. We want Suppose k simple random samples, 
to test whether the rows and columns each of size m, are independently 
are independent. If a simple random selected from the given stratified 
sample of size m is taken, then the sample. Let I and J denote the two 
usual chi- square statistic can be categorical variables of interest. 
calculated from the estimates, and Then we have k 2x2 tables showing the 

interaction of interest, IxJ. Or in 
t = ~ m (/~ij-~. ~P/'P'J)2 other words we have a 2x2xk table. 

i,j Pi.P.y Let K denote the dimension 
corresponding to the k simple random 

has an asymptotic chi-squared samples. Because each simple random 
distribution under the null sample is selected independently from 
hypothesis, the given stratified sample, each 

In stratified samples, and other sample must have the same expected 
complex surveys, the equivalent value for the IxJ cell estimates. 
statistic is not necessarily Therefore the IxJxK interaction must 
distributed asymptotically as a chi- be zero. Similarly the IxK and the 
square under H 0. If the chi-square JxK interactions must be zero. This 
statistic is computed from a complex means that the test of independence 
sample as if the sample design were between I and J can be done by 
srs, then entirely misleading results collapsing the tables over the 
may occur, variable K, i.e. by combining the k 

Alternative test statistics have simple random samples into one table. 
been proposed for use when the data (Bishop, Fienberg, and Holland, 1975.) 
come from a sample design other than If the overall sample size is large 
srs. In this paper we consider the enough , the Pearson test statistic 
approach suggested by Fellegi (1980) will be approximately chi-square with 
and Scheuren(1972) based on the idea one degree of freedom. (If the 
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Table I. Population Cross-product Ratios 

Populations 

Independent 

Homogeneous 

Nonhomog- I 

Nonhomog- 2 

Overall 

cpr 

1.0 

1.69 

1.69 

1.69 

Stratum 

i 

1.0 

1.69 

1.0 

1.0 

Stratum 

2 

1.0 

1.69 

1.0 

38.2 

Stratum 
3 

1.0 

1.69 

1.0 

1.0 

Stratum 
4 

, 

1.0 

1.69 

432.6 

1.0 
, 

minimum discrimination test statistic variables, represented by a cpr of 
were used rather than the Pearson chi- 1.69. In defining each population, 
square, then by hypothesis, the properties within each stratum are 
independent test statistics are considered as well as over the entire 
created that partition the information population. In the first case, the 
in the sample into additive pieces.) cpr is constant over all the strata. 

As k increases, the probability of This is referred to as the homogeneous 
rejecting the null hypothesis also case; the stratification has no 
increases. Therefore the test must be effect. In the other two cases, 
calibrated so that the desired level referred to as "nonhomogeneous", the 
(.05 in our case) is achieved. In the rows and columns are independent 
next section, two methods are (cpr--l) in each of three strata, and 
discussed for calibrating the test, in the remaining stratum the cpr is as 
i.e. for determining k, the number of large as necessary in order to make 
srs's to be selected, the overall cpr equal to 1.69. The 

four populations are summarized in 
3. A BRIEF OUTLINE OF THE SIMULATION Table I. 

For example, the "Homogeneous" (but 
The simulation compares the Fellegi not independent) population is 

statistic for testing independence generated with cell probabilities 

using stratified sample data to the P11-P22 =.28 and P12=P21 =.22 in each 
results using chi-square statistics stratum. In the "Nonhomogeneous 
from multiple srs's drawn from the population #I", the first three strata 
same stratified sample. The are generated with Pij--" 25 in all four 
comparisons are made over four cells and the last stratum is 
populations with varying patterns of generated with cell probabilities 

"dependence" between the two P11=P22=.48 and PI2=P21=.02 
variables. The measure of the Two stratified sample designs are 
dependence is the cross-product ratio considered, each with a total sample 
(cpr). size of n=156. The sample sizes and 

Each population is defined with the sampling rates, by strata, for 
four strata, with population sizes each design are: 
1377, 553, 678, and 436. All 
population 2x2 tables are generated Design A Design B 
with marginal probabilities fixed at Strata n h Ph nh Ph 
.5. The first population considered 
is the population satisfying the null 
hypothesis, namely independence 
between the two variables. 

The other three populations are 
generated with dependence between the 

I 39 .028 I0 .007 
2 22 .040 I0 .018 
3 40 .059 20 .029 
4 55 .125 116 .266 
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Therefore the largest simple random 
samples that can be selected are m-22 i _ i~ Nh(Nh-nh) 
for Design A, and m-10 for Design B. ne~ N2 nh-i 

From each population generated, 
i000 stratified samples are drawn for The second method uses the 
each design. The Fellegi test of independent population to determine 
independence is made for each the value of k which results in an 
stratified sample and these results approximately .05 level test. That 
provide estimates of the level of the is, using the simulated independent 
test when the null hypothesis is true population, the power of the test 
and estimates of the power of the test under the null hypothesis is estimated 
under the three alternatives, using different values of k. For 

For each population and sample example, for each stratified sample 
design, 5 stratified samples are under design A, there are 700 srs's 
selected from the I000 in order to drawn, each of size 22. For each 
investigate the properties of the chi- stratified sample, combining the srs's 
square test statistic calculated from 7 at a time (k-7) results in i00 2x2 
resampled simple random samples. (The tables each with sample size k*m=154. 
intention is to draw 50 stratified For each table, the Pearson chi-square 
samples from the I000, but to begin test is made and the null hypothesis 
with only 5 are chosen.) For each of independence is either rejected or 
stratified sample, one can calculate not. There are 5"100=500 such tests. 
an estimated cpr: The estimated level of the test for 

^ ^ design A with k=7 is therefore the 
f = P11 P22 number of tests that reject the null 

P12 P21 hypothesis divided by 500. For each 
design, this was done for several 

The i000 stratified samples are values of k. 
ordered by their estimated cpr's and In this small preliminary test, the 
approximately every 200th sample is two methods give similar results. So, 
selected. (The very extreme values on for each design, the number of samples 
both ends are not included.) to combine, k, is set. For the 

From each of the 5 stratified samples from the alternative 
samples selected in this manner, population, k simple random samples 
simple random samples are drawn. For are combined, the chi-square statistic 
each stratified sample in design A, is calculated, and the test of 
700 simple random samples, each of independence is made. This results in 
size 22, are selected and for each estimates of power for this technique 
stratified sample in design B, 1500 to be compared to the power estimates 
srs's of size i0 are resampled, for the Fellegi statistics. 

Two methods are used to calibrate 
how many samples should be combined in 4. SIMULATION RESULTS 
order to give the correct level of the 
test. The first method estimates the The Fellegi Test 
effective sample size, neff, as in the 
Fellegi statistic, under the null For each population and sample 
hypothesis of independence, design, we have I000 results of the 
Population values of the Pij are used test of independence using the Fellegi 
and assumptions about the population statistic, with level equal to .05. 
marginal distribution have to be made. Table 2 shows the resulting estimated 
This is a very easy calculation to probability of rejecting the null 
make, especially with the simulation hypothesis, for each simulated 
assumption that the population population and for each sample design. 
marginals are all equal to .5, The last row shows the estimated level 
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of the test. The Fellegi test Table 3 shows the results using the 
statistic is achieving approximately second method of determining k, based 
the right test level; it rejects the on the simulated independent 
null hypothesis slightly more often population. 
than expected. 

The first three rows give estimates Table 3. Independent Population 
of the power of the test under the Combining srs's 
three alternatives, and the two sample 
designs. The two nonhomogeneous Design A Design B 
populations (NonH-i and NonH-2) were 
selected as populations for which the k level k level 
Fellegi statistic might not be as 

6 .079 4 .085 
effective. While there is some loss 
in power between the homogeneous 5 .069 3 .064 
alternative and the non-homogeneous 
alternatives, it is only a relatively 4 .054 2 .048 
small reduction. However the sample 
design has a large effect on the 
power. In design B, the test shows This indicates one should choose k=4 
much less difference in the or 5 for design A and k--2 or 3 for 
probability of rejecting the null design B. These results overlap the 
hypothesis when it is false compared results from the first method. 
to when it is true. The power under 
the alternative is very low. 

Table 2. Estimated Power of the 
Fellegi Test 

Population 

Homogeneous 

NonH- i 

NonH- 2 

Independent 

Design 
A 

, 

.312 

.293 

.291 

.058 

Design 
B 

.133 

.114 

.151 

.067 

Combining Simple Random Samples 

We chose k-5 for design A and k=3 
for design B. The following table 
gives the estimated power of the test 
under the three alternative 
populations, using the Pearson chi- 
square test on the combined simple 
samples. 

Table 4. Estimated Power Combining k 
S imp i e Random S amp i e s 

Population 

Homogeneous 

NonH- i 

NonH- 2 

A 

(k=5) 

.30 

.30 

.26 

B 

(k=3) 

.13 

.Ii 

.12 

Recall that for samples using 
Design A, each srs is of size 22; for The estimates of power using the 
samples using Design B, each srs is of inverse algorithm to get simple random 
size I0. As described in section 2, samples are based on only 5 of the 
two methods are used for determining I000 stratified samples used to 
the number of simple random samples estimate the power of the Fellegi 
that should be combined in order to statistic. However even in this 
have a .05 level test. Estimating the preliminary work, the estimates of 
effective sample sizes as in the power for the two methods are very 
Fellegi statistic, gives neff=121 for close. 
design A and neff-35 for design B. 
This would mean k-5 or 6 for design A 
and k- 3 or 4 for design B. 
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5. CONCLUSIONS AND FUTURE WORK the P..'s. We will be looking at the 
possibJility of using more srs's for 

The simulation needs to be estimating the Pi ~'s and then 
completed, by looking at the results estimating the effectlve sample size. 
for the simple random samples using 50 Further work and simulations are 
rather than only 5 stratified samples, needed to refine the methodology. 
But preliminary results indicate that 
this method of redrawing simple random 
samples from a stratified sample and REFERENCES 
using the simple Pearson chi-square 
holds much promise. Once the Bishop, Y.M.M., Fienberg, S. E., and 
(conditionally) independent simple Holland, P.W. (1975), Discrete 
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user, it is an easy, well known Practice, Cambridge, Mass. , The MIT 
procedure for the user. The Press. 
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will not be difficult to calibrate the on multistage samples, Journal of the 
test, either using a fairly simple American Statistical Association, 75, 
calculation or by simulating 261- 268. 
populations under the null hypothesis. 

The proposed method appears to give Hinkins, S. Oh, H.L, and Scheuren, F. 
power equivalent to the Fellegi (1994), Inverse Sampling Design 
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