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1. I n t r o d u c t i o n  

stage. Estimated variances for two-phase regression are 
provided in Section 5. Section 6 explains how the theory 
applies to domain estimation. Section 7 extends the 
preceding material through the concept of calibration 
groups. Section 8 provides a summary. 

Two-phase sampling is a powerful and cost-effective 
technique. Rao (1973) applied it to stratification, non 
response problems and analytic comparisons. Cochran 
(1977) provided some basic results for two-phase 
sampling in his book. Current related work in this area 
includes Breidt and Fuller (1993), Chaudhuri and Roy 
(1994), and Dupont (1995). Breidt and Fuller (1993) gave 
numerically efficient estimation procedures for three- 
phase sampling, in the presence of auxiliary information. 
Chaudhuri and Roy (1994) studied the optimal properties 
of  well known regression estimators used in two-phase 
sampling. Siirndal and Swensson (1987) provide a 
framework for regression estimation in two-phase 
sampling. Dupont (1995) provides additional regression 
estimators that can be viewed as alternatives to the 
procedures proposed in this paper. The use of two-phase 
sampling with administrative files requires some further 
extensions of the current knowledge in this area. Current 
efforts to extend the Generalized Estimation System at 
Statistics Canada require more unified and systematized 
sampling theory for two-phase designs. The current work 
is a further step in this direction. 

This paper provides some general theory for two- 
phase sampling for domain estimation. We allow arbitrary 
sampling designs at both phases of sampling. 
Furthermore, auxiliary information can be used at either 
phase of sampling. The auxiliary information comes as 
known auxiliary variable totals. This auxiliary 
information is incorporated in the estimation process by 
calibrating procedures or via regression fitting in each 
phase. The resulting estimator and its estimated variance 
can then be expressed in terms of; (I) the original 
sampling weights; (ii) the calibration factors that reflect 
the auxiliary data; and (iii) the observed data on the 
variable of interest. Variances are estimated via the 
Taylor expansion procedure. 

The paper is organized as follows. Section 2 sets up 
the notation. Section 3 explains how calibration is 
carried out in each of the two phases using a generalized 
least squares distance. Section 4 points out how the same 
estimators can be derived from a regression fit at each 

3 No ta t i on  

The population is represented by U = { 1, . . . ,  k, . . .  
, N }. A first phase probability sample s~ ( s~ £ U ) is 
drawn from the population U, using a sampling design 
that generates the selection probabilities X lk. Given that 

s ~ has been drawn, the second-phase sample s 2 ( s 2 =s 

U ), is selected from s 1 , with a sampling design with 

= . Note the the selection probabilities X2k Xkl, ,  

conditional nature of the second phase selection 
probabilities. From this point on, we work with weights 
in the estimation process. The first-phase sampling 

weight of unit k will be denoted as w ~k = 1 / X l k' and 

the second phase sampling weight as W2k - 1 / X k l , .  

The overall sampling weight for a selected unit 
~r 

k c s 2wi l lbewk  = WlkW2k. 

We next introduce the auxiliary information. Our 
general notation for the auxiliary vector is x and its value 
for the k th unit is denoted as x k" As in Siirndal, Swensson 

and Wretman (1992, chapter 9), we partition x k as 

X k -- ( X  k '  X2k ) "  Here, x l k is a vector for which 

information is available up to the full population level, 
and x:k is a vector for which information is available up to 
the level of the first sample only. Both types of  
information are important. More precisely, we assume 
that: 

(I) X lk is known for all units k c U, or that 

x is known and x observed for all 
U l k  l k  

k c s~; 

(ii) X2k is observed for all k ¢ s l ;  

(iii) Yk is observed for all k c s 2 • 

The following table summarizes our assumptions on 
the auxiliary information available for estimation. 
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Table 1" 

Set of units 

Population 

First phase 
sample 

Second phase 
sample 

Relationships between set of units and 
available data at different levels 

Data available 

Xlk" ke U } or ~]uxlk 

{ ( X l k , X 2 k  ) ' k e s 1  } 

{ ( X l k , X 2 k , Y k ) ' k E s 2  } 

As we will see in the next section, the presence of 
auxiliary information will produce calibration factors to 
be used in the estimation process. The first phase 
calibration factors are denoted as g ~k, while the second 

phase yields calibration factors denoted as g2k. The 
calibration with respect to both phases produces overall 

~r 
calibration factors denoted as g k .  As a result we will 

have" (I) first phase calibrated weights 

lglk - w l k g l k  for k c s l ,  (ii) overall calibrated 

* * * where weights V~k = Wk gk for k e s 2 ,  

W k * : W lk WEk is the overall sampling weight. 

Depending on the specification of the calibration, the g k 

can be expressed either multiplicatively as the product of 
the first phase and second phase g-factors, or additively as 
a linear combination of the first phase and second phase 
g-factors. We use the superscript "*" to denote overall 
weights that is, weights taking both phases into account. 
The superimposed symbol "-: ' denotes calibrated 
weights. 

3. Cal ibra t ion  wi th  g e n e r a l i z e d  least  s q u a r e s  d i s tance  

The auxiliary information available at each phase of 
sampling can be used to obtain improved weights by the 
process known as calibration. The improvement translates 
as smaller variances of the resulting estimates. We seek a 
set of "new" weights that lie as close as possible to a set 
of starting weights. Calibration requires the specification 
of a distance function measuring the distance between the 
starting weights and the new weights• Several distance 
functions have been proposed, see Deville and S~rndal 
(1992), Deville, S~irndal, and Sautory (1993), and Singh 
(1994). Any one of these distance functions could be 
used for the two phase calibration procedure that we now 
present. We concentrate on the generalized least squares 
(GLS) distance defined as follows for an arbitrary set of 

1 c (~7 - w  )2  
units k ¢ s :, _ ~ k k k where 

2 ' w 
k 

{ w  k ' k E s  } are the starting weights; {ff k ' k E s  } are the 

new calibrated weights; and { c k" k e s } are specified 

factors used to control the relative importance of the terms 
of the sum. We now minimize the GLS distance, 
successively in each phase and subject to restrictions, 
thereby obtaining a set of overall calibrated weights. 

(I) First phase calibration (from Sl to U). 

Use the first phase sampling weights {w l k" k e s 1 } 

as starting weights• Let { C l k ' k e s l  } be specified 

positive weights. Determine first phase calibrated weights 

~k by minimizing 

C l k ( ~  - W l k )  2 1 ~_, Ik 

2 s~ w 
lk 

subject to 

E ~ l k X l k  = E v X l k  

where the total ]~v x l k is known by assumption (I). Note 

that this calibration cannot involve information 

concerning x 2k because it is available only up to s~. The 

calibrated weights are ~ ~k = w ~k g l k with 

: - E  w x ) / r ~  -~ / c  g lk 1 + ( ~ v  X l k  ~ lk lk X l k  lk 

for k ~s 1 where 
/ 

T = E w l k X l k  X l k  " 
1 s I c lk 

(ii) Second phase calibration (from s2 to s t). 

(3.1) 

(3.2) 

We use as starting weights {ff lk w 2k" k C s 2 }" This 

is quite reasonable because they represent a set of possible 
weights for making estimates from the data 

{ } Y k " k e s 2  " Note that ~ ~ k W 2k = W k g ~ k ' where 
, 

w k = w l k  W2k and g l k  is given by (3.1). However, 

these starting weights do not profit from the information 

contained in the X2k-Values, available for k c s  2. The 

second phase calibration improves the weights by 
incorporating this information. We consider two different 
formulations of the second phase calibration. They 
correspond to two different GLS distance functions. 

Case A (Mul t ip l icat ive  g-factors)" Starting with the 
weights ~ ~ k w 2k' determine the overall calibrated 

weights ~ k by minimizing 

I ~_, C2k(Wk - "WlkW2k) 2 
- -  ( 3 . 3 )  
2 s2 ~ w 

l k  2k  

where {c 2k " k e s 2 } are specified positive weights, 

subject to the second phase calibration equation 
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* : E ff x (3.4)  E $  2 ~/~ k X k $1 lk  k 

and x k = ( X ' l k  , X 2k ) ° The weights resulting from 

this calibration define the overall calibrated weights. 
They are 

_ ,  ~ • a,t (3.5) 
Wk = l'Vlk W 2 k  g 2 k  = W l k  g l k  g 2 k  

where 

g 2 k X ~'s 1 +(F_,  ~ - s I lk  k 2 

for k c 8 2 ,  and 

W 2 k X k ) / ( T ~ 2  ) - l x k / C 2 k  

(3.6) 

• / 

T 2  M = ~ ,  w k g l k  X k  X k  (3.7) 
$2 C 

2k 

For X~k , (3.4) implies that 

u7 k x = }2 u~ x = ~ x In other 
s 2 l k  $1 l k  l k  U l k  " 

words, for the auxiliary vector x~,  the calibration carried 

out according to (3.4) will yield an overall weight system 

{~k} guaranteeing that the estimate of the known 

quantity F,t~ X~k is exact, which is a desirable property. 

For x 2k, calibrating according to (3.4) implies that 

• . Both sums are estimates E "vV k X : E 1 / ~ l k X 2 k  s 2 2k s t 

of the unknown x2-total ~ v  X2k" In other words, the 

calibration (3.4) assures that the first and second phase 

estimates of the unknown population total of  x 2 agree, 

which is also a desirable property. 
M 

As (3.5) shows, the calibration factors g ~k and g 2k 

operate multiplicatively here, resulting in the overall 
• M 

calibration factor gk = g ~ k g2k  • 

One can criticize the distance function (3.3) because 

the factors c 2k / U7 ~k W 2k are not necessarily all positive. 

Because g l k can be zero or negative, the terms of  (3.3) 

may not be all finite and positive, contradicting the 
notion of  distance. A modified GLS distance function is 
therefore considered in the following Case B. 

Case B (Add i t i ve  g- fac tors ) :  An alternative for the 
second phase calibration is to replace (3.3) by 

1 ~. C 2 k ( W k  - W l k  W 2 k  ) 2  
- (3.8) 

$2 * 
W k 

where {C2k 'kEs2  } are specified positive weights. 

Then the factors C Ek/W k are always positive. The 

overall calibrated weights resulting from minimizing (3.8) 
subject to (3.4) is 

, ,( A ) 
Wk = Wk g l k  + g 2 k  - 1 (3.9) 

where 

1 + W l k X k - F ' - -  V~ W 
1 $2 lk  2k 

for k ~ $ 2  with 

' 

X k X k / C2k 

(3.10) 

• / 

Ta 2 = ~, W k X k  Xk  (3.11) 
$2 C 

2 k  

A operate The calibration factors g lk and g 2 k  

additively here, and the overall calibration factor is 
* A 

g k  = g lk  + g 2 k  - 1 .  

Summarizing Cases A and B, the overall calibrated 
,,. * • • 

weights are W k = W k gk where 

, l k g 2 k  for the multiplicative case 
g k  = (3.12) 

A 
lk+ g2k  - 1 for theaddi t ivecase  

A 
Comparing the expressions for g ~  and g2k ,  we note 

that the only difference between them lies in the 
A 

weighting applied in the matrices T~ and T 2 . 

Having determined the overall weights w k , we use 

them to form the estimator of  Y given by 

1) : E$ 2 UVk Yk" (3.13) 

Remark 3.1" The auxiliary data in Table 1 can be used for 
calibration in several ways. 

Three different ways to specify the vector x k in the 

( )/ (ii) second phase calibration are: (I) x k = X / l k , X / 2 k  ; 

X k -- X 2k ; and (iii) x k = X l k " We comment on these 

possibilities, assuming that the first phase calibration (3.1) 
is carried out in any of  the three cases. The case (I) 

specification Xk = X k,X2k , recommended in 

S~irndal, Swensson, and Wretman (1992), capitalizes on 
all the available information. We call 

( /1 / ) / t h e f u l l v e c t o r .  X k = X k ~ X 2 k  

Both cases (ii) and (iii) disregard some available 
information. Case (iii) is unrealistic in that it entails 

observing the data { x 2k " k c s 1 }, then disregarding 

them. We do not further consider case (iii). The case (ii) 

vector x = x will be called the r e d u c e d  vector.  
k 2 k  

Second phase calibration on the reduced vector 

x k = x 2k can be carried out without significant loss of  

information if x 2k is a good substitute for x l k , as 

observed by Dupont (1995). By contrast, if x lk 
complements x 2k' then the full vector 

( )' x k = X / l k ,X /2k  should clearly be used in (3.4). 

Otherwise, significant loss of  information and increased 
variance may result. 

875 



The two phase calibration estimator viewed as a 
regression estimator 

Altemative expressions for the calibration estimator 
(3.13) are given in this section. The expressions link it 
with the regression estimator for two phase designs 
introduced in S~irndal Swensson and Wretman (1992, 

$r 
chapter 9). We show that when the weights ~k are 

determined by either (3.5) or (3.9), then the estimator 

(3.13), Y = 2~,, wk Yk' can be written alternatively as 

~r f:Ej~k+E w l k ( . ~ k - Y l k )  +E w k ( Y k - Y 2 k )  $1 $2 
(4.1) 

Here, Y lk and -V2k are successive regression 

predictions given as follows: 

/ B (4.2) Y l k  = X l k  1 

with 

Wk X l t ( Y k - f i 2 t )  -1 w l k X l k , P 2 k  + ~.$~ 

B 1 : T 1  $, Clk Clk 

where T~ is given by (3.2), and 
/ 

Y2k  = X k S  

with 

/ ~ 2  = 

(4.3) 

(4.4) 

r  lkXkYk forth° multiplioativoform 
s 2  C 

2k (4.5) 
, 

w k X k Y k for the additive form 
c 2k 

A where T~ and T 2 are given by (3.7) and (3.11) 

respectively. 
The argument showing the equivalence of (3.13) and 

(4.1) involves two phases of regression estimation. 

Suppose {y k " k e s 1 } were the observed y-data, and that 

auxiliary information on x l k is available as described in 

assumption (I) of Section 2. Then the regression 

estimator of Y = ]~uY k would be given by 

(4.6) 

where .~o /1 /~o with ~o  ~1 lk = X k 1 ' I = T ~ 
W lk X l k Y k  

C 
l k  

is the predictor of y k based the regression of y k on x l k 

^o ) / ~ o  where for k e s 1. Note that ~- 'u  Y l k = ( ~-'u X l k 1' 

~ , u X l k  is known by assumption (I). In (4.6), 

w y represents the (hypothetical) first phase 
s I l k  k 

Horvitz-Thompson estimator of Y. However, neither 

w y nor ~ °  ~$, ~ l k ~ can be computed because Yk is 

observed for the second phase sample only. A second 
step of regression estimation is thus necessary and is 

carried out as follows• In (4.6) replace the unknown 
]~ w y by its conditional regression estimator, 

s t l k  k 

W l k Y 2  k + E W k ( Y k  - Y 2 k  ) (4.7) E 
$1 $2  

where Y2k = x/kB2 with /~2 given by (4.5) is the 

predictor of Yk based on the regression of y k on X2k, known 

up to s l Further, we replace ~0 in (4.6) by the 
• 1 

regression estimator /~1 given by (4.3). With these 

replacements in (4.6), we obtain after some algebra the 
two-phase regression estimator given by (4.1). 

5. Variance Estimation 

The Taylorized variance estimator of the two-phase 

regression estimator I 7 given by (3.13), or equivalently, 
by (4.1) requires as a first step that we compute the 
residuals arising from the regression fits described in 
Section 4. When these residuals have been computed, the 
variance estimation proceeds as specified in S~irndal, 
Swensson, and Wretman (1992), Section 9.7. 

The two required sets of residuals are 
/ ,, / ,, 

e lk=Yk-XlkB1  for k c s  2 ande2k=Yk-XkB2 for k c s  2, 

where /~1 and /~2 are given by (4.3) and (4.5) 

respectively. 

The variance estimator for I 7 is calculated as a total 
of two components, one for each phase, according to 

v(I~) :~s2w2k~  (w 1~ Wl~-WlkQ)(glkelk)(gloelo) 

+ E E  s W l k W 1 Q ( W 2 k W 2 ~  - W 2 k ~ ) ( g 2 k e 2 k ) ( g 2 Q e 2 ~ )  2 
(5.1) 

where w = 1 /x  and w = 1 /x  with 
l k  l k  lkQ lk~  

Xlk ~ = P(k  andQcs 1 ) are associated with the first phase 

of sampling, W2k = 1/X2k and W2k~ = 1/X2k~' with 

"JT, 2k ~ -- P(k  andQcs2lsl) are their respective 

counterparts for the second phase. Note that for k= ~, we 
have w lk~ = Wlk, W2k ~= W2k in (5.1). 

M A 
The g-factorsglk, g2k = g k or g2k - g k are as 

defined in Section 3. Note that/~z is as in (4.5) with two 

different definitions depending on whether we are in the 
multiplicative case or in the additive case. 

6. Domain estimation 

The overall calibrated weights ffk obtained as 

described in Section 3 are also used to derive estimates of 
totals for arbitrarily specified domains• Let 

U d ( U  d ~  U)  be a domain of U. The y-total for the 

d o m a i n  U d is d e f i n e d  by 

876 



Y ( d )  : ~ - ' v , ,Yk  = ~ v Y t ( d )  with y k ( d )  = Yt,  if 

k e. U d and Y k  ( d )  = 0 if k q; U d 

Using the calibrated weights ~7 k , the estimator of 

Y ( d )  is 
. ,  ,k 

Y ( d )  : ~., w k y t ( d )  (6.1) 
$2 

The variance for the domain total estimator (6.1) is 
obtained by the same formula (5.1), provided Yk is 
replaced throughout the calculation with the domain 
variable value y k( d ). That is, elk and e 2 k become 

/ /I (d)  for k E s  2 e l k ( d )  = Yk ( d ) - X l k  1 

and 

/ B2 (d) for k ~ s 2 e 2 k ( d )  = Yk ( d ) - x k 

where /~ l (d)  and /~2(d) are calculated from the 

expressions (4.3) and (4.5) for /11 and /~2, replacing Yk 

by y k (d). 

7. C a l i b r a t i o n  g r o u p s  

We consider the case where the auxiliary data in Table 
1 also includes information about membership in 

arbitrary subsets U ,  PI = I ,  ... ,P1 forming a 

partition of  the population U or subsets s • 
lp2 ' 

P2 = 1, ... ,P2, forming a partition of  the phase one 

sample Sl . We designate such subsets as c a l i b r a t i o n  

g roups .  These calibration groups can be defined 
independently of one another. 

Let the vector of  observed auxiliary data be 

X k = ( X Ilk , X 12k )/" Information for the Q~ - 

dimensional vector x i k is available up to the level of the 
full population, while information for the Q2 - 
dimensional vector x 2 k, is available up to the level of the 
first phase sample only. Similarly, as in Section 2, we 
make the following assumptions: 

I) Xlk is known for all units k c U, or 

]~%, x ~k is known for Pl = 1 . . . .  , PI; 

ii) x k = ( x  Ilk, X/2k)  / is observed for all k c sl ;  

iii) X2k and Yk are observed for all k c s 2 . 

The g~-factor may be written as 

g lk  = 1 + "\[ZU,,a Xlk - ~ w $ l k  l p  ! 

for k E s , where 
lPl  

~. T -1 xl.___£k 
X l k  / lPl C lk 

(7.1) 

= ~ Wk X l k X  l k  

T l p l  Slpl Clk 

Combining the additive and multiplicative definition 

of  g2k into one expression, using (3.6) and (3.10), we 

obtain that the g2 -factor can be written as: 

g 2 k = l  +(~ ,  V ~ l k X k - ~ ,  V~ W X )" Sip 2 S2p 2 lk 2k k 

- -  for k ~ s 2 p  2 (T2p2)-I Xk  

C2k 
(7.2) 

where T : ~., w k I k X k X k ,and 
2 P2 s2p 2 C 

2k 

1 for the additive case 
I k  = g lk for the multiplicative case 

The calibration factor gk is given by (3.6) using as 

definitions for g lk and g2k  expressions (7.1) and (7.2) 

respectively. Note that the weights ff 1 k - w ~ k g I k and 

~ k  = W k gk  are calibrated group by group in each of 

the two phases. That is 
z 

UVlk = for =1 . . . P  X l k  ~'%~ X l k  Pl  ' ' 1 
l p  1 

and 

~ wk Xk = ]~ ff X forP2  =1 P2 
2p 2 81p 2 1 k k ' "'" ~ 

The resulting estimator of the total Y is 

f • , 

y, 

The estimated variance for I? given by (5.!..) requires the 
following residuals 

e l k  = Yk - X/lk ~ for k~ lp I S2p 1 
and 

/ /¢ for kc  " e 2k : Yk - X 2k 2P2 S2p2 

where the estimated regression vectors/~ l p~ and/~2p 2 are 

= T  -1 W l k X l k Y 2 k  +~, W k X l k ( Y k - ' f i 2 k )  

lPl lPl It,1 Cl k S2pl CI k 

(7.3) 
and 

: -' Y~ w k• / (7.4) 2p 2 T2p 2 "---82p 2 X 2k Yk C2k 

Applications to domain estimation proceed as in 
section 6. 

8. A p p l i c a t i o n s  

8.1 T h e  c a s e  o f  t h e  t a x  s a m p l e  a t  S ta t i s t i c s  C a n a d a  

One application of the approach currently in use at 
Statistics Canada is the two-phase design for sampling of  
tax records, as described in Armstrong and St-Jean 
(1994). 
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The first phase of this survey uses stratified sampling 
on tax records, which are then 
poststratified. These poststrata form the phase one 
calibration groups. A second phase sample is drawn from 
the first phase sample and re-poststratified, but by a 
different criterion. This second set of poststrata form the 
phase two calibration groups. 

The estimation for this design represents an example 
of crossing poststratifications. Furthermore, the overall g- 
factors used in the survey are of the multiplicative type. 
The x k-vector used in the phase two calibration procedure 

is the reduced one, x k = X2k. The first phase calibration 

factors g,k are obtained from (7.1). We have 
x = x = 1 forallk. 

l k  2k 

8.2 The Case of  the Canadian Survey Employment 
Payrolls, and Hours 

The Survey on Employment Payrolls, and Hours 
(SEPH) covers all sectors of the Canadian industries, and 
collects four principal variables: (I) salaries and payments 
to employees (denoted as x2; called payrolls); (ii) hours 

worked by employees (x 3 ; hours); (iii) number of 

employees (y~; employment) and (iv) summarized 

earnings (Y2; earnings). 

SEPH uses a stratified two-phase sampling design. 
In the first phase, a sample of payroll deduction accounts 
is selected using a stratified Bernoulli sampling design 
with sampling rates ranging from 10% to 100%. Those 
strata are defined by region. A region is made up of one 
or more Canadian provinces. 

In the first phase sample, the variables x 2 and x 3 are 

transcribed for selected units. In the second phase, a 
simple random sample is drawn. Data on the two 
variables y~ and y 2 are collected for respondents in this 

sample. In addition, classification by industry and 
province is recorded for sampled units, which makes it 
possible to derive estimates for industry-by-province 
domains, using the methodology described in this paper. 

9. Conclusions 

Our objective in this paper has been to develop the 
theory for two-phase sampling with regression estimation 
so that it can be readily incorporated into Statistics 
Canada's Generalized Estimation System (GES), a 
general purpose software that currently handles only 
single phase designs. We have shown how the theory is 
applied to estimation for arbitrary domains of the sampled 
finite population. 

Our theory extends the results in S~irndal, Swensson, 
and Wretman (1992), chapter 9, and in so doing, it relies 
on two notions important to the GES, as described in 
Estevao, Hidiroglou, and Sarndal (1995), namely, the 

ideas of calibration group and regression type. 
We have illustrated the theory with two specific 

examples at Statistics Canada, where the two phase 
methodology is currently used. The theory has potential 
application to any two phase sample design that uses 
auxiliary information. 

Two-phase designs are powerful and economical but 
up until now they have been underrated. The fact that 
they have not been so far used much in practice has been 
due in part to the lack of a unified theory and appropriate 
software. This work should open the door for a more 
extensive use of two phase designs in statistical agencies. 
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