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0. INTRODUCTION It is well known that 
in stratified and poststratified random sam- 
pling the most desirable configuration, the op- 
timal configuration, is given by: 

fopt NiS~ 
J i  - -  

w h e r e  fopt j~ is the fraction of sample units in 
the i-th stratum, N~ the number of popula- 
tion units in the i-th stratum, and S~ the stan- 
dard deviation of the variable under study on 
the population in the i-th stratum. Since the 
normalization in the denominator so that the 
sample fractions will add to 1 is easily sup- 
plied, for simplicity we write: fopt c¢ NiSi to 
describe the allocation. 

Other commonly considered allocations axe 

proportional: fi c( Ni, 

pseudoproportionah fi¢x NiS~, 

equal: fi cx 1. 

These are special cases of the two families: 

k-proportionah fi cx N~, 

k-pseudo: f i cx N~S~ 

where k denotes an arbitrary real number. 
In this paper we demonstrate some theo- 

retical relations between these and other sam- 
ple configurations and the optimal configura- 
tion. We propose a measure of distance from 
the optimal, a notion of dual configuration, 
and criteria for the s t ra tum fractions to be 
larger or smaller than the optimal fractions. 

Consider a population of size N divided 
into m strata  (m > 2) of sizes N1, ..., Arm. A 
variable X is defined on this population. As 
usual, a sample of size n is drawn from the 
population, consisting of n~ units, ..., n,~ units 

from the respective strata (n~ __ 1 for each i), 
and the value of X is computed on each unit. 
Two estimators of the population mean of X, 
X, axe of interest: the stratified mean ~,t and 
the poststratified mean ~p,t, both given by the 
same formula: 

m 

j=l  -~'- Xj. 

1. DUALITY Two allocations {fi} and 
{gi} are said to be dual provided 

figi ¢x (fopt)2 for all i. 

If the first allocation {f  i} is given, and NiSi 
is known for each i (up to a common scale 
factor), then {gi} is completely determined. 
It is given by" 

gi-- 

fopt )2 (-i 
f~ 

lj 

for each i. We sometimes indicate the config- 
uration dual to {fi} by {f~}. 

The optimal configuration is of course pro- 
portional to the s t ratum-by-stratum geomet- 
ric mean of a configuration and its dual. In 
this sense it is a configuration intermediate be- 
tween {f~} and {f~}. 

PROPOSITION 1: 
i) The dual of a dual configuration is the 

original. 
ii) The optimal configuration is self-dual. 
iii) The variance of the stratified mean for 

fixed sample size is the same for a configura- 
tion and its dual. 

iv) The conditional variance of the post- 
stratified mean, where the condition is a given 
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configuration and sample size, is the same for 
a configuration and its dual. 

PROOF: We omit proof of i) and ii). 
Note that 

v (~., ) = v ( ~ N~ _ N} ,~ S~ 
-~-x~) = Z - ~ ( 1  - N)n '~.  

J J 

1(~ N~ (//,t)2 1 N~ 
: -  ) - ( Z  

n j j fj N j "N" 

where N j S j  -- f ~ r ' t ( E  ~ N j S j ) .  The part that 
depends on the configuration is: 

(f7 ')~ 

Replacing fj by fd in this, we get" 

(z"): 

- ~  h "  .7 

Since the conditional variance of Ywt equals 
the variance of ~,t, this establishes both iii) 
and iv). Q. E. D 

By Proposition 1 dual configurations give 
the same variances in stratified and poststrat- 
ified sampling. Thus, for first-order statistical 
purposes (when higher moments are neglected 
as they usually are), in the settings where ~u 
and ~pu are unbiased estimators, dual configu- 
rations having the same sample size are equiv- 
alent. 

PROPOSITION 2: 
dual allocations, then 

If {f~} and {i f}  axe 

fopt >_ min(fi, i f )  for every i; 

and there exist at least two strata in which 

max(f, ,  fi ~) >_ fort >_ min(f~, f~). 

PROOF: Suppose f opt < min(f~,f~) for 
some index i. Then (fi°Pt) 2 < f i f ~  = 

opt )2 
(', (f,i,,, )~ 

fi( 'i < 1 By (,7,)2), and hence ~ j  fj 
Ej Ij 

the Cauchy-Schwarz inequality, however, 
Ej  (fT')~ - 

fj - 
(Ej (fT')~ r:~.~ ' 

f~ )(Z~ h ) - -  ~ j ( ~ ) v / ? 7  = 1. 
If fopt > max(f~, f~) for all i, then 1 = 

• f o r t  is ~ f/v, > ~ ]~ _ 1 So at least one ~ 
intermediate. If only one is, then 1 -  f o r t  = 

fopt 
E j ~ , f ~ P t  > E . ~ . , h  -- l - f ,  and f, > j ,  . 
But a similar argument shows that f~ > fopt, 
and this contradicts the argument of the first 
paragraph. Q. E. D. 

2. AN EXAMPLE: THE k-PSEUDO 
ALLOCATIONS For a real number k let {f~ } 
denote the k-pseudo allocation: f ~  cx N i S ~ .  

Then the dual of {f~ } is evidently {f~-k }. In 
this case we can refine Proposition 2. 

PROPOSITION 3: Let - o c  < k < 1. 
i) If i denotes the stratum of largest vari- 

ance (or one of sufficiently large variance), then 

_ ~o~,> f~; 2 - k  > ai -- 

ii) If i denotes the s tratum of smallest vari- 
ance (or one of sufficiently small variance), 
then 

fk _> fort>__ f2-k. 

PROOF: The statement is clearly true when 
k = 1 since {f:  } - {.]'°Pt}. For real numbers 
p and q with q # 0, we can define an average 
Ap,q of the stratum deviations $1,..., Sm by: 

E~ NjS~ 

Since Av,q is an average - the q-th root of 
a convex combination of S I , . . . , S ~ ,  it is al- 
ways intermediate between the smallest and 
the largest of the numbers S~, ..., S,~. 
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The inequalities f~-~ > :ovt - Ji > f~ c a n b e  
rewritten as: 

N,S  N,a, N,S  
N,S  >- >- N S:" 

Rearranging terms and taking a (k-1) -s t  root, 
we find that these inequalities hold if and only 
if 

Si > maX(Al,x_k, Ak,l-k). 

A similar argument shows that f~ > font > 
f~-k if and only if 

Si < min(Al,l_k, Ak,l-k). 

Since the averages are intermediate, i) and ii) 
follow. Q. E. D. 

On the other hand, ifmin(Al,l_~, A k , l - k )  < 

S~ < maX(Al,l-k, Ak,l_k), then :opt J i  > 

max( f : ,  f2-~). Examples exist for any fixed 
k # 1 and any fixed m _> 3 with .,if°vt > 
max(f~, f~-k) for all but two strata. 

Note that for 0 < k < 1, Ak,l-k < A~,l-k. 

3. THE DISTANCE FUNCTION Two de- 
sirable properties in a function D({f~}) that 
would measure the distance from an allocation 
to the optimal allocation are that the function 
be nonnegative and that it have the same value 
on configurations that yield the same variance. 
From the proof of Proposition 1, it follows that 

D({f~}) = C ( ~  (fopt)~ 
, 1 ,  ..... ) 

where O is a function taking [1, c¢) into [0, c¢). 
It seems natural also to require continuity, strict 
monotonicity, and surjectivity. Thus candi- 
dates for G would include logarithms and func- 
tions of the form G(x) = a ( x -  1) b where a and 
b are positive constants. Here we take the sim- 
plest choice: 

D({fi})  = (~__, (font)2 
, f ) - l .  

PROPOSITION 4: The function just de- 
fined has the following properties: 

i) D({f~}) _ 0 and equals 0 if and only if 
{ / , } _  {font}; 

ii) D({£})  = D({g,}) whenever the config- 
urations {f~} and {g,} yield the same variance 
and, in particular, for dual configurations; 

iii) for a given population and sample size, 
the variance of the stratified mean on the con- 
figuration {fi} (or the conditional variance of 
the poststratified mean) is a strictly increas- 
ing and continuous function of D({f~}), given 
in fact by: 

= 

l( n . N + 
$ 

1 N~S?); D({f~} ) ) -  ~ ( ~ .  -~- 
$ 

and iv) D is a convex flmction of {f~ }, that is, 

D({Af~+(1-A)g,}) < AD({f~})+(1-A)D({g~}) 

for arbitrary configurations {f~} and {g,} and 
O < A < l .  

PROOF: We prove only iv). Regarded as 
a function defined on points (fl,. . . ,  fro) in the 
first orthant of R m, the Hessian matrix of sec- 
ond partial derivatives of D({/~}) is diagonal 
and positive-definite and this implies convex- 
ity. Q. E. D. 

An immediate consequence of iv) is the in- 
equality: 

D(i$f~ + (1 - A)g,}) <_ max(D({f~.}),D({g,}). 

If two experts disagree as to which configura- 
tion is best, choose a configuration that is a 
convex combination of the two proposed con- 
figurations and be guaranteed to do as well as 
or better than one of the two! 

Indeed, a natural path in allocation space - 
i.e., in the set 2" = {(fx, ..., fro) :0 < fi for all i, 
~-o fJ - 1 } - is the map" 

( ¢ o p t ,~ [ . . .L_ '~ s 

E~(I~ )(O,,, )" 
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This is a smooth curve with parameter s vary- 
ing from - o c  to oc and satisfies: 

f~(1) = f,, f~(O)-  fopt, f~(-1) - f~ 

and 

for all real numbers s and i = 1, ..., m, where 
( f  i} is an arbitrarily prescribed initial alloca- 
tion and {f a} is its dual. This trajectory sat- 
isfies" 

fi(s) cx (fopt)( f~pt)" , 
J i  

and has the distinctive property that 

D({f~(s)) )  - M ( s ) M ( - s )  - 1 

where M(s)  = ~ ,  f ~ p t ( ~ ) ~ .  The function 

D({f~(s)})  by inspection is an even function 
of s and is strictly increasing for s _ 0. So 
the trajectory for - 1  < s < 1 improves the 
variance over that  at s = 4-1. An intermedi- 
ate path between two configurations can be an 
improvement over both. One may be able to 
do better than both experts! 

5. THE k-PROPORTIONAL ALLOCA- 
TIONS In general, the s t ra tum variances may 
not be known to the sampling statistician, even 
if the s t ra tum fractions N, are known. Nonethe- iv 
less, rough information about these variances 
may enable one to choose a configuration that 
improves over the proportional. The situation 
presents both opportunities and dangers. 

PROPOSITION 5: i) If Ni (x S~ for some 
k > 0, then an allocation {f  i} with f~ cx N~ is 
superior to proportional allocation so long as 
l < j < l +  2 

ii) If Ni o¢ S (  k for some k > 0, then an 
allocation {f  i} with fi  o¢ N{ is superior to 
proportional allocation so long as 1 > j > 
1 _2_ k '  

PROOF" Using the notation of the last 
section for case i), we consider f i(s) where 

f i o¢ Ni and fopt x+ Ji (x NiSi = Ni . Then 

I" _ N 

and this represents an improvement over pro- 
portional (s - 1) for all values of s between 1 
and -1 .  

A similar argument applies in case ii). Q. 
E .D .  

PROPOSITION 6: An improvement in vari- 
ance relative to proportional results from an 
allocation fi c( N~ with k somewhat larger 
than 1 provided 

N,S? 
y ~ _ ,  N, log(N,) < ~ .  Z i N i S i 2  log(N,). 

PROOF: Consider the function of k given 
by D({f~(k)}) where f~(k) (x N~ is k-propor- 
tional. If we differentiate this function with re- 
spect to k and evaluate the derivative at k - 1, 
it is easily seen that the derivative is negative 
if and only if the inequality above is satisfied. 
In this case increasing k beyond the value 1 
will result in a lowering of variance provided 
the increase is not too large. Q. E. D. 

If one has enough partial knowledge of the 
stratum variances to be confident that the in- 
equality in Proposition 6 holds, one may safely 
choose a k-proportional allocation with k larger 
than 1. Likewise, if the reverse inequality is 
known to hold strictly, one may safely choose 
a k smaller than 1. However, one may not vary 
k too far from 1 without a risk of disimprove- 
ment. Furthermore if equality or near-equality 
holds, then any change in k will immediately 
or shortly take one outside the convex region 
of reduced variance. In this case one is better 
off not to deviate from proportional. 
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