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ABSTRACT 

Let U denote the population to be surveyed and 
suppose we wish to estimate the total, M, of some 
characteristic, ~t, of the individuals in the population. 
Suppose a large sample, $1, is drawn and the 
measurement, y, is taken on each sample member where 
y = la + e and e is a measurement error. Further suppose 
a subsample $2 of S~ is drawn and, through some means 
(usually more costly to implement than the original 
survey) ~t is measured exactly for each individual in $2. 
The samples S~ and $2 are referred to as the first and 
second phase samples, respectively. In this paper, we 
consider a general methodology for using the data from 
both phases to estimate the total M as well as the mean 
and variance of the measurement error distribution 
associated with the observations, y. 

This article is a condensed version of a more detailed 
proceedings article from the 1995 Annual Research 
Conference. The reader is referred to that article (Biemer 
and Atkinson (1995)) for a more complete description of 
the methodological development. 
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1. INTRODUCTION 

Applications of two-phase sampling for evaluating 
the measurement error in survey data occur quite 
frequently in large scale national surveys. In some 
applications, the true values of the characteristics of 
interest are obtained through a reinterview of a sample of 
original survey respondents. These types of reinterviews 
usually employ survey methods which are much 
improved over those used in the original survey. For 
example, whereas the original survey may have used 
telephone interviewing, the reinterview may use face to 
face interviewing with better trained enumerators, and 
respondents may be strongly encouraged to consult their 
household records or other credible sources of 
information in responding to the survey questions. 
Further, the responses obtained in the reinterview may be 
compared with the original survey responses and 
discrepancies reconciled to produce a single, best 
response. In other studies, administrative records are 
used to produce a single, best response. 

Because reinterview and record check studies are 
expensive to implement, the size of the second phase 
sample is typically quite smal l -  say, 5-10% of the 
original sample. While these sample sizes may be 
adequate for estimating biases at the total population 
level, they may be inadequate for estimates for small 
subpopulations. In addition, the expense of the studies 
make it essential that the data from the second phase are 

exploited to their fullest potential. In the present paper, 
we present an integrated approach to the analysis of data 
from two-phase sample studies of measurement error. In 
particular, a general methodology is proposed for: 

• producing improved estimates of 
measurement bias, 

• estimating enumerator variance, 
• estimating response reliability, 
• producing unbiased estimates of M, 

and 
• identifying enumerators that contribute 

maximally to enumerator variance. 
In the next section, the components of measurement 

error that are the focus of our study are defined and some 
of the traditional estimators of these components are 
considered. In Section 3, the general methodology for 
estimating these measurement error components using 
two-phase sampling designs is discussed. This 
methodology is illustrated in Section 4 for an application 
to the Agricultural Survey conducted by the National 
Agricultural Statistics Service. 

2. MEASUREMENT ERROR COMPONENTS 

In this section, we define the measurement error 
target parameters to be estimated using a two-phase 
sampling design. To fix the ideas, we shall consider the 
case where $1 and S 2 are selected by simple random 
sampling without replacement (SRSWOR). 
Generalizations to stratified random sampling are 
considered in Section 3. 

Suppose the Phase 1 sample is partitioned into J 
groups of units denoted by Gg. g = 1,..., J corresponding 
to the J enumerators available for the survey. Thus, Gg 
denotes the set of units assigned to enumerator g. Then 
for i ~ Gg, assume the model 

Y~ = ~'o + ~(~t; + zg; (2.1) 
where ~t~ is the true value of the characteristic, Yo and y 
are constants, and zg~ is a random error term. The 
parameter Yo may be interpreted as a constant or absolute 
bias that is added to all observations, while y is a 
"proportional" bias term. As an example, suppose ~ is 
some measure of farm size (i.e., number of acres, cattle, 
tons of wheat, etc.). The magnitude of the error in Yi is 
often proportional to size and thus is appropriately 
modeled by Y lai. The term Zgi is the sum of two random 
components, dg and 6i , where dg is the "bias" or 
"enumerator effect" associated with enumerator g and 6i 
is an independent unit-level error. We assume that 

2 
dg ~ (0, o d) and 6j ~ (0, o8 ~t~ ) where k is a known 
constant. For the present study, we shall set k to 0; 
however, it is possible to estimate ~ from the data (see, 
for example, Wright, 1983). 
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Further assume the conditional covariance of the 

errors for i ~ G is given by g 
2 2 ~. / 

Cov (zxi, z x / i / [ i  ) = O d + Ob~t ~ for i = i  

2 /; / (2.2) = o d for i~i g =g 

= 0 for g / * g  

Under these assumptions, the measurement bias in the 
measure y defined as B = E(y~- ~t~ ), has the form 

B = Yo + ( Y - 1 ) M  (2.3) 

m u 
-1 where M = N ~ i~v  ~ti. The usual estimator of B is the 

difference estimator (Bureau of the Census, 1985; 
Hansen, Hurwitz, and Pritzker, 1964) given by either 

m m 
B12 = ~71 - ~2 (2.4) 

o r  

B22  = Y2 - bt2 (2.5) 
u 

where Y l is the average of the observations over S~, Y2 

and /~2 are averages of observations and true values, 

respectively, over $2. Biemer and Atkinson (1993) show 
that the difference estimators are not efficient in many 
survey situations and propose several alternative 
estimators of B using a model which is essentially (2.1) 

2 setting Y o = 0 and o a = 0. We will consider their 
estimators again in the context of (2.1) as well as several 
alternative estimators that arise from this more general 
formulation. 

Let E(. I /) denote conditional expectation given the 
unit i over the measurement error distribution and Var(.) 
denote the unconditional variance with respect to the 
sampling distribution. If we assume that Gg, g = 1,...,J 
are of equal size (say m) and that the f'mite population 
correction is ignorable, then Biemer and Stokes (1991) 
show that nlVar07~) = R-1Var(y~ti)[1 +(m-1)py] 
where R, referred to as the reliability ratio, is 

V arE (Yi I i) 
R = 

Var(Yi) 
~ 2 0 .  t2 , (2.6) 

2 
Oy 

2 = Var(ye) ' and the parameter, py, referred to as the Oy 

intra-enumerator correlation coefficient, is the correlation 
between two units within an enumerator's assignment. 
Under model (2.1), py is given by 

2 
0 d 

- (2.7) 
~.V 2"  f l  

The reliability ratio, R, is tl~e ratio of the variance of 
the "true score" for the characteristic -- viz., Var(yo +y~t~) 
-- to the variance of the observation, y~ and is a widely 
used measure of data quality. Estimation of R usually 
requires repeated measurements that are obtained under 
identical survey conditions and such that the 
measurement errors associated with each measurement 

are independent (between measurements) and identically 
distributed (see Biemer and Stokes, 1991). However, for 
the present approach we shall estimate R directly from the 
two-phase sample data. 

The intra-enumerator correlation coefficient is the 
ratio of the variance of an observation due to enumerators 
to the total variance of the observation. This parameter is 
widely used in measurement error studies to describe the 
degree to which the quality of interviewing varies across 
enumerators (see for example, Groves, 1989). A large 
estimate of py indicates that large enumerator biases (dg) 
are present in the data. To identify which enumerators 
are most responsible for the large enumerator variance, an 
analysis of the dg is necessary. In what follows, we will 
provide estimates of py as well as the du associated with 
the J enumerators for the survey. 

3. ESTIMATION OF MEASUREMENT ERROR 
BIAS AND VARIANCE 

3.1 A Genera l  E s t i m a t o r  of  M e a s u r e m e n t  Bias 

In this section, the general methodology for 
estimating the measurement error parameters is described 
in the context of two-phase, stratified random sampling. 

Let U = {1,2,...,N} denote the label set for a 
population consisting of L strata, denoted by U~, h = 
1,...,L. A two-phase random sample (with simple random 
sampling without replacement in both phases) is drawn in 
each stratum with Phase 1 and Phase 2 stratum sample 
sizes denoted by nlh and n2h, respectively. Let S~ and $2~ 
denote the Phase 1 and Phase 2 samples in the h-th 
stratum. Let Yi denote the observation for unit i ~ S~h and 
let gi denote the corresponding true value which exists for 
all i ~ U and is known for all units i eS2h. 

A general estimator of response bias is proposed 

which encompasses the estimators considered in Biemer 

and Atkinson (1993), the general two-phase regression 

estimators of S~rndal, Swensson, and Wretman (1992) 

and a general class of unweighted model-based 

estimators. This estimator is/~G/N where 
/~G = I~ - l~I~ (3.1) 

where /~o is an estimator of the total Y:  ~ c v  Y~, for 

Y~=E(y~]i) and where 19[ G is an estimator of 

M = ~ c  v !~,, the population total of true values. In 

stratified sampling, these estimators have the form 

L 

YG = E YG, h (3.2) 
h=l and 

where 
^ 

YG, h 

L 

~ G  : E ~G,h 
h=l 

i~Sih ~ i iEUh i~Slh 
(3.3) 

is an estimator of Yh-~,~v~ Yi and 
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.,. (1) 
^0) ~ti +] E., - E 

= ~ + C M (2) (2) (3.4) 

is an estimator o f  M h = E i ~ u  ' ~t i . In the above 

f o r m u 1 a t i o n s g~ = P r [ i  6 Slh ] , 
, 
i = Pr[i 6 Szh [ i6Slh ] x rC~ , or, c~ are constants in 

the interval [0,1], and, for ieU, Yi is an estimator of Y~, 
,, (1) ,, (2) 

and /zi and /zi are estimators of ~t~. 
Note that for the traditional stratified estimators, we 

let C r = C M  = 0 ,  r~ = nlh/N h , and 7~ = n2h/Nh, 
yielding the familiar estimators ~t - ~ h  Nh Yh~ and 

lVt, = ~ h  Nh'~h~" Thus, when cr = CM = 0, /~a is the 

stratified difference estimator (Biemer and Atkinson, 
1993). 

The S~irndal, Swensson, and Wretman forms 

of I~a. h and 19Io. h are obtained from (3.3) and (3.4) 
by defining ~ and n~ * as for the traditional stratified 

estimator, setting cr = c u = 1, and using a linear 

regression equation to predict the unobserved Y;s and 
^ 

unknown ~t;s. As an example, the estimator B ss w 
considered by Biemer and Atkinson (1993) is obtained by 

assuming the model 

y~ : 13x~ + e, (3.5) 

for Y~ where 13 is a constant, ~ is an auxiliary variable 

known for all i e U, and e~ is an independent error term 
2 . This yields the having zero mean and variance o~x~ 

predictions ~i = xiY--lst/Xls t which, when substituted into 
(3.3), produces their general estimator of Y. To estimate 

M they assume the models 

Yi = Y~ti + 6i (3.6) 

for i e S~-$2, and 
~t, : ~x, + ~, (3.7) 

2 
for i ¢ S,, where y and a are constants, 6i ~ (0, o8 ~t~ ) 

2 )in (3.4) is ? yiwhere and ~ -- (0, o~ x~). Thus, ~2 -~ 

? =j72,,/~2,,. Similarly, ~I 1) in (3 .4) is  ~xi where 

- ~2,t/£2,," Thus, substituting these predictions in (3.4) 

yields their general estimator of M. 
Finally, to obtain the purely model-based forms of 

these estimators we set gi = ni =1 and cr = cM = 1. As an 
example, the estimator BM considered in Biemer and 
Atkinson (1993) is obtained under these assumptions 
using the models in (3.5), (3.6), and (3.7). 

In the current work mixed models are used to predict 
(1) a n d  ~ ( 2 ) ) .  the unobserved y's and/z 's  (i.e. Y i ' ~ i  ' i 

Details of generating the predictions can be found in 
Biemer and Atkinson (1995). 

3.2 Estimators of Enumerator Variance, Reliability 
and Enumerator Effects 

Estimates of enumerator variance, reliability and the 

enumerator effects are obtained as a direct result of the 

modeling process in general, and specifically the model 

to predict ~t~ with y~ in S~. For example the estimator of 

py defined in (2.7) is 
2 Oa 

- ( 3 . 8 )  
2 

Oy 

2 2 where 0 d is the estimate of o d obtained from fitting 

model (2.1), 

where 

and 

= ~ ~  2 --2 02 1 Nh ~ Y~ -Ylst + Y(£1st ) , (3.9) 
Y N h Hlh i~Slh 

L 2 
-- V ~ Sy h 

V(Ylst) _ 1 ~ N h ( N  h - n l h  ) ~ ,  (3.10) 
N 2 h nlh 

2 - ) 2 / ( n  - 1 )  (3.11) 
S y h -  E ( Y i -  Y lh lh " 

i6Slh 

We estimate R by 

where 

2 ? o  
/~ - ~' (3.12) 

2 
Oy 

= ~ ~  2 --2 
02 1 Nh E ~ti -- ~2st + V ( ~ 2 s t ) '  ( 3 . 1 3 )  

~t N h n2h ieS2h 

L 2 S~h 
v(~2,t ) _ I ~ Nh(N h -n2h ) ~, (3.14) 

N 2 h n2h 

2 - )2 / (n  - 1 ) ,  (3.15) 
S i g h -  ~ ( I J ' i -  IJ'lh 2h 

i 6S2h 

and ~t is the estimator of y, again from fitting the model 

(2.1) to predict ~t~ with y~ in S,. 

Finally, the enumerator effects are estimated by rig, 

the estimator of dg, once again from fitting model (2.1). 
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4. APPLICATION TO THE AGRICULTURAL 
SURVEY 

4.1 Description of the Survey 

The National Agricultural Statistics Service (NASS) 
annually conducts a series of surveys which are 
collectively referred to as the Agricultural Survey 
Program. The purpose of these surveys is to collect data 
for specific agricultural commodities at the state and 
national levels in support of the agency's estimation 
program. Each December in the years 1988-1990, 
reinterview studies designed to assess the measurement 
bias in the data collected by Computer Assisted 
Telephone Interviewing (CATI) were conducted in six 
states • Indiana, Iowa, Minnesota, Nebraska, Ohio, and 
Pennsylvania. The reinterview techniques employed in 
these three studies are very similar to those used by the 
U.S. Census Bureau (see, for example, Forsman and 
Schreiner, 1991). However, unlike the Census Bureau's 
program, the major objective in the NASS studies is the 
estimation of measurement bias rather than interviewer 
performance evaluation. 

As noted above, only Agricultural Survey responding 
units whose original interview was conducted by CATI 
were eligible for selection into the reinterview sample. 
The reasons for this restriction on sampling were 
primarily cost, timing, and convenience. However, a 
large proportion of the Agricultural Survey is conducted 
by CATI and, thus, information regarding Agricultural 
Survey measurement bias for this group would provide 
important information for the entire Agricultural Survey 
program. 

For the NASS reinterview studies, the interviewing 
staff consisted of a mix of field supervisors and 
experienced field interviewers. This interviewing staff, 
which was a separate corps of interviewers from those 
used for CATI, conducted face-to-face reinterviews in a 
subsample of Agricultural Survey units for a subset of 
Agricultural Survey items. To minimize any problems 
that respondents may have with recall, the reinterviews 
were conducted within 10 days of the original interview. 
Differences between the original Agricultural Survey and 
reinterview responses were reconciled to determine the 
"true" value. Considerable effort was expended in 
procedural development, training, and supervision of the 
reinterview process to ensure that the final reconciled 
response was as accurate as possible. For the most part, 
the wording of the subset of Agricultural Survey 
questions asked in the reinterview was identical to that of 
the parent survey. The reinterviewers attempted to 
contact the most knowledgeable respondent in order to 
ensure the accuracy of the reconciled values. 

In this report, only the 1990 data are analyzed. To 
conserve space, our presentation here is confined to five 

variables" cropland acreage, grain storage capacity, total 
land in farm, total hog/pig inventory, and winter wheat 
seedings. These variables adequately demonstrate the 
range of results observed for the entire set of variables we 
investigated. Table 3 presents the population sizes as 
well as the parent and reinterview sample sizes. 
Standard errors where computed using the two-phase 
bootstrap variance estimation method for two-phase 
samples described in Biemer and Atkinson (1993). As 
previously indicated, the variance-related parameter ~, 
was set to 0 in all the analyses. 

4.2 Estimation and Analysis 

Table 4 shows the results of fitting both the mixed 
measurement error models described in this paper and 
the "no intercept" models proposed by Biemer and 
Atkinson (1993) to these data. For comparison purposes, 
the second and third columns of this table give the results 
for the traditional difference estimator. Note that the 
difference estimator does not utilize an explicit model. 
Thus, the rows labeled "mixed model" and "no intercept 
model" do not apply to the difference estimator. For the 
mixed model, we defined the group-term in the model as 
the enumerator assignment. 

As was shown in Biemer and Atkinson (1993), 
substantial gains in precision over the traditional 
difference estimators are possible using a model 
prediction approach to bias estimation. The SSW 
estimators (both with and without an intercept) produced 
the estimates with the lowest standard errors for all five 
items studied. Furthermore, for all items except winter 
wheat seedings the two SSW estimators produced very 
comparable estimates. 

Note the huge bias estimates (and standard errors) 
that resulted from the mixed model-based approach for 
total hogs and pigs, winter wheat seedings and grain 
storage capacity. These are all items which are fairly rare 
(i.e., a low percentage of positive reports). Given the size 
of the estimates for these items relative to those produced 
by the other estimators, we believe that they reflect a 
model bias. However, further work is needed to fully 
understand these results. 

The estimator performance comparisons suggest that 
model-assisted predictions are generally better than the 
traditional approach. The model-based approach can be 
better, but tends to perform poorly for rare items. There 
were no uniformly best estimators employing either 
mixed or no-intercept models. However, for the 
variables considered in our analysis, the SSW estimator 
using a mixed model with random enumerator effects was 
frequently the most efficient estimator and seldom 
produced very unstable (as indicated by extremely large 
standard errors) or biased (as indicated by unusually large 
estimates of bias) estimates. 
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Table 4. Comparison of the Estimators of B Under No Intercept and Mixed Prediction Models 

Total Land in Farm 

Mixed Model 

No Intercept Model 

0.4 4.54 -1.1 

-0.9 

1.10 

0.82 

-1.9 

-5.2 

2.65 

1.95 

Total Hogs and Pigs 

Mixed Model -0.2 

No Intercept Model 

5.90 -5.2 

-5.3 

2.22 

2.39 

53.3 

-5.4 

11.06 

3.54 

Winter Wheat Seedings 

Mixed Model 

No Intercept Model 

6.6 8.03 -3.2 

-2.9 

4.84 44.4 

2.47 9.5 

27.48 

7.81 

Cropland Acreage 

Mixed Model -3.4 2.26 -0.3 

No Intercept Model -0.1 

1.27 

1.10 

2.2 

-6.2 

2.24 

1.63 

Grain Storage Capacity 

Mixed Model -2.4 3.26 -2.0 3.94 23.6 18.09 

No Intercept Model 1.2 2.81 -6.0 i 2.91 

In Table 5, we display our best estimate of the 
relative bias for the five agricultural variables and 
estimates of py and R which were obtained from the two- 
phase sample data using model (2.1). 

Table 5. Estimates of Bias, Enumerator Variance, 
and Reliability 

Total Land in Farm -1.1 0.001 .68 

Total Hogs andPigs -5.2 0.000 .89 

Winter Wheat Seedings -2.9 0.001 .58 

Cropland Acres -0.3 0.006 .98 

Grain Storage Capacity -2.0 0.000 .90 

There was very little evidence of enumerator 
variance in any of the estimates; however, cropland acres 
exhibited the largest intra-enumerator correlation 

coefficient ( [by =.006). Total land in farm and winter 

wheat seedings exhibited the lowest reliabilities at .68 and 
.58, respectively. Further investigation is needed to 
understand the source of the confusion for these items. 
However, if the enumerators are contributing to the 
instability of these estimates, they are doing so 
consistently since py is very small. The largest relative 
bias was found for total hogs and pigs (-5.2%); however, 
the enumerator variance is small and reliability is 
relatively high. This would indicate that systematic 
measurement error is more of a problem than random 
error for this item. Had a large py been estimated for 
some item in our study, the next step might be to examine 
the estimates of enumerator effects to determine the 
source of the enumerator confusion. 

We illustrate this approach using the estimates of 
enumerator effects for cropland acres, the item having the 
largest estimate of py. Figure 1 is a bar chart showing the 
frequency and range of enumerator effects for this 
variable, denoted by dg in model 2.1. These estimates can 
be used to identify enumerator assignments most 
responsible for enumerator variance; for example, the 
enumerators associated with values of dg at the tails of the 
distribution in Figure 1. In this way, efforts to reduce 
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enumerator  variance and measurement  bias can be 
directed to areas of  greatest need. 

Figure 1. Enumerator Effects for Cropland Acres 
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5. S U M M A R Y  AND C O N C L U S I O N S  

In this paper, a general estimator of measurement  
bias was proposed for two-phase sampling which 
encompasses the traditional difference estimators as well 
as a large class of  model-assisted and model-based 
estimators, including those considered by Biemer and 
Atkinson (1993). For the general estimator, the user 
specifies models for predicting the observations y i for  the 
population units that were not sampled in Phase 1 and for 
the true values, gi for the units not sampled in Phase 2. 
Virtually any model  may be specified so long as it is 
based upon information that is available for the units to 
be predicted. For predicting Y~, we used auxiliary 
information available from the sampling frame and either 
enumerator  or stratum indicator variables. The models 
for predicting gi were similar except that units in the 
Phase 1 sample also incorporated the observed yls  into 
the predictions of  g~. Our approach for estimating 
measurement  bias also produces, as a by-product of  the 
estimation procedure, estimates of  reliability, enumerator 
variance, and fixed enumerator effects. Thus, hypotheses 
regarding the magnitude of  measurement  bias as well as 
the major  sources of  the bias can be specified and tested 
using the two-phase sample data alone. 

In an application to the Agricultural Survey, we 
estimated these components for a number  of  agricultural 
survey characteristics and presented the results for five of  
these. Standard errors were estimated using two-phase 
bootstrap variance estimation (Biemer and Atkinson, 
1993). In these analyses, the model prediction approach 
out-performed the traditional difference estimator. 
However, among model  prediction estimators, there was 
no clear winner. The SSW, mixed model estimator 
performed very well generally and appeared to be quite 
stable over the characteristics we examined. Further, the 
mixed model  approach provides estimates of  reliability, 
enumerator  variance, and enumerator fixed effects as a 
by-product  of  the estimation process. 

In analyzing estimates of  measurement  error 
parameters,  characteristics are typically one of  the 
following types: a) little or no measurement bias, little or 

no enumerator variance, and good reliability; b) moderate 
or large measurement  bias, little or no enumerator 
variance, and poor reliability; and c) moderate or large 
measurement  bias, moderate or large enumerator 
variance, and poor reliability. For case (a), there is little 
or no evidence of measurement error in the data. For case 
(b), there is evidence of  measurement  bias that is most  
likely caused by the questionnaire or the respondent but 
is not influenced by the enumerator. In case (c), there is 
evidence of measurement bias that may be caused by the 
questionnaire or the respondent and that is influenced by 
the enumerator. In the latter case, an examination of  the 
individual enumerator effects would reveal which 
enumerators are most responsible for or whose 
assignments are most affected by enumerator variance. 
Thus, an analysis of the fixed enumerator effects can be 
used to direct efforts to reduce the measurement  bias. 

In a subsequent paper, we plan to consider alternative 
prediction models for estimating measurement  bias. We 
also plan to provide estimates of  the standard errors for 
the intra-enumerator correlation coefficient, the reliability 
ratio, and the enumerator effects using the two-phase 
boots t rap.  
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