RESULTS OF USING CHROMY'S ALGORITHM FOR THE ANNUAL SURVEY OF MANUFACTURES

Douglas Bond, Robert Struble, and Lynn Imel, U.S. Bureau of the Census
Douglas Bond, Room 2215 FOB-4, Washington, DC 20233

Key Words: Nonlinear programming, Optimum allocation, Poisson sampling

1. INTRODUCTION

The U.S. Bureau of the Census conducts the Annual Survey of Manufactures (ASM) to derive estimates of U.S. manufacturing activity between the censuses of manufactures. Estimates are published by state and industry group and at the U.S. level. These estimates include employment, payroll, value of shipments, capital expenditures, and inventories. Value of shipments is also estimated by product class. The ASM is the only source of these detailed data, which are needed by government and industry for analysis and planning.

The Census Bureau selects a new ASM sample every 5 years, using establishments in the most recent census as the sampling frame. (The census covers years ending in "2" and "7.") The sample is regularly updated for births and deaths of establishments. Zayatz and Sigman (1994) recommended that the Census Bureau use Chromy's algorithm (Chromy 1987) to allocate the new sample for 1994. This paper describes Chromy's algorithm and our experiences with it for allocating the 1994 ASM sample.

In Section 2, we describe the design of the ASM. We state the optimum allocation problem in Section 3 and outline the steps of Chromy's algorithm for the ASM in Section 4. Section 5 describes how we used Chromy's algorithm for allocating the 1994 sample, and how it compared with the approach that was used for the previous (1989) sample. We draw conclusions and make recommendations in Section 6.

2. ASM DESIGN

The sampling unit for the ASM is the establishment, one physical location where manufacturing is performed. Each establishment is classified in one 4-digit Standard Industrial Classification (SIC) industry (Office of Management and Budget 1987), based on the primary types of products it ships. The Census Bureau groups products into product classes (5-digit codes), and an establishment may ship products in more than one product class. When data are summarized, an establishment can contribute to estimates for only one 4-digit SIC code, but it may contribute to the estimates for more than one product class. For allocation of the 1994 ASM sample, there were 457 4-digit SIC codes and 1,773 product classes, a total of 2,230 estimation cells.

The Census Bureau uses Poisson sampling (Hajek 1964) to select establishments for the ASM sample (Ogus and Clark 1971). The units have independent, and generally unequal, probabilities of selection. The sample size is a random variable, with expected sample size

\[E(n) = \sum_{h=1}^{N} P_h, \]

where \(P_h \) is the probability of selecting unit \(h \), and \(N \) is the total number of units in the population or subpopulation of interest (for example, a state, 4-digit SIC code, or product class). This and other formulas in this paper can be used to derive estimates for subpopulations, with appropriate subscripting.

Under Poisson sampling, a total \(Y \) is estimated by the unbiased "reciprocal" estimator:

\[\hat{Y}_{RECIP} = \sum_{h=1}^{n} \frac{Y_h}{P_h}, \]

where \(Y_h \) is the survey value of \(Y \) for unit \(h \), and \(n \) is the number of sample units selected from the population or subpopulation. The Census Bureau incorporates the reciprocal estimator into a difference estimator to derive most ASM totals:

\[\hat{Y}_{DIFF} = \hat{Y}_{RECIP} + X = (\hat{Y}_{RECIP} - \hat{Y}_{RECIP}) + X, \]

where \(X \) is the total from the latest census, and \(\hat{Y}_{RECIP} \) or \(\hat{Y}_{RECIP} - \hat{Y}_{RECIP} \), is the sample estimate of the change.

\[\text{This paper reports the general results of research undertaken by Census Bureau staff. The views expressed are attributable to the authors and do not necessarily reflect those of the Census Bureau.} \]
since that census. \(\hat{Y}_{RECIP} \) and \(\hat{X}_{RECIP} \) are the reciprocal estimates for the ASM and latest census, respectively. The variance of the difference estimator is

\[
\text{Var}(\hat{Y}_{DIFF}) = \sum_{h=1}^{N} \left(\frac{1}{P_h} - 1 \right) D_h^2 ,
\]

where \(D_h \) is the change in survey values since the latest census for unit \(h \). This formula is used to define constraints for optimum allocation, which is discussed in the next section.

3. OPTIMUM ALLOCATION

Our goal in optimally allocating the ASM sample is to assign \(P_h \) values to units so that the cost function is minimized, subject to variance constraints on value of shipments. The cost function is

\[
C = C_0 + \sum_{h=1}^{N} C_h P_h ,
\]

where \(C_0 \) is a fixed overhead cost, \(C_h \) is the cost per sample unit, and \(N \) is the total number of eligible sampling units. The constraints are

\[
\text{Var}(\hat{Y}_{DIFF,\ i}) \leq V_i^* , \ i \in S
\]

where \(S \) is the set of 2,230 4-digit SIC codes and product classes. This means that variances by 4-digit SIC code and product class must not exceed target values \(V_i^* \). Additional constraints are that all \(P_h \) values must be at most 1 and at least some value such that sample weights \((1/P_h)\) are not too large.

To minimize the cost function, subject to the variance constraints, begin by assuming that costs for all units are equal. The cost minimization problem will have the same solution if \(C_0 \) is removed from the cost function. Then the cost function can be simplified to

\[
C = \sum_{h=1}^{N} P_h
\]

With the transformation \(x_h = 1/P_h \), the problem becomes: minimize

\[
f(x_1, x_2, \ldots, x_N) = \sum_{h=1}^{N} \frac{1}{x_h}
\]

subject to

\[
\sum_{h=1}^{N_i} (x_h - 1) \delta_{hi}^2 \leq V_i^* , \ i \in S
\]

where \(N_i \) is the number of eligible sampling units in the \(i \)th subpopulation (4-digit SIC code or product class). This is a nonlinear programming problem, where the objective function, \(f \), is convex, and the constraints are concave linear functions of the \(x_h \) values. Chromy’s algorithm is a convex programming method that iteratively seeks the optimum point \(x^* = (x_1, x_2, \ldots, x_N) \) that satisfies all the constraints, i.e., the unique point that minimizes \(f \). The constraints on the \(P_h \) values are satisfied after each iteration by forcing each \(x_h \) value to be in the range

\[1 \leq x_h < W , \ h = 1, 2, \ldots, N ,\]

where \(W \) is the maximum desired sample weight. Bond et al. (1995) constructed a simple example that illustrates the concepts of this section. The next section describes Chromy’s algorithm for the ASM.

4. CHROMY’S ALGORITHM FOR THE ASM

We use a modified Chromy’s algorithm, in which the Lagrange multipliers \(\lambda \) are computed as the product of a “univariate \(\lambda_i \)” and a “scaling factor.” This causes a more rapid movement towards the optimum solution than when the \(\lambda \) values are computed directly, as in the original version of the algorithm. The steps are:

1. Compute the univariate \(\lambda_i \), denoted \(\alpha_i \) for each 4-digit SIC code and product class:

\[
\alpha_i = \left(\frac{\sum_{h=1}^{N_i} \delta_{hi}^2}{V_i^* + \sum_{h=1}^{N_i} \delta_{hi}^2} \right)^2
\]

Values of \(\delta_{hi} \) are predicted with regression equations using value of shipments from the latest census.

2. Compute \(\lambda_i \):

 (a) If this is the first iteration, initialize the scaling factor \(b_i \) to 1. Then
\[\lambda_i = a_i b_i = a_i \]

Go to step 3.

(b) If this is the second or later iteration, compute the following value for each 4-digit SIC code and product class:

\[
C_i = \frac{\sum_{h=1}^{n_i} \beta_{hl}^2}{V_i^* + \sum_{h=1}^{n_i} \beta_{hl}^2}
\]

Note that \(C_i \leq 1 \) is equivalent to \(\text{Var}(\hat{Y}_{\text{DIFF},i}) \leq V_i^* \).

Compute updated scaling factors \(b_i'' \) (compute factors \(b_i' \) in an intermediate step), using \(b_i \) values from the previous iteration:

\[
b_i' = \begin{cases}
 b_i c_i^2 & \text{if } b_i \neq 0 \\
 1 & \text{if } b_i = 0 \text{ and } c_i > 1 \\
 b_i & \text{otherwise}
\end{cases}
\]

\[
b_i'' = \begin{cases}
 0 & \text{if } b_i' < \varepsilon \text{ and } c_i \leq 1 \\
 b_i' & \text{otherwise}
\end{cases}
\]

We used \(\varepsilon = 0.001 \). Then

\[\lambda_i = a_i b_i'' \]

3. Compute each unit's selection probability:

\[P_h = \sqrt{\sum_{i \in S_h} \lambda_i \beta_{hi}^2} \]

and force \(P_h \) into the interval \([1/W, 1]\).

Repeat steps 2 and 3 until the solution is "near" convergence. The criterion for nearness is that

\[\sum_{i \in S} \lambda_i |\text{Var}(\hat{Y}_{\text{DIFF},i}) - V_i^*| \leq K \]

This is a summation over all 4-digit SIC codes and product classes. When this criterion is met, the distance of \(f(x) \) from \(f(x') \) is no more than approximately \(K \) (this is based on a result from Causey (1983)). We set \(K \) at a level that is small enough to ensure that most variance constraints are satisfied, but large enough that computer time does not become excessive. Section 5 describes results of using \(K = 5 \) and \(K = 50 \).

Because some variance constraints will not be satisfied even though the nearness criterion is met, compute adjusted probabilities \(p_h' \):

\[p_h' = \frac{\max_j r_j}{\frac{1}{p_h} - 1 + \max_j r_j} \]

where \(r_j \) is the ratio of the variance to the target variance, by 4-digit SIC code and product class. Zayatz and Sigman derived this adjustment formula, which ensures that all variance constraints are met.

5. ALLOCATION OF THE 1994 SAMPLE

The budgeted sample size of the 1994 ASM was about 58,000 establishments. There were 371,000 establishments in the 1992 Census of Manufactures. The sampling frame for the 1994 ASM consisted of 231,000 of these establishments. The other 140,000 establishments were excluded from the frame because of their small size; their ASM data come from administrative records of other Federal agencies. The Census Bureau designated about 25,000 establishments as certainties \((p_h = 1) \): all establishments of very large companies, establishments with 250 or more employees, plants under construction, and manufacturers of certain computer products. The Census Bureau also set aside nearly 2,000 idle establishments for special sampling, and identified over 3,000 deaths and other deletions since the census. The remaining approximately 201,000 "noncertainty units" were then eligible for drawing a sample of about 33,000 units.

To specify our variance constraints, we set target coefficients of variation (CVs) for the 2,230 4-digit industries and product classes, ranging from 1 percent to 17 percent. More important groups (those with
larger values of shipments) were targeted for greater precision. We transformed the CV targets to variance constraints with the relationship

\[\text{Var} = (CV)^2 \text{(Value of Shipments)}^2 \]

We ran Chromy's algorithm several times, and adjusted the target CVs until the expected sample size from the noncertainties was a little under 33,000. See Bond et al. (1995) for details and final targets. We also specified that selection probabilities had to be in the interval \([0.02, 1]\).

We ran a series of SAS programs to: prepare data, including computation of predicted differences by 4-digit SIC code and product class, based on 1992 census value of shipments data; perform the iterations of Chromy's algorithm; check for constraints that were not met; and adjust probabilities so that all constraints were satisfied. Chromy's algorithm needed 18 iterations to satisfy the nearness criterion with \(K = 50\) (the approximate distance of \(f(x)\) from \(f(x')\) was 45). The expected noncertainty sample size was 31,258.

The SAS program that ran the algorithm took by far the most time of the series of programs: 12.0 hours cpu time on a VAX 9000 computer. We rewrote this program in SAS/IML (matrix language) and reduced the cpu time to 3.4 hours.

Forty-seven of the 1,773 product class constraints were not met before adjustment (see Table 1). That is, the ratio of the variance of the estimator to the target variance was 1.01 or greater for these product classes. Only two ratios exceeded 1.50, and the largest ratio was 2.11. Many product class constraints were more than satisfied. For example, 288 ratios were 0.9 or less, and 77 ratios were 0.1 or less. All 4-digit SIC code constraints were met (the ratio was 1.00 or less); 448 of the 457 constraints were more than satisfied. For example, the ratio was 0.1 or less for 190 4-digit SIC codes. When we adjusted the selection probabilities to meet all constraints, the expected sample size increased by only 60 units to 31,318.

The faster matrix version of our program enabled us to re-run Chromy's algorithm with a smaller nearness criterion, after we had selected the 1994 sample. We tried \(K = 5\). This required 41 iterations (7.8 cpu hours), and yielded an expected noncertainty sample size of 31,302. This met all 4-digit SIC code constraints, and all but 11 product class constraints. The adjustment to meet all constraints required an increase of seven units to 31,309, virtually the same total as for \(K = 50\).

We compared Chromy's algorithm with the approach that was used for 1989 sample selection. For 1989, the Census Bureau assigned probabilities proportional to each unit's measure-of-size, based on its sum of predicted squared \(D_h\) values. See Bond et al. (1995) for more details. For the comparison, we lowered the minimum probability constraint to \(p_v = 0.0000001\) for both methods. If we had kept the constraint at \(p_v = 0.02\), the two methods would have yielded different expected sample sizes (before adjustment to meet all constraints), making comparisons difficult. We ran Chromy's algorithm with the same nearness criterion as before, \(K = 50\). This criterion was not met after 30 iterations, so we chose the selection probabilities for which the distance was nearest \(50\). This occurred on iteration 20, when the distance was 52.9 and the expected sample size was 30,858 (see Table 1). Variance constraints were not met for 101 product classes at this point. The ratio of population variance to target variance exceeded 1.50 for nine product classes. Three constraints were badly missed: the ratio exceeded 10 for them. Five 4-digit SIC code constraints were not satisfied, including one 4-digit SIC code for which the ratio exceeded 10. The adjustment to meet all constraints required an increase of 1,035 units to 31,893.

Then we computed selection probabilities with the 1989 measure-of-size approach, with the same expected sample size as above (30,858). The measure-of-size approach was inferior to Chromy's algorithm, because 383 product class constraints were unsatisfied, and the variance ratio exceeded 10 for 40 product classes (see Table 1). However, all 4-digit SIC code constraints were met. We adjusted probabilities to meet all constraints, using the same method that we used after running Chromy's algorithm. The adjustment required a larger increase than with Chromy's algorithm: 6,200 units to a total of 37,058.

One strategy that the Census Bureau employed with the 1989 and earlier ASM samples was to compute probabilities with a reduced expected sample size (for example, 5,000 less), determine which constraints were badly missed, and supplement the expected sample size to meet as many constraints as possible. We tried a similar approach. We reduced the desired expected sample size for the measure-of-size method by 5,000 (to 25,858). Our subsequent adjustment to meet all constraints required an increase of over 11,000 units to 37,001. This was only a slight improvement over our initial allocation by the measure-of-size approach.
Table 1: Satisfaction of Variance Constraints by Three Methods, Measured by the Ratio of Variance to Target Variance

<table>
<thead>
<tr>
<th>Result</th>
<th>Chromy p_n ≥ 0.02</th>
<th>Chromy p_n ≥ 0.000001</th>
<th>Measure-of-size p_n ≥ 0.000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Product Classes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio ≥ 1.01</td>
<td>47</td>
<td>101</td>
<td>383</td>
</tr>
<tr>
<td>Ratio > 1.50</td>
<td>2</td>
<td>9</td>
<td>309</td>
</tr>
<tr>
<td>Ratio > 10</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>No. of 4-Digit SIC Codes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio ≥ 1.01</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Expected Sample Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before adjustment</td>
<td>31,258</td>
<td>30,858</td>
<td>30,858</td>
</tr>
<tr>
<td>After adjustment</td>
<td>31,318</td>
<td>31,893</td>
<td>37,058</td>
</tr>
<tr>
<td>Increase</td>
<td>60</td>
<td>1,035</td>
<td>6,200</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS & RECOMMENDATIONS

Chromy’s algorithm, followed by an adjustment procedure, enabled us to objectively assign selection probabilities to units so that all variance constraints were satisfied. It yielded an expected sample size that was over 5,000 units smaller than when the measure-of-size approach was used under the same conditions, a savings of tens of thousands of dollars in data collection costs to obtain comparable precision. We required less staff time and we could more easily study alternative constraints (minimum probabilities and target CVs). We recommend the continued use of Chromy’s algorithm for allocating the ASM sample.

Computer time is no longer a serious limitation for using Chromy’s algorithm, since we reduced cpu time by 70 percent by rewriting the original SAS program in SAS/IML. It is now possible to complete a run of the algorithm during the day, or to set the nearness criterion much smaller. However, we saw little improvement in allocation by reducing the criterion from K = 50 to 5.

Predicted squared differences in value of shipments are used throughout the ASM allocation procedure. If these predictions are not accurate, Chromy’s algorithm will not be as efficient as it could be. Therefore, research should be conducted to see how well the regression models predict squared differences, and other predictors should be investigated. Methods for dealing with outliers should also be studied. We have begun some of this work, by considering other predictors that make sense according to economic theory, and by investigating “resistant regression” and other methods for handling outliers. We expect to publish initial results later this year.

Before we ran Chromy’s algorithm, we designated about 25,000 units in the frame as certainties. This may not be the best approach. Different methods for choosing certainties should be studied, including letting Chromy’s algorithm perform all the selection of certainties by having it allocate the sample for the entire frame.

REFERENCES

