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1 Introduct ion  
It is often desirable to decrease the length of surveys, 
as there is typically a higher nonresponse rate and 
lower quality of response associated with lengthy 
surveys [1]. Furthermore, longer surveys may be 
more susceptible to nonignorable nonresponse [2]. 
Raghunathan and Grizzle [2] investigated decreases 
in the length of surveys through administration of 
split questionnaires in which each sampled individ- 
ual receives only some of the survey items from a 
complete questionnaire. 

Similarly, time constraints restrict the number 
of questions on educational tests such as the NAEP 
(National Assessment of Educational Progress) ex- 
ams. Whereas in many surveys a characteristic of 
respondents is estimated from their responses to a 
single item, in the NAEP exams an estimate of stu- 
dents' abilities in one area is derived from responses 
to a number of test items. Hence, in the latter case 
the limited length of the exam produces measure- 
ment errors with variance that decreases with the 
number of items given. 

The goal of the NAEP exams is to assess pop- 
ulation characteristics of students' abilities, rather 
than to report individuals' scores. The estimator 
of a population mean of students' abilities has vari- 
ance originating both from the finite sample size of 
the examinees and from the limited number of exam 
items given to each student. In a similar context 
Lord and others [3] have investigated the tradeoff 
between sample size and the number of items given 
to the sampled individuals. 

Unlike the tests considered by Lord in which stu- 
dents' abilities in a single area were estimated, the 
NAEP exams assess students' abilities in several cor- 
related skill areas, called subscales, within each sub- 
ject. The question of efficient designs we consider 
is also different because the number of sampled stu- 
dents is fixed, and the issue is how to allocate items 
measuring different subscales. Measuring one sub- 
scale accurately in a portion of the sample could po- 
tentially provide information on another correlated 
subscale measured less accurately in that portion. 
We investigate this information borrowing for split 
exam designs in which the number of items devoted 
to a subscale varies across students. The accuracy 
of population estimates derived from split exams are 

compared to those of a balanced design, in which the 
allocation of items among subscales is the same for 
every student. This problem is a generalization of 
the design question for split survey questionnaires 
to nonzero measurement errors. 

This paper is organized as follows: In Section 2 
we use examples from recent NAEP exams to illus- 
trate which types of designs result in information 
borrowing. In Section 3 we describe a model for 
the measurement errors similar to the NAEP models 
which enables tractable calculations of efficiencies 
for a wide range of designs. We discuss the maxi- 
mum likelihood estimates derived from this model in 
Section 4. The efficiencies of a class of bivariate split 
designs are compared in Section 5. Finally, exten- 
sions to other types of designs, including those mea- 
suring a larger number of variables, are discussed in 
Section 6. 

2 Information Borrowing  
We consider split exam designs in which a constant 
total number of items is assigned to each student, 
but the number of items allocated to each subscale 
varies across the students. This uneven distribution 
of subscale items is sometimes imposed by the na- 
ture of exam items and the length constraint of the 
NAEP exams. For example, long reading passages 
consume a large portion of an exam, allowing stu- 
dents receiving these passages to be tested on only 
one Reading subscale measured by the items associ- 
ated with the passage. 

In 1992 NAEP administered a split design Read- 
ing test to 8416 sampled students with two subscales 
called Literature and Information. A test form con- 
sisting of only items on the Literary subscale was 
given to 38% of the examinees, while a second form 
of approximately the same length containing only 
items on the Information subscale was given to a 
second group of examinees comprising 37% of the 
sampled students. The remaining 25% of the exam- 
inees were given a test form of the same length with 
half the items devoted to each of the two subscales. 
A goal of our study is to investigate how such a 
design compares to the corresponding balanced de- 
sign, in which all sampled students would be given 
the test form containing half its questions on each 
subscale. 
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In the split design the sample size of students 
receiving each subscale is smaller than in the cor- 
responding balanced design. However, in the group 
receiving only one subscale, that  subscale is mea- 
sured more accurately than in the balanced design. 
Moreover, since the two subscales are highly corre- 
lated, one might expect that  responses to one sub- 
scale may be used in the estimator of the mean of 
the other subscale, thus improving the accuracy of 
this estimator.  In order to address the question of 
whether these effects offset the decrease in sample 
size in the split design, we first examine the borrow- 
ing of information between subscales for two NAEP 
exams. 

2 . 1  N A E P  M o d e l  

The NAEP model used to estimate regression coef- 
ficients and their efficiencies is described in this sec- 
tion. We assume a random sample of n examinees is 
drawn from an infinite population of students. The 
i th sampled student is assumed to have true abilities 
0 T - [Oil, t9 i2 , . . . ,  Oip] in p related subscales. The 0i 
are assumed to be independent and normally dis- 
tributed with means 

E [~)ij] = x i .  fly. (1) 

f o r j  - 1 , 2 , . .  p, and i -  1 , 2 , . .  n. The (1 x l )  
vector of covariates for the i th examinee, denoted 
by xi, includes background traits that  are known 
for all examinees, and the (1 × 1) vector flj contains 
the regression coefficients for the j th  subscale. The 
variances and covariances, given xi, are 

Var(Oi j  ) - crjj (2) 
Cov(Oq  , Oik ) - crj k 

f o r i -  1 , 2 , . .  n. 
The true abilities ~)ij a r e  not directly observed, 

but instead are measured through students'  exam 
responses, where yijk denotes the response of the i th 
student to the k th question on the j th  subscale. It is 
assumed that  each item on the exam pertains to only 
one subscale. NAEP models the measurement errors 
by specifying the probability of a correct response at 
ability 0ij 

Pr(yijk = 11 oq) = (3) 
+ (1  - + exp(ajk(~Ti j  - 7jk))] 

for dichotomous questions. The item specific pa- 
rameters ajk and 7jk must be determined for each 
question, creating a complex likelihood function for 
each examinee. An analogous form is used to model 
the multiple possible responses to polytomous items. 

2.2 N A E P  D a t a  
A likelihood function for the regression coefficients 
can be caluclated from the normal model for the 0i 
and the measurement model specified in Section 2.1. 
The variance of the resulting maximum likelihood 
estimators (MLEs) for the flj originates from the fi- 
nite sample size as well as from the measurement 
errors of yijk.  Here we examine how much the vari- 
ances of the estimators of regression coefficients for 
one subscale are diminished by responses to items 
on a second subscale. 

The univariate estimator flj for the j th  subscale 
is the maximum likelihood estimator that  would be 
obtained if only the responses to items pertaining 
to the j th  subscale were used. A second estimator,  
which we call the bivariate estimator j~j, is the max- 
imum likelihood estimator obtained from responses 
to items on both the j th  subscale and on the addi- 
tional subscale. The bivariate-univariate efficiency 
for a single regression coefficient, defined by 

V a r ( f l j  ) (4) 
R -- V a r ( f l j ) '  

measures the relative information gain of the bivari- 
ate estimator over the univariate estimator.  When 
R attains its maximum value of 1.0, the bivariate 
and univariate estimators have the same variance, 
and no information is gained from using responses 
to items on one subscale in estimation of a regres- 
sion coefficient of the other subscale, whereas a small 
value of R indicates substantial information borrow- 
ing. 

The responses to the NAEP exams and the 
model described in Section 2.1 can be used to cal- 
culate these efficiencies. We performed these calcu- 
lations using a nine covariate regression model for 
a split Reading exam as well as a balanced Math 
exam. We report the efficiency of the estimated re- 
gression equation evaluated at the mean of the co- 
variate values. 

In the Reading exam described at the beginning 
of Section 2, the average value of R was 0.91 for 
the Literary subscale and 0.92 for the Information 
subscale. In the 1990 NAEP Math exam all 8790 
sampled students were given roughly two thirds of 
their items on the Numbers and Operations sub- 
scale and the remainder on the Measurement sub- 
scale. This design is balanced because all students 
received similar allotments of items on the two sub- 
scales. The efficiency of this exam is 0.99 for the 
Numbers and Operations subscale and 0.98 for the 
Measurement subscale. These efficiencies are quite 
close to 1.0, indicating almost no information bor- 
rowing. Although the Reading exam had little infor- 
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mation borrowing, it did have more than the Math 
exam, mainly because the Reading exam has a split 
design whereas the Math exam has a balanced de- 
sign. We introduce a simplified measurement error 
model in Section 3 which allows us to clarify this re- 
lationship between R and exam design, as detailed 
in Section 4. 

3 M e a s u r e m e n t  M o d e l  
The NAEP exams typically collect background in- 
formation forming over a hundred covariates and of- 
ten test more than two subscales, resulting in com- 
putat ional ly intractable calculations of efficiencies 
using the model of Section 2.1. In order to calcu- 
late the variances of estimators for a large number 
of potential  designs, we introduce a normal model to 
approximate the NAEP measurement error model. 

Instead of modeling the measurement errors at 
the item level, we use only the aggregate score yij 
from all items given to the i th student on the j th 
subscale. The assumption of additive measurement 
errors, denoted by 5ij, yields the observed score 

Yij -- Oij Jr- 5ij. (5) 

The measurement errors satisty 

E[6,s] = O. ( 6 )  

We assume every item for each subscale provides 
equal information, and thus the measurement ac- 
curacy of yij is determined by nij ,  the number of 
items given to student i on the j th subscale. The 
measurement  error variance is then 

V a r ( 6 i j ) -  7"o (7) 
nij  

where 7"o is a constant scale factor. The measure- 
ment errors are assumed to be independent of the 
8ij, and 5ij is also assumed independent of 6r8 un- 
less i = r and  j = s, resulting in independence of 
observed scores for different students. 

The total  variance, incorporating both sampling 
and measurement  error variances, is thus 

i _ V a r ( y i j )  O'jj -47 7-0 - --. ( 8 )  
nij  

This variance is not the same for all students on 
subscale j if the nij are not equal for all i. The 
covariances for all students are identical, and are 
denoted by 

i Cov(y i j  ) -  E j k -  , j ~£ k (9) Ej k -- , Yik crj k . 

The additional assumption of normally dis- 
t r ibuted 5ij results in a normal distribution for 

the yij, because the Oij are assumed normally dis- 
tributed. The approximating normal measurement  
error model is equivalent to the generalized least 
squares (GLS) equation • 

"Yl" "Xl  0 . . .  

Y2 0 X2 .- .  

o 

.Yp . 

• o • 

• o • . 

0 0 . . .  Xp 

" 3 1  " " 

~2 
+ 

. ~ P .  . f p .  

(10) 

The outcome variable yj in equation (10) is an 
(n x 1) column of the n observations yij for the j ,h  
subscale. The vector Bj denotes the I regression co- 
efficients for outcome variable yj ,  as in equation (1). 
Each covariate X j  is an (n x l) matr ix  containing 
the n rows of the examinees' 1 background variables 
xij used to predict the responses yj .  In the NAEP 
exams the covariates for each subscale are identical 

(x s - xi)" 
Xl  - X2 = ... = Xv. (11) 

The normally distributed random errors, given by 
the (n x 1) column vector ej for the n observed exam- 
inees, are the sum of population and measurement 
errors of subscale score yj .  Random error terms eij 
and erk for the j th and k th subscales are indepen- 
dent for different observations (i ~= r), while for the 
same observation (i - r), the covariances are given 
by (8) or (9). 

Univariate MLEs arise from treating the p re- 
lated equations of (10) as p separate equations. A 
separate MLE, flj, is computed for the j th  equation 
for each j.  In typical situations, multivariate MLEs 
are identical to the univariate MLEs, even when the 
outcome variables are highly correlated. However, 
Zellner [4] shows that  when equation ( 1 1 ) i s  not 
satisfied, the multivariate MLEs are more efficient 
than the univariate MLEs, and information borrow- 
ing between variables occurs. In this case, multivari- 
ate MLEs for regression coefficients of one outcome 
variable depend on observations of the other out- 
come variables, in contrast to when (11) holds. 

In Section 4 we show a second case in which 
multivariate MLEs are more efficient than univari- 
ate MLEs occurs when the random error terms of ej 
are not identically distributed for all n observations, 
even when (11) holds. This situation arises in split 
exam designs in NAEP, where the scores of a sample 
of n students in each of p subscales are observed with 
variances that  can differ across students, according 
to the number of items given. 

We consider the model with no regressor vari- 
ables so there is one coefficient for each subscale (l 
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= 1) in (10), which is the subscale mean: /3j - pj .  
The corresponding covariate Xj ,  a column contain- 
ing n l ' s  for each j ,  obeys (11). 

4 E s t i m a t o r s  and  t h e i r  Effi- 
c i e n c i e s  

In this section we show how the bivarate MLEs dif- 
fer from the univariate MLEs, as well as how the 
variances of these est imators differ when the mea- 
surement error variance is not constant across ex- 
aminees. For simplicity, we assume the E and 7"o are 
known throughout  so that  the effective variances of 
(8) and (9) are also known. 

Using the normal  measurement  error model in- 
troduced in Section 3, we have derived expressions 
for the MLEs ftj of the subscale population means 
#j as well as Var(/~j). 

Using the GLS formulation in the bivariate case 
(p = 2), we obtain the MLE 1 

f~ 2 - vi yi 2 Jr ~Zl l 
i=1 

where v i - Var(y i2 lY i l ) /  ~,~=1 Var(ym2]yml)  and 

Va (y, ly,1)- • . ( 1 3 )  

Equation (12) shows that  observations yil con- 
t r ibute to the es t imator  ft2 by adjusting each term 
in the sum according to the "regression coefficients" 

For example when ~1~ is large and Yil < ill, 

the observation yi2 is likely to be less than #2, so the 
es t imator  in (12) adjusts the i th term in the sum- 
mat ion  upwards towards the mean. Thus each term 
in the sum of equation (12) is likely to be closer 
to the mean than yi2, resulting in a more efficient 
es t imator  than the univariate est imator  /52, which 
is a weighted sum of the yi2 only. By eliminating 
ftl from (12) and expressing/~2 directly in terms of 
yil and yi2, it can be shown that  if we assign the 
same number  of i tems on the second subscale to all 
pupils, resulting in a single constant E/22 for all i, 
then/~2 is identical to the univariate est imator/52.  
Thus for this allocation of items ft2 does not depend 
on observations Yil. 

We obtain the variance of fL2 

Var(f~2) - f i  Ei22 1 + 
i=1 

1 ) 
(z~)~ x 

1 - z i ~ , 2  

V"-ar-r/~,; ,(14) 

1Note that  (12) is similar to the formula obtained with a 
monotone missing data  pa t te rn  in Little and Rubin [5]. 

where the term 

Cov( f t l ,  ft2) ~-~i%1 ~ Var(yl, x[yi,) 
1 

Varf t2  E i % l  Var(yixly,2) 
(15) 

with Var(yil[yi2) defined as in (13), is a weighted 
average of the ~-~,. When the E~2 are very different 2522 
from one another so as to produce sizable differences 
of ~ from this average value, equation (14) will 

differ substantial ly from the univariate result 

-1  

It can be shown that  in this 
case Yar( t~2)< Yar(~2),  which is consistent with 
the fact that  it2 is the best linear unbiased estima- 
tor. When E~2 is the same for all i, equation (15) 
yields Cov(f~l,f~2) yara2 = ~-~, and equation (14) reduces 

to the variance (16), as expected because the bivari- 
ate MLE reduces to the univariate es t imator  in this 
case. Therefore, unequal variances across examinees 
result in information borrowing from observations of 
one subscale to the bivariate es t imator  of the pop- 
ulation mean of the other subscale, and make this 
est imator  more efficient than the univariate estima- 
tor. 

We use equation (14) to calculate the efficiencies 
R defined in equation (4) for est imates of subscale 
means corresponding to the designs of the NAEP 
Reading and Math exams specified in Section 2. The 
population variances (2) and the measurement  error 
variances used in this calculation were derived from 
the NAEP data  for the respective exams, subject 
to the assumed form of equation (7). The normal  
model predicts R = 0.92 for the Literary and In- 
formation subscales of the Reading exam. For both 
subscales on the Math exam, the normal  measure- 
ment  error model yields R -  1.0 since the variances 

i ~j j  are constant across examinees. These normal  
measurement  model predictions are quite close to 
values of R calculated from NAEP measurement  
models and data  that  were presented in Section 2.2 
for these designs. This comparison demonstrates  the 
normal model 's  potential  utility in predicting effi- 
ciencies. 

We have obtained explicit expressions which ap- 
pear as natural  extensions to the bivariate case anal- 
ogous to equations (12) and (14) for the tr ivariate 
problem, in which case/52 can depend on observa- 
tions of both yil and yi3. We have also extended 
the calculation of the variance of the est imators  of 
the subscale means to the general mult ivar iate  case 
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Such cases are discussed in Section 6. 

5 Split  Designs 
We have investigated a class of designs for an exam 
testing two subscales in a total of n sampled students 
with three exam forms. One exam form, given to rn 
students, contains K items only on the first sub- 
scale, and has measurement error variance r on this 
subscale. A second form, given to a second group 
of rn students, consists of K items on the second 
subscale, and has a measurement error variance of 
r on this subscale, as seen from equation (7). A 
third form, given to the remaining n -  2m sampled 
students, has K / 2  items on each of the two sub- 
scales and thus has measurement error variance 2r 
on each subscale. The 1992 NAEP Reading exam 
design discussed in Section 2 can be approximated 
by the member of this class with m - .375n. 

Normal measurement model predictions for the 
variance of estimators of subscale means, given by 
equation (14) or (17), enable comparisons for this 
class of designs. The range of the class is covered by 
holding n fixed and varying rn from 0 to n/2. When 
m - 0, the design is balanced with all examinees re- 
ceiving the third form. Because the exam design for 
this class is symmetric with respect to interchanging 
the two subscales, and ~r:: "" cr22 for the exams con- 
sidered by NAEP, it follows from (14) that Var(p:) 
-~ Var(/)2). 3 Thus the various split designs can be 
compared to the balanced design (m - 0) through 
an efficiency defined for a subscale mean: 

Var(li~Pt) (18) 
E = Yar(f~aZ ) 

where/~;pt refers to the MLE of #2 derived from the 
split design, and ti~ az is the corresponding MLE for 
the balanced design. 

The efficiency E is plotted as a function of m / n  
in Figure 1 for a correlation between 0il and 0i2 

2Here E~ k denotes the ( j ,k)  th matrix element of the in- 
verse of the matrix given by equations (8) and (9). For p -- 2 
the (2,2) matrix element of (17) can be expressed as (14). 

3We defer until Section 6 discussion of nonsymmetric de- 
signs used when subscale population variances are unequal. 
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Figure 1" The efficiency E of the balanced design 
relative to the split designs for the symmetric bi- 
variate class with p -  0.88 and r / ~ : :  - 0.3. 

of p - 0.88 and a variance ratio of r /cr l :  - 0.3, 
the values of these parameters in the 1992 NAEP 
Reading exam.  It is seen that Var(~; pt) increases 
with m / n ,  and we have proven that this is true for 
a n y 0 < p <  1 a n d r / ~ : :  > 0 f o r 0 <  m < 0.5 [6] 
demonstrating that the balanced design is optimal. 

Figure 1 illustrates that at m / n  - 0.375, which 
is the design corresponding to the 1992 NAEP Read- 
ing exam, the normal measurement model predicts 
E - 1.31. This value is quite close to the value of E 
= 1.28 calculated directly from the NAEP data with 
the measurement model discussed in Section 2.1. 
This comparison, lending support to the normal 
model for efficiency predictions, confirms that the 
split design used by NAEP entails a loss in efficiency 
in estimating subscale means of approximately 30% 
relative to the balanced design. 

The multivariate MLE ~2 for split designs with 
discrepant E~2 is more efficient than the univariate 
MLE/52, as shown in Section 4. However, despite 
the occurrence of information borrowing in /52 for 
split designs and its absence in balanced designs, 
we have shown that any split design of the class 
considered here is less efficient than the balanced 
design. Thus information borrowing and the smaller 
measurement error variance in part of a split design 
are not great enough to compensate for the smaller 
sample size observed for each subscale. 

Survey responses can be modeled as having zero 
measurement errors, a limiting case of the above 
class of designs. The i th respondent 's answer to the 
j th  survey question is given by Yij -- Oij when the 
j th  question appears on this respondent's question- 
naire. Setting r - 0 in this class of designs cor- 
responds to a split survey assessing two questions 
where only (1 - 2 m / n )  of the respondents receive 
both questions. In this case when p - 0.88, equa- 
tion (14) yields E - 1.19 for m / n  - 0.375. The 
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somewhat smaller efficiency loss here than in the 
NAEP Reading exam is due to greater information 
borrowing resulting from the increased correlation 
between yil and yi2. When p = 0.95 the zero mea- 
surement error model produces E = 1.09 at m/n = 
0.375, indicating only a 9% loss in efficiency when 
only 25% of the respondents are given both survey 
questions relative to when all respondents are given 
both questions. These results are consistent with 
those of Raghunathan and Grizzle, who found that 
when the correlation between items is high, a split 
survey design is almost as efficient as the complete 
questionnaire [2]. 

6 D i s c u s s i o n  
We have extended our study to designs outside those 
in the class discussed in Section 5. For bivariate 
exams with ~rll ~ ~r22 split designs can be compared 
using an efficiency based on the largest eigenvalue 
~L of the Var(/5) matrix. We examined a class of 
designs testing n students with three exam forms 
each containing K items, given to ml, m2, and n -  
m l -  m2 students respectively. The first form has 
items only on subscale 1, while the second form has 
items only on subscale 2, and a third form contains k 
items on subscale 1 and the remaining K - k  items on 
subscale 2. Allowing ml,  m2, and k to vary through 
much of their allowable values, we found that for 
the values of p and cr11/~22 which we explored )i L 
is minimized for a balanced design (ml = m2 = 0), 
with k depending on ~11/~r22 so that more items are 
allocated to the subscale with greater crjj. 

We have examined numerous additional split de- 
signs measuring from two to six subscales, with dif- 
ferent numbers of forms and various allocations of 
subscale items. In all cases we investigated no split 
designs were more efficient than balanced designs 
consisting of the same length form. However, when 
population variances are equal, symmetric split de- 
signs with two or more subscales per form are not 
as inefficient relative to the corresponding balanced 
design as those with only one subscale per form, 
due to increased information borrowing. Thus in 
all cases explored in our investigation a balanced 
design is most efficient. Split designs can decrease 
respondent burden and perform almost as well as 
a balanced design when there are high correlations, 
small measurement errors, and properly chosen item 
allocations. 
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