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1. INTRODUCTION 

There exists a fairly extensive set of literature, 
beginning with Keyfitz (1951), on the problem of 
maximizing the overlap of sampling units retained in 
sample when redesigning a survey for which the units 
are selected with probability proportional to size. 
Procedures for maximizing overlap do not alter the 
unconditional probability of selection for a unit in the 
new sample, but condition its probability of selection 
on the initial sample in such a manner that it is 
generally greater than its unconditional probability 
when the unit was in the initial sample and less 
otherwise. The more recent approaches to the overlap 
problem which employ linear programming, such as 
Causey, Cox and Ernst (1985) and Ernst (1986), are 
also applicable to the analogous problem of 
minimizing the overlap of sampling units. 

Most of the previous work in this area has focused 
on the overlap of primary sampling units (PSUs) in a 
multistage stratified design, with each stratum in the 
new design representing a separate overlap problem. 
Typically, the motivation for maximizing the overlap 
of PSUs is to reduce additional costs, such as the 
training of a new interviewer for a household survey, 
incurred with each change of PSU. Generally, the 
number of sample PSUs per stratum is quite small, 
commonly either one or two, and most of the overlap 
procedures have the drawback that they are usable only 
in such situations. In fact, the earlier procedures that 
do not use linear programming, such as Keyfitz 
(1951), are not applicable at all to other than one PSU 
per stratum designs. The linear programming 
procedures are at least in theory applicable to very 
general designs, but the size of the linear 
programming problem commonly increases so rapidly 
as the number of sample PSUs per stratum increases, 
that these procedures generally cannot be operationally 
used for designs with other than a very small number 
of sample PSUs per stratum. 

Overlap procedures have also been used at the 
ultimate sampling unit (USU) level. For example, 
Brick, Morganstein and Wolter (1987) describe an 
application of overlap maximization to selection of 
post offices for a survey conducted for the Postal 
Service. The Bureau of Labor Statistics (BLS) uses 
such a procedure to select establishments from strata 

for their Occupational Compensation Survey Program 
(OCSP) (Gilliland 1984). In both applications the 
number of units selected per stratum is too large for 
linear programming to be a viable option. Brick, 
Morganstein and Wolter (1987) employ a Poisson 
sampling type of procedure to perform the overlap. 
Their procedure is quite simple and optimal. However, 
as is characteristic of Poisson sampling, the procedure 
does not guarantee a fixed sample size. The procedure 
used in OCSP is also simple and does guarantee a 
fixed sample size. However, the procedure is not 
optimal and is only applicable when within stratum 
sampling is done with equal probability. Furthermore, 
in certain circumstances the method produces 
conditional probabilities greater than 1, with no 
provision for adjusting for this situation in an unbiased 
way, that is without altering the new unconditional 
selection probabilities. 

In this paper we present a new overlap procedure 
with the following properties. It is computationally 
efficient and hence is usable even when a large number 
of units are to be selected per stratum. It guarantees a 
fixed sample size. It is applicable whether the units in 
a stratum are selected with equal or unequal 
probabilities. The procedure is unbiased in all 
situations, that is the unconditional selection 
probabilities for all units in the new design are 
preserved. It can be used whether it is desired to 
maximize overlap or minimize overlap. It can even be 
used to increase overlap for some units in a stratum, 
decrease overlap for other units, and to treat a third set 
of units in a neutral fashion. On the other hand, the 
procedure is not optimal. 

The procedure is presented in Section 2. Actually 
two procedures are presented. The first procedure, 
which we call the combined initial strata (CIS) 
procedure, computes the conditional selection 
probabilities for all units in a stratum in the new 
design together. The second procedure, the separate 
initial strata (SIS) procedure, is a simple modification 
of (CIS) in which the units in each new design stratum 
are partitioned into substrata, each consisting of all 
units from the same initial design stratum, with the 
conditional probabilities computed separately for each 
substratum. Neither procedure always produces a 
superior overlap to the other, although there are 
advantages to each which are discussed later, in 
Section 3. In addition, in Section 2 we demonstrate 
that when equal probability sampling is used in each 
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stratum, and overlap maximization is desired, then SIS 
reduces to the current overlap procedure used for 
selecting establishments in OCSP with two 
modifications, one which in all cases either increases 
the expected overlap or leaves it unchanged, while the 
other avoids the problem of producing conditional 
probabilities greater than 1. 

In Section 3 we present several examples to 
illustrate various aspects of the two procedures. We 
also further discuss, very briefly, some of the overlap 
procedures mentioned already and some additional 
overlap procedures. Finally, in the Appendix we 
provide proofs of the results of Section 2. 

Due to space limitations the entire Appendix and 
all but one example of Section 3 are omitted here. The 
complete paper is available from the author. 

2. THE ClS AND SIS PROCEDURES 

We begin with two, single stage stratified designs, 
with the sample units in each stratum selected with 
probability proportional to size. The designs will be 
referred to as the initial design and the new design. 
The universe of units for the two designs must have 
some, although not necessarily all, units in common. 
The sample units in the initial design have previously 
been chosen and we wish to select the sample units for 
each stratum in the new design with probabilities 
conditional on the set of sample units in the initial 
design. Let A denote a stratum of noncertainty units in 
the new design, and let B 1 , B 2 , B 3 denote the subsets of 
A consisting of units with which we wish to maximize 
overlap, minimize overlap, and treat in a neutral 
fashion, respectively, with respect to the initial sample. 
Include in B 3 any units that were certainty units in the 

initial design. Also include in B 3 any units that were 

not in the universe of units for the initial design, that is 
"birth units." For each unit in B 3 we simply set its 

probability of selection in the new design conditional 
on the initial sample to be equal to its unconditional 
new selection probability. For the units, denoted 
A 1 . . . . .  A M, in B 1 u B 2 we proceed to develop 
conditional selection probabilities for the new design 
as follows. 

Let p/', hi, i = 1 ..... M, denote the initial and new 

selection probabilities for Ai ,  respectively. Let ct 
denote the random subset of A consisting of all units 
that were sample units in the initial design. Let 
S = { 1 ..... M }, and let s denote the random subset of S 
consisting of those integers i for which we prefer to 
select A i in the new sample given tx, that is those i for 

which A i E ( B  1 n ct) t j  ( B  E ~ o~). Let Pi, i = 1 ..... M, 
• 1 denote the probability that i ~ s, that is Pi = Pi if 

A~ ~ B 1 , and Pi = 1 - p [  if ,4i ~ B E . Note that for each 

tx there exists a corresponding s. Let C denote the set 
of all such s. 

We seek a set of probabilities rr, is, i = 1 . . . . .  M ,  for 

selecting A i in the new sample conditional on the 

random set s, satisfying the following conditions: 

~_n,  i s>~_rr ,  i i f ~ : s ~ : S ,  (2.1) 
i~s i~s 

his  < ~ _ n  i i f ~ : s 4 : S ,  (2.2) 
i~S-s i~S-s 

Z ~ i s  = Z ~ i ,  (2.3) 
i~S i~S 

E ( n  is) = rc i, i ~ S ,  (2.4) 

where the expectation in (2.4) is over all s ~ C .  

Conditions (2.1), (2.2) arise from the goal of selecting 
as many units A i as possible in the new sample for 

which i~  s.  (2.3) is required since a fixed number of 
units is to be selected for the new sample from I. 
Finally (2.4) is simply a restatement of the requirement 
that the overlap procedure must preserve the 
unconditional selection probabilities in the new design. 
Note that (2.2) is a redundant condition since it 
immediately follows from (2.1) and (2.3). 

In Section 2.1 the basic CIS procedure is 
presented without the modifications necessary to insure 
that no conditional probabilities are greater than 1. (It 
is assumed, however, even in this subsection that all 
conditional probabilities are nonnegative.) In Section 
2.2 these modifications are presented. In Section 2.3 it 
is explained how CIS can be easily altered to obtain 
SIS. Finally, in Section 2.4 the special case of SIS for 
equal probability sampling within a stratum is 
presented. 

2.1 The Basic ClS Procedure 

To meet objectives (2.1-2.4) we proceed as 
follows. For each i ~ S we associate a positive number 
a i. As part of the process of obtaining his we add a i to 
ni only for those i~  s. In order to satisfy (2.3) we 

compensate for this increase by subtracting an amount 
bsn  i from each i ~ S  where, as indicated by the 

notation, b s depends on s, but not i. Thus rr, is takes the 
form 

if" is = if' i "t" ~ isai -- bs~, i ,  (2.5) 

where  Eis = 1 if i ~ s and ~,is = 0 if i ~ s. 
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To determine appropriate values for a i and b s we 
first observe that if (2.4) holds, then by (2.5), 

E ( n i s )  = ni + piai - E(bs)ff ' i  = h i ,  

and consequently, abbreviating d = E ( b  s) ,  we would 
then have 

a i = d n--t-i, i ~ S .  (2.6) 
Pi 

We seek the largest possible value of d in order to 
obtain a large value for (2.5) when i ~ s .  Now by 
(2.5), in order for re is to always be nonnegative we 

must have b s < 1 for all s ~ C, which combined with 
requirements (2.3), (2.5), (2.6) yields 

/ I ; i_  
d Z Z  Z n i < Z a i - b s Z n i = o .  (2.7) 

i~s i~S i~s i~S 

Now the largest possible d for which the left hand side 
of the inequality in (2.7) does not exceed 0 for any 
s ~ C  is 

Z ~ i  
i~S 

max ~ ~__t_~ 
s~C i~s Pi 

However, the denominator of this last expression is not 
generally, readily computable. Instead we compute, as 
will be explained shortly, an upper bound, denoted u c ,  

for the denominator and let 

d = i ~ s  
UC 

We then combine this relation and (2.6) to obtain 

ff, i Z TC j 

ai = j~s , i ~ S .  (2.8) 
PiUc 

Finally, we obtain b s from the equality relationship in 
(2.7) and (2.8), that is 

bs = i~s Pi . (2.9) 
UC 

It is established in the Appendix that with the specified 
values for a i and b s, (2.5) does satisfy (2.1-2.4). 

To compute u c ,  the remaining step in the 
procedure, proceed as follows. Let I t , t = 1 .. . . .  N ,  

denote the initial strata that intersect A, and let N t 

denote the number of units in I t. L e t  ntl denote the 

sample size for I t and let nt2 = N t - n t l .  For 
t = 1 ..... N, j = 1,2, let M tj denote the number of 

elements in I t t~ B j  and mb = min{ ntj, Mtj  }. Le t  s '  be 

N 2 

a subset of S of size ~ ~ mb such that s' consists of 
t=l j=l 

mb elements i for each tj,  with these elements 

corresponding to mb units A i in I t ~ B  j with the 

largest values of rc i / Pi. Then let 

UC=~_n~_ i . (2.10) 
i~s" Di 

Clearly u c > max ~ ~__t./. The reason that equality 
s~C i~s Pi 

may not hold is that it is possible that s '~  C. For 
p 

example, if mtl =2  for some t, and systematic 

sampling was used to select the units in the initial 
sample, then the two units in I t n B 1 with the largest 

values of n i /P i  might never be in the initial sample 
together, in which case s' ~ C. 

For use in the next subsection, we let 
D i = C n  {s: i ~ s}, i e S, and analogous to (2.10), 

proceed to explain how to compute a lower bound l q  

on min ~ r~j ,  from which it would follow that 
sEDi jes Pj  

ID~ l u  c < b  s i f  i ~ s ~ C .  (2.11) 

For t = 1 ..... N,  let mt~ = max{ M t l - n t 2 , 0 } ,  

mt~ = max  { Mt2  - ntl ,  0}. For i ~ S, j = 1,2, let 

~:~ = max {mt], 1} if a i ~_ I t ~ B j ,  and m~:b = m~: 

otherwise• Then for i ~ S, let s" i' be a subset of S of 
N 2 

size ~ ~ m / ' ~  such that for each td  for which 
t=l j=l 

A i q ~ I t ~ B  j there are m~ elements k in s[', 

corresponding to mt} units A k in I t ~ B j  with the 

smallest values of n k / Pk; while for the t,j for which 
A i ~ I  t n B j ,  we have i~s~' in addition to ~ :~-1  

elements k corresponding to units A k in 
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It n B j  - t A i l  

Then let 

with the smallest values of rc k / P k .  

l o i =  ~_~--~--. (2.12) 
k~sffFk 

2.2 Modification of ClS to Avoid Conditional 
Probabilities Greater than 1 

The procedure described above requires 
modification if n i + a i - b s ~  i > 1 for any i, s, with i ~ s, 
since then rCis > 1 by (2.5). To avoid obtaining a 
conditional probability above 1 we proceed to define 
rCis by the following recursive process. Let S 1 = S, 

p 

C 1 = C, and ~ il = ~ i. For k > 1 let 
p 

a~k, b~k, D~k, b[k, r~k, rk, S(k+l), C(k+l), n~(k+l) be 
defined as follows, aik for i e Sg, and bsk are obtained 

by substituting aik, bsk, s n S g ,  S k, Cg, re i" k for 

a i, b s,  s, S ,  C,  It, i in (2.8) and (2.9). Then define 

Dig = Cg n {s: i ~ s} and let: 

bitk = lDik , i ~ S k , (2.13) 
Uc k 

k-1 

1 - it, i - Z (aq - bi~rr, 'ij)rj 
j=l 

t~k = , i E S k , (2.14) ? p 

aik -- bik~ ik 

where the summation in (2.14) is understood to be 0 
for k = l ,  

r k = min{min{~k: i ~ Sk}, 1}, (2.15) 

Sk+ 1 = S k - {i: rik = r~ }, (2.16) 

Ck+ 1 = {S( '~Sk+l:  S ~. C} , (2.17) 

~ ( k + l ) = ( 1 - - r k ) I t i ' k ,  i E S k +  1 . (2.18) 

Note that in defining UCk, lDik, replace S, By in 

the definitions of u c ,  IDi in Section 2.1 by 

S k ,  B j  ~ Sk  , respectively. 

Finally, let 

k ' =  min{k: r k =1 OrSk+ 1 = O } ,  (2.19) 

k i = m a x { k :  i~_S  k,  k < k ' } ,  i ~ S ,  (2.20) 

is = ~' i "t" Z rk (~ isa ik  -- bsk if" iPk )" 
k=l 

(2.21) 

The general idea of this iterative procedure is that 
the definitions of r/k, r k together with the relation 

b[k < bsk for i ~ s n S k , (2.22) 

(which follows from (2.11), (2.13)) keep the his 

defined in (2.21) from getting above 1; while (2.18) is 
used to insure that nis > O. More details are provided 

in the Appendix where it is proven that 0 < ~ is ---1 for 

all i , s  and that (2.1)-(2.4) hold. 

Also note that if r 1 = 1 then (2.21) reduces to 

(2.5). 

2.3 The SIS Procedure 

SIS is an alternative to the CIS procedure, defined 
in the previous two subsections, for which the 
conditional probabilities of selection in the new design 
for units in I t ~ ( B  1 kJ B2)are computed separately for 
each t, instead of being computed for all units in 
B 1 u B 2 together. That is, the conditional probabilities 
are computed using (2.5-2.21) but with S n {i: A i F. I t } 

and s o { i :  A i ~ I t}  replacing S and s, respectively. 
Neither CIS nor SIS always yields a larger overlap 
than the other. However, each approach has a specific 
advantage over the other that will be discussed and 
illustrated in the example in Section 3.1. 

2.4 SiS with Equal Probability Sampling 

For overlap maximization, there is one situation 
where SIS provides a particularly simple set of 
conditional probabilities, that is the case when equal 
probability sampling is used within each initial and 
new stratum. We let m denote the sample size for A in 
the new design; m t denote the number of elements in s 

which correspond to elements in It; drop the subscript 

"1" from ntl,  Mtl  defined in Section 2.2; and replace 

the subscript "1" in r 1 with the subscript t to denote 

dependence on I t . Then, as proven in the Appendix, 
we have that k ' =  1, and for each i ~ S for which 
A t ~ . I  t , 

is = 1 + min{n t ,  M t} if i ~ s, 

1 

(2.23) 
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where 

mini ( M -  m) min {-n-t" -M--t } 1}. 
rt = [ m(  M t - max { M t - N t + n t , 1})' 

(2.24) 

The analogous formulas for the equal probability 
case for CIS are not presented, since we do not always 
have that k ' =  1 for CIS, and consequently CIS does 
not produce as simple a formulation as SIS in this 
case. 

The conditional selection probabilities defined by 
(2.23) and (2.24) differ from those currently used in 
OCSP in two ways. The current OCSP overlap 
procedure uses n t instead of m i n { n t , M  t } in the two 
places it appears in (2.23). When these two values 
differ, m i n { n t , M t }  produces a higher conditional 
expected overlap. In addition, the current OCSP 
procedure always sets r t = 1, which can result in 

conditional probabilities greater than 1, a problem 
avoided by (2.24). 

3. EXAMPLES 

In this section we consider three examples. The 
first example is an overlap maximization problem, in 
which the modifications of Section 2.2 to avoid 
conditional probabilities greater than 1 are not needed. 
The second example is an overlap minimization 
problem using the same data as the first example, 
which also does not require the modifications of 
Section 2.2. The third example is an overlap 
maximization problem in which the modifications to 
avoid conditional probabilities greater than 1 are 
required. 

Due to space limitations only the first example is 
presented here. The other examples are in the 
complete paper which is available from the author. 

3.1 Example 1 

In this example, using the notation of Section 2, 
M = 5, N = 2, with I 1 n a  = {A 1, A 2, A3}, 

12 n A = {A 4, A 5 }. We wish to maximize overlap with 

each of these units, that is B 1 = A and Pi = P[ for all i. 
One unit had been selected from each of I 1, 12 for the 

initial sample and one unit is to be selected from A for 
the new sample. The initial and new selection 
probabilities for each unit are given in Table 1. 

T a b l e  1. P r o b a b i l i t i e s  f o r  Uni t s  in E x a m p l e .  

1 2 3 4 5 

Pi .1 .2 .2 .3 .1 
n i .1 .26 .18 .36 .1 

a i =b.[1 .4 .52 .36 .48 .4 
~l 2.5 1.923 2.778 2.083 2.5 

/I;i{3,4 } .016 .042 .389 .538 .016 

ai .415 .54 .374 .46. .383 

bi 1 .769 1 .692 1 .833 

~l 2.659 2.643 3.29 6.4 3 

/1;i{3,4 } .031 .08 .429 .46 0 

~i{3} .064 .166 .475 .23 .064 

/I;i{3 } .031 .08 .429 .36 .1 

We first proceed to compute rqs for CIS for each i 

when a = { A 3, A 4 } and hence s = {3, 4}. We first 

compute u c .  We have M l l = 3 ,  M21=2,  

M12 = M22 = 0, nil = n21 = 1, and consequently 
' ' = {2,4} and mll = m~l = 1, ml2 = m~2 = 0. Therefore, s' 

then u c = 2.5 by (2.10). Then, from (2.8) and (2.9) we 

obtain b{3,4 } =.84, and the set of a i ' s  in Table 1. To 

compute b.:l, observe that since the sum of the P i ' S  is 

less than 1 for the first 3 units and for the last 2 units, 
then nt2 > M t l ,  t = 1,2,.  Consequently, mb' = 0 for all 

t, j .  Therefore, sff= {i} for all i ,  and hence bi' 1 = a i by 

(2.8), (2.13). We then obtain the set of ~l'S in Table 1 

from (2.14). Since r 1 = 1 by (2.15), the set of/I;i{3,4}'S 

in Table 1 can be computed from (2.5). 
Note that for this example, the probability of 

overlap conditional on s={3,4} using CIS is 

/I;3{3,4} +~4{3,4} 926, in comparison with an overlap 

probability of 71;3+71; 4 =.54 if the new units are 

selected independently of the initial sample-units. 
For the same example the conditional probabilities 

were also computed for SIS. The values of the 
corresponding variables, which are indicated by *'s to 
distinguish them from the variables in CIS, are given 
in the four rows following the /1;i{3,4} r o w .  We also 

have that u lc  = 1.3, U2c = 1.2 ; b1{3,4} =.692 and 

b;{3,4} = 1, where the first subscript in each of these 

variables indicates the initial stratum number. The 
conditional probability of overlap for SIS is .889, 
which is less than that for CIS. 

For other pairs SIS produces a higher overlap than 
CIS for this example. However, for each of the five 
singleton sets we have a higher overlap probability for 
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CIS. This is illustrated for the case s = {3} by the last 

two rows in Table 1, since /1;3{3} =.475 and 

/I;3{3} =.429. A key reason for the higher value of ~3{3} 

is that ~i{3} = ~i > ~i{3} for i ~ {4,5}. The equality part 

of this relationship occurs because as a result of SIS 
computing the conditional probabilities separately for 
each I t, it does not take into account that 3 ~ s in the 
computation of the conditional probabilities for units 
in 12 , a shortcoming not shared by CIS. 

For this example, the unconditional probability of 
overlap, that is the expected value of the conditional 
overlap probability over all initial samples, is higher 
for CIS (.473) than for SIS (.416). Independent 
selection of the new units in comparison yields an 
unconditional overlap probability of .216. 

These two procedures do not require that the 
initial sample units in I 1 and 12 be selected 
independently of each other. (In fact, as explained in 
Ernst (1986), previous use of an overlap procedure 
generally destroys stratum to stratum independence.) 
However, if this independence assumption does hold 
then the unconditional probability of overlap can be 
computed for any overlap procedure. For this 
example, the simple procedure due to Perkins (1970), 
which is limited to one unit per stratum designs, has 
an overlap probability of .443. This is the procedure 
used by the Census Bureau in the 1970s in redesigning 
the household surveys that they conduct, and which is 
still used by BLS for PSU selection for the Consumer 
Expenditure Survey. (Perkins' procedure is a 
generalization of Keyfitz's procedure to the case when 
the stratifications may be different in the initial and 
new designs.) 

The optimal transportation problem (a form of 
linear programming) procedure of Causey, Cox and 
Ernst (1985) has an overlap probability of .7. This is 
clearly optimal for this example since it is precisely the 
probability that at least one of the units in A was in the 
initial sample. This procedure can result in very large 
transportation problems, even for small number of 
units per stratum, and this author is unaware of its use 
in sample selection for any survey. A modified version 
of this procedure (Ernst and Ikeda 1994), which can 
result in dramatically smaller transportation problems, 
also yields an overlap of .7, although it does not always 
produce an optimal overlap. This procedure was used 
in PSU selection for the 1990s' redesign of the Census 
Bureau's Survey of Income and Program Participation. 
These last two procedures, unlike the other procedures, 
require that the sample units in the initial sample were 
selected independently from stratum to stratum. (The 
other procedures mentioned in this section require this 

assumption only to be able to compute the overlap 
probability, while these two procedures require it even 
to be able to meet the condition of preserving 
unconditional selection probabilities in the new 
design.) A third linear programming procedure (Ernst 
1986), for use when this independence requirement is 
not met has been used by the Census Bureau in the 
redesign of several household surveys in the 1980s and 
1990s. It yields an overlap of .61 for this example. 

In the complete paper a slight modification of this 
example is presented for which, unlike the original 
example, SIS produces a higher unconditional 
probability of overlap than CIS. This modification 
illustrates that SIS may yield a higher overlap when 
the values of ~i / Pi vary widely across initial strata. 
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