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Background: 

The relationship, Yi = bxi +eoxt v , can be very useful 

for modeling electric power data, especially when the 
variate of interest is the same as the regressor, but for 
a more frequent and more recent time period. For 
Energy Information Administration (EIA) electric power 
establishment survey data, using a variation of this 

model, where ~, is set equal to 0.5, has been shown 

in various empirical tests to be robust for estimating 
totals and variances. (Totals seem to be generally quite 
accurate, although variances seem somewhat less 
accurate, but generally good. Variance estimates, 
especially in the cases where variance is particularly 
small, appear to tend to be overestimates. See 
Knaub(1993) and Knaub(1994b) for more on this model 

with ~, set equal to 0.5.) The subject of this paper 

is to consider what happens with regard to this 
modeling when data are collected at varying levels of 
aggregation. 

Note that although the robustness of using y = 0.5 

in the above model seems quite obvious for tested EIA 
data, conversations with Raymond L. Chambers and 
Kenneth R. W. Brewer (Australian National University) 
indicate otherwise for other data sources. Perhaps 
survey data source 'types' may someday be identified 
which would best be modeled using given values of 
gamma, and/or estimated values of gamma, and/or 
perhaps other expressions for the nonrandom factor of 

error. (That is, expressions other than xiY might be 

used, and thus one would have corresponding 

regression weights with formats other than xi -2v , and 

therefore, the variance function would be something 

other than x~ Y .) Note that in this paper, the model 

error term is considered to be factored into the 

"nonrandom factor of error" and the "random factor of 

error" as shown, respectively, here: eoXi v = xiV . e0, 

K.R.W. Brewer noted that the e values are not actually 
errors, but residuals, and further, that there is a 
distinction to be made "....between randomness and 

homoskedasticity. The Cot are both random and 

homoskedastic (equal in variance). The (eo~(Xi) ~ are 

equally random, but they are heteroskedastic, and the 
variance function describes the way in which their 
variances differ from unit to unit." 

Just as a variety of distributions and/or parameters are 
used in engineering/reliability work, depending upon 
the nature of the data, so also might the nonrandom 
factor of 'error' expression change due to 
characteristics of the survey data that we may be able 
to use to categorize these data. This approach would 
seem to agree with Thompson (1995), when he 
advocated using a nonparametric data analysis (perhaps 
Exploratory Data Analysis) and a model to "iteratively" 
improve on each other. Here, if characteristics of the 
data could be used to help determine the model format, 
and then the data used to estimate one or more 
parameters, then test results could be compared to what 
would have been obtained using other expressions 
and/or parameter values. Thus, our 'rules' for guessing 
expressions might be improved. 

Introduction: 

In Brewer, et.al.(1977), the use of ~, as a "portable" 

parameter is discussed with regard to estimating 
variance from one survey based on another, where the 
.x-variate represents a cluster size. This has become of 
interest to me for use in electric power surveys, except 
that I am not using the cluster size as the x-variate. My 
current interest in this topic was peaked when it first 
appeared that future sampling of electric power 
generators may be feasible at the owner/operator level 
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as opposed to the plant/facility level. Each 
owner/operator may operate multiple plants. There are 
advantages to collecting data at the more aggregate 
level. The burden to the respondents and the 
processing time for preparing monthly reports should be 
substantially improved at that level, as well as 
smoothing the problem of occasional plant "down time" 
for maintenance, when addressing the generation of 
electricity. Although this scenario was the catalyst for 
this study, these data may not ultimately be collected 
this way. As a possibility, however, this is discussed 
in Knaub(1995). Regardless, this study has resulted in 
information that has possible significance to other data 
collections. 

Question: 

In the case of using a more aggregate data collection 
level, it may be important to determine if any 
information on a less aggregate data collection level 

might be of use, or vice versa. By relating a census 

to a previous census for a given variate and data 
collection level, and then repeating at another data 
collection level, could we form any conclusions that 
might be useful for imputation and/or sampling? (Note 

that the estimated value of y for a given data 

collection level, for a given variate, does not appear to 
be stable over time and/or subsamples. At least, that 
has been the experience for Nancy Kirkendall at the 
EIA, and my experience also, using various EIA data. 
In that sense, one does not see the kind of 'portability' 
that would allow use of one set of data to estimate 

• / , and another set to estimate totals and variances of 

totals, as would ordinarily be desirable.) 

Research/Results: 

Starting with real data, I have established empirically 
that when x represents the data of interest in the 
previous census, and y represents such data from a 

current census, the value estimated for ~, for the 

more aggregate level of data collection is usually closer 

to 0.5 than the estimated value of y for a less 

aggregate data collection level. Also, when I 
artificially generate data to follow the zero-intercept 

model, Yt = bx~ +eoX~V , and then study what happens 

when the x i values are clustered and a model of the 

same format is applied, I generally estimate ~, for 

this aggregate data collection level modeling to be 

closer to 0.5 than the original ~, value. (Therefore, 

generally, Ya ~ Ya , where Ya is the y value for 

the more disaggregate data collection level model, and 

is usually between 0.5 and 1.0. Further, yo is the 

estimated value for the more aggregate data collection 
level model.) 

When the clusters are composed of cases where the x 

values are nearly equal, the result is that y a = y a  . 

That is, if plants neighboring in size are covered by the 
same owner/operator, then the model applied to the 

more aggregate level should use about the same y 

value. Otherwise, y generally decreased for the 

more aggregate data collection level cases. Knowledge 
of this approximate upper bound might be helpful. 

Generally, estimates of ~, for our data are from 0.5 

to 1.0, and very often, from 0.7 to 1.0. However, 
estimates also appear to often vary for different ranges 

of x (Knaub(1994b)), so the x Y expression for the 

nonrandom factor of error, using EIA electric power 
data, is usually not very closely followed (in my 
experience). From Knaub(1993), different estimators 

for ~, yield approximately the same results when the 

model is strictly followed, but tend to disagree when 
the model is not so strictly followed. (Michael L. 
Cohen suggested a simulation study to test the 
sensitivity of departures in two particular measures of 
3' found in Knaub(1993), when varying degrees of 
model failure exist, but this has not been done at this 
time.) It seems that this model does have a lot to offer, 
but strict adherence to the error structure is sometimes 
unadvisable. If, however, as stated earlier, this model 
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is still basically used, but with y set equal to 0.5, 

performance is usually good for these EIA data. Thus, 

if the estimated value for y actually comes closer to 

0.5, this might be expected to further improve the 

usefulness of that value of y. 

If we let k represent clusters and q represent the 
members of the cluster, then let us represent a situation 

where Ya-'-Ya (i.e., when we have portability) by 

letting x~--x k for all q. (There may be other ways 

to obtain portability, but this is the only one apparent 
from studying the data.) Using our standard model, 
b u t  s u m m i n g  f o r  e a c h  c l u s t e r ,  

n k n k 

Y~ = Yk. = ~ ( b ~  +eoX~ Y') 
q q 

is obtained. 

L e t t i n g  x ~ = x  k for  all q , m e a n s  t h a t  

n k n k 

Yk, = (~,bd)Xk + (~'eokq)X;d" 
q q 

Also, for simplicity, 

letting clusters be of equal size, n k -- 11 for all k, 

and letting xk. -- fix k 

r e g r e s s o r  

be the more aggregated level 

v a l u e s ,  w r i t e  

- baxk. + (e--~l~v*-l)xJ ", where b, - b a is Yk. 

the slope for the more aggregate level model, 

Ya -- Y a  Y, and eo~ is an " a v e r a g e "  

representation of what would be obtained for the less 
aggregate level random factor of error. 

The error term in the more aggregate level model is 

11 eo~ x~ , which is written in terms directly 

traceable to the less aggregate data collection level 

model. This is a situation where y is portable, 

which seems to be nearly true in many EIA electric 
power data cases. However, generally, it appears that 

Ya < Yd" 

In practice, it may be obvious that in some situations, 

results are far more sensitive to y than for other 

situations. When estimates of prediction error 
variances (Knaub(1994a)) are substantially impacted by 

small changes in the y value used, then the 

nonrandom error factor may have been relatively large. 

An aside" 
For estimates of the variance of the slope in the current 
zero-intercept model, artificial data strictly adhering to 
the model show an interesting phenomenon when the 
actual value of gamma is 1. In that case, the estimated 
variance of the slope does not change regardless of the 
value of gamma used in the estimations. That is, when 
the true value of gamma is 1, and the model is strictly 
followed, the estimated variance of the slope is 
unaffected by the value set for gamma. K.R.W. 
Brewer, in unpublished correspondence, noted that if 
"h" represents a selected value for gamma, and ".,/" 
represents the 'true' value for gamma, then "... 

a2(b(h)) has ~ x  2v-2h in the numerator and 

x 2-2h in the denominator. When gamma is equal 

to anything except unity, the choice of h matters, but 
when gamma = 1 the expressions in numerator and 
denominator cancel out, so the choice of h has no 
effect." This confirms the results of examples using 
artificial data. Thus, if the model were strictly 

applicable, we may still do well if we estimate low for y 

when 0.5~y~l.0 . If the true value of y is 

'large' (say, close to 1), it may appear to be better to 

underestimate it, than to overestimate a y value that 

is actually 'small' (say, close to 0.5). Perhaps this is 

part of the reason for the successful use of y =0.5, 

whether or not the data 'strictly' adhere to the model, 
given at the beginning of this paper. 
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CONCLUSIONS: Acknowledgement: 

Collecting data at a more aggregate level may mean that 
using the square root of x as the nonrandom error 
factor might be even more robust than ever in the 
future for the EIA. This is because the estimated value 
of gamma tends toward 0.5 as the degree of 
aggregation for the data collection rises. Thus the 
estimated value of gamma, and the value 0.5, found to 
perform very well for much of the data collected by the 
EIA (Knaub(1993), Knaub(1994)), would come more 
closely into agreement. Also, when the model is more 
strictly followed, it is probably better to underestimate 
than to overestimate gamma, at least with regard to 
estimating the variance of the 'slope' parameter. 

Still, when any estimated value of gamma is 
substantially different from 0.5, it may be difficult to 
determine the values for gamma that one might 
prudently use when estimating totals and variances of 
totals. 

Near portability of y often occurs when differing 

levels of aggregation for data collection are used. This 

is a rare degree of stability for y among these data. 

Perhaps a strong use for this knowledge will become 
apparent in the future. 

Suggestion: 

Perhaps the optimal value of y to use, in the 

estimation of variances of totals, might normally be 

found between 0.5 and the estimated value of y . 

(This was suggested in Knaub(1993), but might be more 
urgently needed when employing more aggregate data 
collection levels. The smaller numbers of observations 
at more aggregate levels will mean that refinements 
may have more of an impact.) 

Thanks to K.R.W. Brewer for helpful correspondence, 
although he can in no way be considered responsible for 
any errors or inadequacies in this paper. 
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POSSIBLE FUTURE CONSIDERATION: 

How would all of this be affected by the use of an 
expression for the nonrandom factor of error other than 

x v ? 

Appendix I 

Thanks to Phil Kott for bringing the following to my 
attention while in Orlando" 

In W.G. Cochran's first edition (1953) of Sampling 
Techniques, pages 210 - 212, he makes use of the 
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assumption that " E(ei 2) - a z i  g " in a 

comparison of two estimators for totals. This seems to 

have launched a great deal of study using X Y as 

the 'nonrandom factor of error,' notably in works by 
K.R.W. Brewer and R.M. Royall. I also note that 
econometrics often relies on this. Perhaps, however, it 
is now time that we explore some other functional 
forms as well. 

Appendix 2 

The following is an example of the use of artificial data 
as mentioned in this paper: 

Let Dataset I be made up of 120 points, which consists 
of three sets of the same 40 points. These points were 
artificially generated to lie on a regression line with 

slope = 1, and ~ = 1. (Thus, in Appendix 1, we 

would have g =2.)  The data points were generated to 
reflect only the nonrandom factor of 'error,' so that a 

nearly exact value of '~/ could be represented. For 

every point 'above' the regression line, there is one 
symmetrically placed below it, and there are other 
similar pairs of points, all with residuals of the form 

+ CjXiY • For one or more values of "j" (here, 

j = 1,2), let i range (here, i = 1,2,3,..., 10) so that in this 
case there are a total of 40 points, repeated twice, or a 

grand total of 120 data points. Here, 

40 data points are as follows: 

'~ is 1. The 

x y x y 
1000 1100 1000 900 
2000 2200 2000 1800 
3000 3300 3000 2700 
4000 4400 4000 3600 
5000 5500 5000 4500 
6000 6600 6000 5400 
7000 7700 7000 6300 
8000 8800 8000 7200 
9000 9900 9000 8100 

10000 11000 10000 9000 
1000 1050 1000 950 
2000 2100 2000 1900 
3000 3150 3000 2850 
4000 4200 4000 3800 
5000 5250 5000 4750 
6000 6300 6000 5700 
7000 7350 7000 6650 
8000 8400 8000 7600 
9000 9450 9000 8550 

10000 10500 10000 9500 

Dataset II is formed by adding coordinates for each set 
of three identical points. (That is, the numbers above 
are each multiplied by 3, and only those 40 points are 

used.) Here, y = 1 again. 

For Dataset III, data points that are usually similar, but 
not identical, were combined. Here, coordinates from 
the 120 data points in Dataset I are added in groups of 
three in succession (so that the first y value is 1100 + 
900 + 2200 = 4200). As predicted, the value for 

y for the third dataset is smaller than in the other 

two cases. The Iterated Reweighted Least Squares 

method estimates y = 0.84, and my method 

estimates y = 0.83. (see Knaub (1993).) (Also 

note that in this case, the variance of the estimate of the 
slope parameter is smallest, being even smaller than for 
the case of n=  120.) 
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