
S A M P L E  S I Z E S  F O R  S U R V E Y  D A T A  A N A L Y Z E D  W I T H  

H I E R A R C H I C A L  L I N E A R  M O D E L S  

M i c h a e l  Po C o h e n ,  N a t i o n a l  C e n t e r  for E d u c a t i o n  Sta t i s t i c s*  
555 N e w  J e r s e y  A v e n u e  N W ,  W a s h i n g t o n ,  D C  2 0 2 0 8 - 5 6 5 4  

K e y  Words :  Multilevel, random effects, covariance 
components 
Abstrac t :  Behavioral and social data commonly 
have a nested structure (for example, students 
nested within schools). Recently techniques and 
computer programs have become available for deal- 
ing with such data, permitting the formulation of 
explicit hierarchical linear models with hypotheses 
about effects occurring at each level and across lev- 
els. An example of such a model is given. If data 
users are planning to analyze survey data using hi- 
erarchical linear models rather than concentrating 
on means, totals, and proportions, this needs to be 
accounted for in the survey design. The implica- 
tions for determining sample sizes (for example, the 
number of schools in the sample and the number of 
students sampled within each school) are explored. 

0 I n t r o d u c t i o n  a n d  E x a m p l e  

There has been an upsurge in interest among 
behavioral and social scientists and education re- 
searchers in analyzing data in a way that accounts 
for the naturally occurring nested structure, for in- 
stance, in analyzing students nested within schools. 
Linear models appropriate for such data are called 
hierarchical. In part, the increased interest has 
been sparked by the availability of new software 
that properly handles the nested structure and facil- 
itates the analyses. There has also been a realization 
that one can take advantage of the nested structure 
to explore relationships not amenable to other ap- 
proaches. 

Bryk and Raudenbush (1992), Goldstein (1987), 
and Longford (1993) are recommended for book- 
length discussions related to hierarchical linear mod- 
els. 

To illustrate these models, an example of Bryk 
and Raudenbush (1992, Chapter 4) will be summa- 
rized. This example is based on data from a sub- 
sample of the 1982 High School and Beyond Sur- 
vey, a survey of high school students by the National 
Center for Education Statistics. The socioeconomic 
status (SES) of the student is a variable computed 
from the income, education, and occupation of the 
student's parents. The MEAN SES is the average 
over the students in the school of the SES values for 
the students. The following questions, quoted from 
Bryk and Raudenbush (1992, p. 61), were being ex- 

plored: 

1. How much do U.S. high schools vary 
in their mean mathematics achievement ? 

2. Do schools with high M E A N  SES 
also have high math achievement ? 

3. Is the strength of association be- 
tween student SES and math achieve- 
ment similar across schools? Or is SES a 
more important predictor of achievement 
in some schools than others? 

4. How do public and Catholic schools 
compare in terms of mean math achieve- 
ment  and in terms of the strength of the 
SES-math achievement relationship, after 
we control for M E A N  SES? 

These are the kinds of questions that hierarchical 
linear models (HLMs) can handle. 

The student-level model for this example is 

Yi j  - -  f loj q- r i j  

and the school level model is 

~Oj --- ~00 -~- UOj. 

The rij are mean zero, independent, normally dis- 
tributed random variables, each with variance cr 2, 
for the i = 1 , . . . ,  nj students in school j. The u0j 
are independent of each other and of the rij. They 
are normally distributed, each with mean zero and 
variance T 2. The cr 2 are called the student-level vari- 
ances, and the T 2 a r e  called the school-level vari- 
ances. 

2. S i m p l e  T w o - S t a g e  D e s i g n  w i t h  a 

S i m p l e  C o s t  F u n c t i o n  

In order to gain insight into the problem, we 
restrict our attention to a simple two-stage sampling 
design with a simple cost function. We select m 
schools, and from each of the m schools, we select n 
students (a balanced sample design). It costs Cs to 
include a school in the sample and an additional Ck 
for each student ("kid") sampled at the school. We 
wish to hold total sampling costs to our budgeted 
amount C where 

C = Csm + Ckmn. 
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We refer to the f i rs t  stage uni t s  as schools and 
the second stage uni t s  as s tuden t s  throughout this 
paper in order to avoid cumbersome terminology. Of 
course, the results apply much more broadly (for 
example, to beds within hospitals or to books within 
libraries). 

In reality we would almost certainly select the 
schools by a stratified design. Additional levels (e.g., 
school districts, classrooms) are possible. Unequal 
probability sampling might be used at any level. Our 
assumption of a balanced sample design (same num- 
ber of students from each school) would almost cer- 
tainly not hold exactly, but we do not expect that  
our results are very sensitive to this assumption, pro- 
vided that  the design is not too unbalanced. 

3. Traditional Sample  Size Determi-  
nation 

Hansen, Hurwitz, and Madow (1953, pp. 172- 
73) have developed the formula for the optimal size 
n for the number of students to sample from each 
school. It applies to estimating means, totals, and 
ratios. A simple approximate version of the formula 
is as follows: 

nopt × ~ 
P 

where p is the measure of homogeneity, also called 
the intraclass ( in tra-school  in our example) correla- 
tion coefficient. The number of schools sampled is 
then 

c 
mopt -- Cs + Cknopt" 

Under the HLM model, we have 

7-2 

P - - -  0-2 _~_T 2~ 

where 0-2 is the student level variance and T 2 is the 
school level variance. It will also be convenient to 
work with the variance ratio w defined by w = 7-2/0-2. 
In terms of the variance ratio, (3.1) becomes 

nopt × --, (3.2) 
W 

so that  the optimal number of students to sample 
from each school in the traditional setting varies in- 
versely with the square root of the variance ratio w. 

It is perhaps worth mentioning that  we are in- 
terested in finding the optimal values of n and m, 
not with the notion that  they should be adhered to 
exactly, but rather with the idea that  they can serve 
as a guide in survey planning. 

4. Sample  Size Determinat ion  for 
Hierarchical Linear Model l ing  

In analyzing HLM models, it is important to be 
able to estimate not only the regression coefficients 
but also the school-level and student-level variances 
(T 2 and 0-2) because these quantities are of substan- 
tive interest. In this section, we first explore the 
sample size implications of needing to estimate 7 -2 

and 0-2. We then study, for a simple special case, 
the corresponding problem for the regression coeffi- 
cients. 

4.1 The  S tudent -Leve l  and School -Level  
Variances  

Longford (1993, p. 58) shows that  the maxi- 
mum likelihood estimates of r 2 and 0-2 have asymp- 
totic variances 

20- 4 
var(3 2) = (4.1) 

m n  - m 

and 

( 1 ) 
m---n n -  1 + 2w + nw 2 (4.2) 

as the number of schools m grows large. As before, 
w - -  7"2/0 -2 denotes the variance ratio. We aim to 
minimize these variances subject to the cost con- 
straint of Section 2.: C - C s m  + C k m n  where C is 
the total allowable cost, Cs is the cost of sampling 
each school, and Ck is the additional cost of sam- 
pling each student. But then m -  C / ( C s  + C k n )  so 
that  m can be eliminated from the equations (4.1) 
and (4.2) 

For fixed values of C, Cs, Ck, 0-2, and w (the 
latter two would have to be estimated from pre- 
vious data), it is relatively easy to find the values 
of n and m that  minimize var(~ 2) or var(~ 2) with 
m - C / ( C s  + C k n ) .  We merely evaluate the variance 
equations for all reasonable values of n. This can be 
done very quickly on a computer. But the result 
does not convey an understanding of how the sam- 
ple should be apportioned as the various parameters 
vary. We therefore seek analytical solutions. 

Let us consider var(32) first. Although (4.1) is 
minimized subject to the cost constraint by taking 
n (students per school) as large as possible, in fact, 
var(32) is relatively flat even for moderate n. It is 
(4.2), again subject to the cost constraint, that  is 
the critical one to minimize. 

The expression for minimizing var(~ 2) with 
m - C / ( C ,  +Ckn) reduces to solving a fourth degree 
polynomial in n. We have obtained the solution, but 
the expression is too cumbersome to be of any prac- 
tical use. We can, however, study the closely related 
expression 
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var (~2) 20- 4 ( 1  ) • ~ + 2w + n w  2 (4 .3)  
m n  

where we have replaced n -  1 by n in the denom- 
inator of the first term. We have made informal 
numerical comparisons of (4.2) and (4.3) and found, 
in our experience, that  the best values of n are usu- 
ally the same and, if not, almost always within one 
for the two equations. See Figure 1 for an illustra- 
tion. It turns out, moreover, that  (4.3) is the correct 
asymptotic expression for var(~ 2) when 0-2 is k n o w n  

(cf. Longford, 1993, p. 59). Although 0-2 would 
seldom be known in practical situations, the expres- 
sions should be close asymptotically (that is, when 
the number of schools m is large). 

0.0191 

0.018-I 

0.017~ 

0.0162 

0.015j 

0.014~ 
' ~i . . . .  l'O . . . .  I ' 5  . . . .  2b . . . . .  

n 25  

O.02J 

F i g u r e  1: Plot of Two Expressions for var(? 2) 

The solution to (4.3), subject to C - C s m  + 

C k m n ,  is 

v/v, (ck + 8c, ) + ck 
n o p t  = 2Ckw 

1 I O ,  1 1 
= 2w + V 2 ~ k  k x - - + - - ' w  4w 2 

In particular, for small values of the variance ratio 
w, nopt will be inversely proportional to w. This 
contrasts with the traditional case of (3.2) where 
nopt is inversely proportional to the squar e  root  of 
w. For small w, estimation of T 2 requires a larger 
sample of students within each school (and hence 
fewer schools) for a fixed cost than does estimation 
of traditional quantities (means, totals, ratios). 

4.2 T h e  R e g r e s s i o n  Coeff ic ients  

It is also, of course, important to be able to 
estimate the regression coefficients themselves. We 
denote, as usual, the vector of regression coefficients 
by fl, the design matrix by X, and the vector of 
outcomes by y. Then the maximum likelihood esti- 
mator of/3 and its covariance matrix are given by 

- -  ( x T v - I x ) - I x T V - l y  and 

C O V ( ~ ) - - - ( x T v - 1  X )  - 1  , 

(Longford, 1993, p. 54), where V is a matrix of the 
form 

T2Jn 
T2Jn 0 

V = *., '[-0-2Imn. 

0 7"2Jn 
T2Jn 

We are using Id to denote the d x d identity matrix 
and J d to denote the d × d matrix of all l 's. So V 
is a block diagonal matrix with entries of T 2 " t - 0  -2 

on the main diagonal, entries of T 2 in the blocks but 
off the main diagonal, and O's elsewhere. Note, in 
particular, that  for T 2 = 0 ,  V reduces to 0-2Iron, A 
and the maximum likelihood est imator/3 reduces to 
the familiar ordinary least squares estimator /3 = 
(xTx) - - IXTy .  

Investigating the properties of the estimators of 
the regression coefficients is made difficult by the 
dependence on the design matrix X. We will only 
consider here a very simple design for a very bal- 
anced situation. We will let the first column of X 
be all l's; this corresponds to estimating an inter- 
cept term in/3. The second column of X will be a 
student-level indicator ("dummy") variable, and the 
third column will be a school-level indicator vari- 
able. We assume the student-level indicator variable 
is balanced within a school and that  the school-level 
indicator is balanced overall. This design is illus- 
trated in (4.4) for the case of n = 6 students sam- 
pled per school and m = 2 schools sampled (but we 
are really interested in large m). 

X m 

f l  0 0 ~ 
1 1 0 
1 0 0 
1 1 0 
1 0 0 
1 1 0 
1 0 1 
1 1 1 
1 0 1 
1 1 1 
1 0 1 

k l  1 l j  

school 1 

school 2 

(4.4) 

When m and n are both even, an explicit expression 
can be derived for the matrix c o v ( ~ ) =  ( x T v x )  -1 
in terms of 0-2, w, m, and n: 
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`,2 ( 2nW+3)  2`, 2 __ 2`, 2 (.W'~- I )  
m n  m n  m n  

2 ~  4~2 0 

- -  2`,2 ( n w + l )  0 4`,2 ( n w + l )  
77%n l 'nn 

Let us minimize var(/30) = ,̀2 (2nw+3) (i~) : 4̀ ,'--'~2 

and var(~2) = 4`,2 (n~o+z) subject to the simple cost 
m n  

constraint C = Csm + Ckmn. The results are 

n o p t , 0  : -  V/3 C--'~" x 1 
C~ w ' 

c -c .  and 
n o p t ,  1 - -  Ck 

~/C. X 1 respectively. n o p t , 2  - -  Ck w ,  

T h e  nop t , 2  value is the same and the nopt,0 value 
is similar to that obtained in the traditional case 
(3.2). The nopt,1 value is equivalent to mopt,1 - -  1; 

we should only sample one school (were this practi- 
cal) if we only want to estimate/31. The variance of 
/91, though, will be small for any reasonable design 
(no n in the numerator of the variance expression) 
so other considerations are more important. 

The author has informally explored some more 
complicated and less balanced cases, and the results 
were qualitatively like those given above. The vari- 
ance of/31 may depend on w (hence T 2) but, in the 
cases looked at, does so in a bounded way. 

It seems that traditional sample designs may do 
very well in enabling us to estimate the regression 
coefficients. Estimating the variance components, T 2 

in particular, could present additional difficulties. 

5. Final  C o m m e n t  

As hierarchical models become more widely 
used by researchers analyzing sur~;ey data, the need 
grows for survey design statisticians to understand 
the implications of such use for good survey de- 
sign. This paper is the beginning of an effort to de- 
velop such an understanding. But we have scarcely 
scratched the surface. Opportunities abound for fur- 
ther research on this topic. 
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