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Abstract

Given data from a number of similar areas, we use a rank-
based method to estimate the finite population mean of one of
these areas. As the areas are similar, we use the nested error
regression model which permits “borrowing of strength” from
other areas. One important feature of our method is that there
is no need to assess assumption of normality which is necessary
to implement most methods for small areas. We use R-estimates
of the model parameters to construct a predictor of the popu-
lation mean of a small area, and construct an estimate of the
mean squared error of the predictor. Finally, we illustrate the
methodology using data obtained from a survey of agricultural

areas.

1. Introduction

Small area estimation is extremely useful to government
agencies that address the issues of distribution, equity, and dis-
parity. As the field suggests, it is particularly appropriate in
a setting that involves several areas with only a small sample
available from each area. One parameter of interest is the finite
population mean of one area and a procedure which borrows
strength from other neighboring areas is usually used. Further,
it requires normality of the responses, and therefore transfor-
mation might be needed to obtain normality; see for example
Calvin and Sedransk (1991), Nandram and Sedransk (1993) and
Nandram (1994). Rashid and Nandram (1994) developed a rank-
based predictor of the finite population of the mean of a small
area assuming a nested regression model. The objective of this
article is to develop the mean-squared error of the rank-based
predictor. Ghosh and Rao (1994) gave an excellent review of the

recent literature on small area estimation.

In recent years model based estimation procedures for small
area estimation have been widely addressed. The methods usu-
ally involve either an empirical Bayes (EB) approach or a full

classical approach in which variance components are estimated.

Both these procedures assume certain mixed models to perform
prediction. Certain best linear unbiased predictors (BLUP) or
EB predictors are obtained for the unknown parameters of in-
terest assuming the variance components are known. Then the
unknown variance components are estimated typically by Hen-
derson’s method of fitting constants or REML method, and the
resulting estimated BLUP’s are used for final prediction. Details
are presented by Prasad and Rao (1990) and Battese, Harter and
Fuller (1988). Although, the approaches are usually quite sat-
isfactory for point prediction, it is very difficult to estimate the
standard errors. Ghosh and Lahiri (1989) proposed a hierar-
chical Bayes (HB) procedure as an alternative to the estimated
BLUP or the EB procedure; see also Datta and Ghosh (1991).
The standard errors of the estimates, though complicated, can
be obtained via numerical integration without any further ap-

proximation.

In this article we neither require any distributional assump-
tions nor estimation of variance components in predicting the
mean of the small areas. However, estimate of variance com-
ponents are required to obtain mean-squared error of the point
predictor, called R-predictor. In Section 2 we present the model
assumptions and a predictor of the finite population mean. In
Section 3 we use R-estimators to construct the predictor and its
mean-squared error. A numerical example is given in Section 4

and Section 5 has conclusions.

2. Model and Assumptions

We assume that data are available from c¢ small areas,
and the i** area has M; individuals, i = 1,2,...,c. Let Yij
be the value of the j** unit in the i** area and let ¥, =
[Yi1, Yo, .. Y.‘M‘»]' denote the vector of all values of all indi-
viduals from the i*® area. Let Vi = M‘-"l 2:21 Yi; be the finite

population mean of the ith small area, i = 1,2,...,c.

Suppose we take a random sample of m; individuals from

the ith small area. Letting f; = m;/M; be the sampling fraction
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for the i*® small area, observe that

%= £+ (- 1P (2.1

™
where ﬁf") = (m;)~! E Y;; and

i=1
My
)7‘.("‘) = (M; - m.-)_l E Y:;. Note that 175") is computed
j=m;+1

from the observed data and )_’I.("") is to be predicted.

Suppose there are p — 1 covariates z;;1,%;;2,...,TijM As-
sociated with each individual, Following Battese, Harter and

Fuller (1888) we consider the nested error regression model

Yi; =a0+z'..ﬁ+v.-+u,-j,j=1,...,M",i=l,...,c (2.2)

U=

where z,; = (Zij1ree 1 @ijp—1)s B = (B1y-.- ,Bp—1) is the
vector of regression parameters, v; Vi N(0, af),u.-,- i
N(O,o'?,), and the v; are independent of the u.;. Note that §
is the same for all areas. In econometrics this model is known
as an error component model and is widely used for combining

cross-sectional and time series data. For a sample of size m;

from the ith area the model (2.2) holds and can be written as

Yij =ag+2 ,mi,i=1,2,...,¢ (2.3)

=i

'ﬁ"f‘fijsj:ly---

and in matrix notation as ¥, = aglm‘, + Xif + g;, where

1/_'. = (]/il’yi2l---:1/im,')/i & = [filsfi2--~1fim“]’ with €ij =
v + uij and X; denoting the m; x (p — 1) matrix with rows

géj ,j=1,...,mq. First, we obtain the point predictor of ¥;, the

my
finite population mean of the it* area. Let if",z = m’._1 E Xijk
=1

M;
and )'(f,'}j) = (M; —mi)~ ! Z Xijk i=1,2,...,cand k =
j=mi+1
1,2,...,p— 1. Also let _:E_S") = (55’1), cees if‘p)—l)' and Xf"") =
(X‘.(.';’), cees ()_(f;’_)l ). Assuming the model specification in (2.2)
BTy = ag + X, (2.4)

In parametric inference it is assumed that ¢, ~ N(0, a2Vy),
where 02 = 63 +o‘ﬁ and Vi = [(1 — pMm; +pJm;} p = 63/62 is
the common intra-area correlation, Im‘. is the m; X m; identity
matrix and Jy,; is the m; X m; unit matrix. In many situations
in small area estimation, the assumption of multi-normality of
& may not be valid. In such cases the survey statisticians may
prefer an alternative non-parametric procedure. In this article

we attempt a method which needs the following assumptions.

(1) The g (i = 1,2,...,c) are independent and continuous
random vectors, and the elements of ¢; (i = 1,2,...,¢)
are exchangeable random variables. Further, all the

&'s (i = 1,2,...,¢) have the same distributional form

Floyoeness);

(2) Letting v = -_;715 where v = f_w fle, €} de (< o0) and

£(.,.) is the bivariate p.d.f. of any two components of ¢,.

3) =}, < B, where B is finite and z;;&’s do not depend on
ijk 3

¢; and

(4) Supiy, . emi = m < oo.

The assumptions (1)-(4) are all reasonable in small area es-
timation and they permit a rank-based approach. Our objective
is, under assumptions (1) - (4) to obtain R-estimate /3 of the 3
(k =1,2,...p—1) which are used to construct a point predictor
of the finite population mean of the ith area and its estimated

mean-squared error.

Let 8 = (B1,f2;... 1+Bp—1)' be the partial regression coef-
ficients corresponding to the model (2.3). Corresponding to the

ith area we define a dispersion function as follows:

mg -1 -1
N R(yis — Y 07 Brzise) 1 t
D:(B) = E [ et 1 = gl - E B ikl
i
i=1 k=1
where R(yi; — p:l Brzijr) is the intra-area rank of the resid-
2 k=1 2

-1 . R . .
ual yij — E:zl PArzije. The combined dispersion function for

all small areas is .
D@) =) Di(p)
i=1

Rashid and Nandram (1995) used an analogous dispersion func-
tion to make inference for one-way repeated measures designs
with a changing covariate. Note that D(f) is a location free
measures, and is a linear function of the residuals with coeffi-
cients determined by the ranks of the residuals. Also D(f) is
a nonnegative, continuous and convex function of E Hence, it
is expected that the R-estimates obtained by minimizing D(j3)
will be more robust than least squares estimators since the the
influence of the outliers have a linear, rather than a quadratic,
effect. Thus, this approach will be an asset for small area prac-
titioners. It is convenient that our predictor does not require an
estimator of ag as inclusion or exclusion of ag in the dispersion

function of model (2.3) does not alter the ranks of the residuals.

3. R-Predictor of the Finite Population
Mean

First, we obtain the R-estimators of the parameters of model
(2.3). Then we use these R-estimators to construct a R-predictor
of the finite population mean and its estimated mean-squared

€error.
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3.1 R-Estimation

Let é minimize the dispersion function D(3). See Jaeckel
(1972) for further discussions on R-estimation. In order to de-
velop the asymptotic distribution of é we need the gradient of

the dispersion function as well as its linear approximation.

As domain B of the space of D(-) consists of finite number
of convex polygonal subsets, on each of which D(-) is a linear
function of g, the gradient vector exists and the negative of the

gradient vector is

S(B) = [51(8), 52(B), . .., Sp-1(B), (8.1)

everywhere, and its kth component is given by

C o R(yij — Y77 B
Sk(_ﬁ.) = \/ﬁz Z[ (i3 m,z‘;-:ll kziik) — -;-]a:,-,-k. (3.1)
i=1 j=1

Note that
5(8) = E w.(8)
i=1
where
w,(8) =[w’,..., 0 (3.3)
is contribution of the ith cluster in S(8), W (f8), (i =
1,2,...,c), are independent, and
mi -1
. R(yi; — Y o Bemije) 1
wy = \/12[2 { d Z_"‘l 2 - =}
mi+1 2
i=1
I=12...,p—1.

Under assumption (1),

E[Rij} = (mi +1)/2

and
(m?-1)/12 ii=#, 5=
Cov {Ryj, Ryjr] = —(m; +1)/12 if i =4
0 if i # i
Thus, E{W,(0)] = 0 and
™my B
CoviW, (0] = — (Zi10e 02 p 1] Hilzgs o025 1]
= A = (@) (3.4)
where
(5 T Z::l(mk —zix)? ifk =k
a ;= " ‘m- i ) ‘
- w1 E_,,-z‘l(mijk — B ) (@ — Bip) EER

and H; = [Im;xm; — 21, 1" ]. Thus

My =m;<m,

E[S@) =0

and

(-3
1
lim Cov[—=S()] = lim -}ZA,- =A=(ag). (3.5)

i=1

By using a multivariate central limit Theorem (See Rao

1973, p. 147 and Rashid and Nandram 1995),
1 D
\/zlzﬁ(g)]——'MVN(Q, A) asc — oo

where A is given in (3.5).
It can be shown that

Jid

ATIS(0) = 0p(2) (3.6)

B+ 7

ol=

where 7 of 7 is a consistent estimate of # (to be determined).

Therefore using (3.6), _@_0 be the true value of 3,

Ve
>

(8- 8°)ZMVN[D, A7 as ¢ - oo. (3.7)

That is, the R-estimators are asymptotically unbiased, con-

sistent and asymptotically distribution free.

Even though the ranking of the residuals are done within
each area separately, there is a borrowing strength from other
areas since the R-estimates are obtained by minimizing the com-

bined dispersion function.

3.2 R-Predictor

To obtain a R-predictor for }—’i("’) we substitute our rank-
based estimators into (2.1). It follows that the R-predictor for

the finite population mean of the i** area is
# =g+ - X -2 @)

We call the predictor in (3.8) a rank-based regression survey
predictor. The estimator has an interpretable form. It is the
sample mean adjusted by a fraction, the finite population cor-
rection, and the difference between ¥(72) and 37(“) which is likely
to be very small. It is also expected to be robust. One version of
this estimator was considered by Sarndal (1984). Recall that the
generalized least squares estimator and corresponding predictor
under the model (2.3) are functions of aﬁ and crg. Therefore,
these variance components are unknown and have to be esti-
mated, and at least in our case we do not need to estimate them

for the point predictor.
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§®

need to assume that the covariance matrix of &, exists. As our

However, in order to compute the standard error of s we

model (2.3) assumes exchangeability of the errors within each

cluster,

Cov(e;) = 02[(1 — p) Ly xmy + Pdmyxomy] (3.9)

o2

where p = —gE—p,
s optoy

We also need the covariances between the non-sampled ob-
servations and 3, which can be obtained by using a large sample
apprximation to 3 defined by é = EO + %A_lﬁ(éo). Also, note

that these covariances depend on the scale parameter 7.

3.3 Mean-Squared Error (MSE) of the R-
Predictor

Using the survey regression estimator, the prediction error

is

i - = - 1)@ - 7N 4 (- 0 & - 29).

(3.10)
It follows that

Varl5{™ - ¥il = g} (2, 0) + 65(7) + gl mp)  (311)

where letting n = Z=(1 — f)?
oo, ) = (1 = 12021 — p)/mi, (3.12)
oD R 2 aRED -2 @y

and
9$ (0,7, 0) = 21 — £)2Cov(g{” — 7", B( X" — ().

(3.14)

Prasad and Rao (1990) has a similar representation for the
mean-squared error of the predictor under nested error regres-

sion.model, see also Tam (1995). Under model (2.3) taking

—1 M
M Z,:‘l € =0,

yf’) - Z(”’) = g’[g&") —X_f"“)] + I—i—f-ef") (3.15)
where &) = L3 ;.
Thus,
980, 7 0) % 201 - N)CovE, FX) -2y (3.16)

It can be shown that

oo, 0, 7) = m U — 2y A7 A a7 XY — 2Ot
(3.16)
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where 1 21—~ f)or/{IH2i=le} Note  that
g:(;) (eyp,7) — 0 as ¢ — oo. Therefore for large c it follows
that

Var[§{® - vi] = y§i)(61 p) + 9%")(T)-

i

(3.17)

It is worth noting that gg‘.)(f) contains a term 72, whose role is

similar to 02(1 — p) in normal theory based predictive inference.
i z2(8) = xne),
varlfl®) — %] & yg‘)(az,p), (3.18)

which is the optimal variance.

As the mean squared error of the predictor is a function of
0-2, p and 7, to maintain the spirit of our assumptions simple

robust estimates of 02, p and 7 are required.
An estimator of o, is
&, = 1.483Med; {|9; — Med;#; 1}.

2

©

fitted value for model (2.2) of y;; is

We construct an estimator §, of a':‘i as follows: The rank-based

Bij = Z:;i Bkitijk + D¢, where 9; is taken to be
p--1

v; = med Yij — E Bkmi;‘k:j=132y"-)mi
k=1

(3.19)

and _ﬂ; is obtained from (2.3). Then, we obtain residuals of the

model (2.2) (using all data) as
i; = yij — Jij-

This practice of computing the residuals ;; is recommended

in MINITAB reference manual (1991, p. 10-12) for inferences

concerning block designs based intra-subject ranks. A robust

estimate is given by the mean absolute deviation (MAD) of ;5

which is

c my
b0 =(mr—c)7} E E Jiii; — Medi; (i)

i=1 j=1
where mr = Zle mq. An estimate of p is p = 62/62, where
62 =62 + 52,
A consistent estimator 7 of 7 is given as follows.
For fixed j and j' (5 # 7') let
Y Y : ot
dg”’ ) = €15 — €150 dg"" ) = €35 — €250 a0y dg"’ ) = €cj — €qjt

be difference of residuals. We adopt the estimate of Koul et

al(1987) to get a consistent estimate of .



Thus,

>y

i=1 i'=1

;,(i.j') —

1

= R I i . o
T (CIEID T CIE L) I E N 1 -
26234170 O AR A

: s
where 0 < a < 1, tg';';)) is the .8th quantile (recommended by
T Y]
Koul et al 1987) of the distribution of |a{#) — a{#3")],

Finally, the estimated mean-squared error of the R-predictor

of the ith area population mean is

Var(3®) = 6 (0 ) + 40 (%) + 8 (0,1, p)  (3:20)

where I;g"), gg"), and gf,") are obtained, respectively, from
gg'.) (a2, 2), ggi)(rz), and y:(;)(o', 7, p) by substituting 5, 52 and

7 respectively in (3.20).

4. Example

We consider an example described by Battese, Harter and
Fuller (1988) which concerns the estimation of areas under corn
and soybeans for each 12 counties in North-Central Iowa us-
ing farm-interview data in conjunction with LANDSAT satellite
data. Each county was divided into area segments, and the areas
under corn and soybeans were ascertained for a sample of seg-
ments by interviewing farm operators. The number of segments
in the sampled counties ranged from 1 to 6. The total number
of segments in the different counties ranged from 384 and 965.
(Thus, this is, indeed an small area problem.) Auxiliary data in
the form of number of pixels {a term used for “picture elements”
of about 0.45 hectares) classified as corn and soybeans were also
obtained for all the area segments, including the sample seg-

ments, in each county using the LANDSAT satellite readings.

Battese, Harter and Fuller (1988) employed a “nested error
regression” model involving random small area effects and the
segment-level data and then obtained the estimates of county
areas under corn and soybeans using the classical components of
variance approach. They obtained the following fitted regression

equations:
Corn : y;; = 51 + 0.329z1;; — 0.134 z;;2

Soybeans : yi; = —16 + 0.028z1;1 + 0.494 ;9.

Datta and Ghosh (1991) applied the HB approach to these data

and obtained similar results.

We apply the method developed in this article to the same
data. We obtain the R-estimates of the partial regression coef-
ficients by minimizing the dispersion function using the Nelder-
Mead algorithm. The rank-based estimated regression equations
are

Corn : y;; = 47.64 + 0.3154x3;7 — 0.1019 z;;9
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Soybeans : yi; = —41.13 + 0.1029z3;1 + 0.5036 x;;9.

We estimate ag, the intercept of model (2.3) by

do = med(Pi,i =1,2,...,¢).

The best and the R-predictors along with their estimated
standard errors, square root of the mean-squared error, (in

parentheses) are displayed in Table 1.

It is also possible to assess the importance of the parameters
of the model (2.2). Note that D(f) is used as a criterion for fit-
ting a nested regression model to the data. D(_B_) represents the
minimum distance, as measured by D(f3), from the data vector
to the subspace spanned by the nested regression model. Sup-
pose we want to test Hy : 3, = 0 versus 3, # 0. Let /35 (b #Kk")
be the the R-estimate of 8,s. Then under 3, =0

D* =2[DBY, ..., BE 1, By, .- BEy) — D(B)/#

has an asymptotic chi -square distribution with 1 degree of free-
dom. Using the above test we find that both covariates are
significant in explaining the variation for both corn and soybean

individually.

We have plotted (plots are not shown) studentized residu-
als of the model (2.2) with respect to the corresponding fitted
values. The points in the plots do not show any patterns. It
appears that for the corn data the second farm in Hardin county
is an outlier. Also for the soybean data the second farm in Poc-
ahontas county is an outlier. (The studentized residuals in the
first case is -6.72, and for the second case is -5.32). Otherwise,

the fitted models are consistent with the data.

5. Concluding Remarks

We obtained a rank-based method to estimate the finite pop-
ulation mean of a small area, Our R-estimates are easy to com-
pute using the Nelder-Mead simplex algorithm. We showed that
the rank-based estimates of the regression parameters have rea-
sonable properties. Moreover, our method is very simple and
easy to compute. Although we do not assume normality, the es-
timate of the finite population mean of each area is close to the
BLUP of Battese, Harter and Fuller (1988). While our mean-
squared errors are expected to be larger than those of BHF, we
obtain comparable estimates. We expect that this work would
stimulate research in nonparametric methods for small area es-

timation.



Table 1. A Comparison of the R-Predictor and Best Predictor

of the Finite Population Mean

Corn Soybean
County Best R Best R
Cerro Gordo | 122.2 122.5 77.8 66.5
(9.6) (11.3) | (12.6) (11.7)
Hamilton 126.3 126.0 94.8 104.5
(9.5) (11.3) | (11.8) (11.7)
Worth 106.2 93.5 86.9 85.2
(8.3) (11.3) | (11.5)  (11.6)
Humboldt 108.0 106.8 79.7 65.4
(8.1) (9.1) (9.7) (9.5)
Franklin 145.0 149.7 65.2 59.6
(6.5) (6.8) (7.6) (7.1)
Pocahontas 12.6 114.4 113.8 116.3
(6.6) (7.5) (7.7) (7.9)
Winnebago 112.4 109.1 98.5 101.3
(6.6) (6.7) 7.7) (6.9)
Wright 122.1 123.9 112.8 111.2
(6.7) (8.1) (7.8) (8.5)
Webster 115.8 118.5 109.6 109.0
(5.8) (6.2) (6.7) (6.4)
Hancock 124.3 123.1 101.0 104.4
(5.3) (63) | (6.2)  (6.6)
Kossuth 106.3 104.2 119.9 121.8
(5.2) (5.4) | (81)  (5.8)
Hardin 143.6 143.8 74.9 78.1
(5.7) (7.9) (6.8) (8.3)

NOTE: Top entry: Mean; Bottom entry: Standard Deviation
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