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I. INTRODUCTION 

This paper develops methods to estimate rates and 
proportions for small areas using information from the 
national household surveys in combination with 
simulated continuous measurement (CM) data. The 
problem is complicated because the existing models 
are mainly designed for continuous variables and 
because microdata from the surveys and the CM are 
not matchable. 

Typically, household surveys are designed to provide 
unbiased estimates of characteristics of interest at the 
national or state levels, but their sample size is not 
large enough for small area estimation. The census 
long form or the CM survey has a larger sample size 
but may result in estimates with much larger bias than 
the survey estimates. 

Two types of small area models, which take into 
account random area-specific effects, have been 
developed in the literature. In the first type, auxiliary 
data are available for each of the population elements. 
Such models are considered by Battese, Harter and 
Fuller (1988), Datta and Ghosh (1991), Dempster and 
Raghunathan (1987), Fuller and Harter (1987), Kleffe 
and Rao (1992), and MacGibbon and Tomberlin 
(1989). 

In the second type of models, only area-specific 
auxiliary data are available. These models are 
considered by Cressie (1989, 1990, 1992), Datta el al 
(1992) Ericksen and Kadane (1985, 1987, 1992), Fay 
(1987), Fay and Herriot (1979), Ghosh, Datta, and 
Fay (1991), and Prasad and Rao (1990). Ghosh and 
Rao (1994) give a comprehensive review of both types 
of small area models. 

the 1994 Current Population Survey (CPS) data along 
with the simulated CM data for Alameda County, 
California. This application and others will be 
investigated in joint research between the Census 
Bureau and the Bureau of Labor Statistics on how 
best to integrate the CM and the CPS data. The 
methods may also be applicable to other such surveys. 

II. ASSUMPTIONS 

A large area A is composed of m small areas A i , 

i = 1, ..., m. The parameter of interest for A i is the 

true population proportion P i • 

A direct estimator p i of P i is available from the 

national household surveys. 

T h e a u x i 1 i a r y 

data x i = ( x i l ,  . . . ,  X i s )  r are available 

from these surveys and from CM for each A i . 

These data are related to P i • 

The transformation g is a function of a single variable 

and has a nonzero continuous first derivative. Let 

g i  = g ( P i ) ,  i = 1 ,  . . . ,  m .  . 

We consider the small area model, 

g = x f i  + _ e  , 

In this paper, we adapt the above methods to use 
national household surveys and CM data to estimate 
rates and proportions at the census tract level. Some 
census tracts may be collapsed to assure a nonzero 
number of observations in the resulting groups. 

We apply the adapted methods to develop indirect 
estimates of unemployment rates taking into account 

where g ,  .~, and o are mxl vectors, .~ is a 

vector of random area effects, _~ represents random 

sampling errors, and g has a multivariate normal 

distribution. X is a mxs design matrix and .[1_ is a 
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sxl vector of unknown parameters, t and e are m 
1 ~  (6~ V(ML) = [ ' 2  i--1 

statistically independent. Let ] ~  and V be mxm 

diagonal matrices with the (i, i)th elements The RMLestimatorsof ~_ and 1;2 minimize 

respectively equal to 1; 2 and 8 i  2 . We also l n ( l V [ )  + l n ( I X T V - 1 X [ )  + 

assume that ( . q _  X.D..)T V-1  ( . g . _  X.~..) 

E ( e [ g) = O, Var ( e [ g) = q , The asymptotic variance of .~2 (RML) is given by 

and t - N(O, E) . 

For our applications, we choose g as the variance 
stabilization function given by 

gi = 2sin-1 (V~) , i=l, ..., m. 

(Cox and Snell (1989)). The variance 

1 2 T2 -i V(RML) = [ - ~ t r a c e ( ~  ( r ) ~ (  ) )  ] 

with 

( ~2 ) = V-1 _ V - I X  ( X r V - I X )  -ZX rV-1  . 

The FH estimator of 1:2 is obtained by 

components 82 i are then given by the sampling simultaneously solving 

variance formulas appropriate for the respective 
household survey. The suitability of the above 
assumptions under this transformation is tested in 
Section VII. 

( g -  X ~ t ) T  V - l ( g _  X~_) = m - s  ,and 

~_ = ( X r V - l X )  -1X rV-Z g 

III. VARIANCE COMPONENT ESTIMATION The QM estimator of 1:2 is given by 

We consider four estimators of the variance 

component 1:2 under the model of the previous 

section. These are the maximum likelihood (ML) 
estimator, the restricted maximum likelihood (RML) 
estimator (Cressie (1989, 1992)), the Fay and Herriot 
(FH) estimator (Fay and Herriot (1979)), and a 
quadratic moment (QM) estimator (Prasad and Rao 
(1990) and Ghosh and Rao (1994)). 

The ML estimators of ~ and x z minimize the 

expression 

ln(lv[) + (g-m~)rv-~(g-x]~) 

m 

(m-s)-~[(z- x2~)~(g- x£) - ~ 6 ~ 
i=I 

m 
2 T + ~ 6 ix_2i (x rx) -~x~] 

i=i 

where 

is the ordinary least square estimator 

of ~ given by 

1~ = ( x ~x) -~x ~g , 

and x/T is the ith row of the design matrix X. 

where V is a mxm diagonal matrix with the (i, i)th Under normality, the variances of FH and QM 

2 element equal to 1; 2 + 6 i  • estimators of 1; 2 are given by 

The asymptotic variance of ~2 (ML) is given by m 
V(FH) = V(QM) = 2 m - 2 E  (62i + 1;2)_2 

i=1 
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IV. EMPIRICAL BEST LINEAR UNBIASED 
PREDICTORS (EBLUP) AND THEIR MEAN 
SQUARE ERRORS (MSE) 

With I;2 estimated by one of the four methods in 

Section III., let ~_ be the best linear unbiased 

estimator of ~ given by 

= (X r U - 1 X )  - i X  r U - l g  , 

where U is the mxm matrix obtained from V by 

replacing 1;2 by its estimator "22 . Let 

7 i  = ~2 / (~2+82 i ) ,  

be the measure of uncertainty in the model relative to 
the total variance. Then the regression synthetic 

estimator of ~ is x T~ and the EBLUP 

of g ( P i )  is given by 

where ~ i  is thevalueof Y i when .~2 is replaced 

by its estimator "~2 . 

The MSE o f - q i  (Cressie (1992), Kacker and 

Harville (1984), and Prasad and Rao (1990)) consists 
of three parts. 

The first part is due to the measure of uncertainty in 
the model relative to the total variance. The second 
part is due to estimation of unknown parameters in 
the model. The third part is due to estimation of 
variance components of the random area effects. 

V. ADJUSTMENT OF EBLUP ESTIMATORS 

Since national household surveys are designed to 
provide unbiased estimates for large areas, we will 
make an adjustment to the EBLUP estimators for 

each A i such that an appropriately weighted 

sum of these adjusted estimators equals the household 
survey estimate for the large area. 

Let (i, j) denote the jth person in small area A i in 

a household survey and let f i j  be the f'mal survey 

weight assigned to (i, j), i = 1, ..., m, j = 1 

,..., n i , n i being the number of persons in the 

sample in the base population with respect to which 
the characteristic C of interest is measured. 

We define the variables bij and Cij as 

b i j  = 1, if (i, j) belongs to the base population, 

= 0 otherwise 

Cij = 1, if (i, j) has characteristic C, 

= 0 otherwise 

The h o u s e h o l d  su rvey  e s t i m a t e  P i  of 

proportion P i of persons with characteristic C 

in A i is defined as 

ni n i 

j:1 j:z 

where c i and b i are respectively the weighted 

number of persons with characteristic C, and weighted 
base population with respect to which C is measured, 

in A i , i  = 1,. . . ,m. 

The corresponding household survey estimate for the 
large area is 

m nl m ni 

i=I j= l  i=i j= l  

m 

= ~ w ~ p ~  
i=l 
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where 
m 

: / . 

i--'1 

Thus the household survey estimate for the large area 
is a weighted sum of the household survey estimates 

of small areas with weights w i , i = 1, ..., m .  

We define the modified E B L U P  ~imod of P i in 

the following steps: 

This modification is similar to the one suggested by 
Battese, Harter, and Fuller (1988). Their model 
assumes that element-specific auxiliary data are 

available for each A i . 

Defining for i = 1, ..., m, 

m 
^ ~ 2 "  

= / w i  , 

i = 1  

with M1 = M S E  (/:3 i)  defined in Section IV, 

m 

i=I 

If we thus define 

m 
,- mod + 

i=i 

it follows that 

m 

w: F - p .  
i = 1  

Thus the weighted average of the modified EBLUP 
estimators equals the household survey estimate for 
the large area. We note that 

the above calculation of /:3~ °d does not require 

person-specific data. 

VI. ESTIMATION OF UNEMPLOYMENT RATES 

We illustrate the above estimation procedures by 

taking{ A i ,  i = 1 ,  . . . ,  m } as the census 

tracts in Alameda County, California. Some tracts are 
combined to result in nonzero number of observations 

in each A i in the CPS samples during 1994. 

The direct estimate Pi of the unemployment rate 

in A i is calculated as the ratio of weighted number 

of unemployed to the total weighted labor force 
sixteen years or older, in the twelve monthly samples 
in 1994. The function g is taken as described in 
Section II. 

The design matrix X is defined with s = 2 as 

Xi I _-- ~i mksin_ I ( 1 / Ni~- ~) , and 

X i 2  = 2 s i n - l ( ( p  cm) , i =  1,. . . ,m. 

where p/C= is the unemployment rate observed 

in A i in the simulated CM sample, k = 1,000 is a 

normalizing constant, and N i is the total labor force 

represented by the sample in A x . 

2 The diagonal elements { 8 i  } of v are calculated 

from the sampling variance formulas for CPS. This 
gives 

2 2 b G 8i : a 

where a is the adjustment of the standard error 

estimate from monthly to annual data, and b G is 

the variance generalization parameter for the total 
unemployed (U.S. Bureau of Labor Statistics 
(October, 1993)). 

There are a total of seventy two tracts in the 1994 
CPS sample for Alameda County. We collapsed thirty 
two tracts, giving m = 40. 
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VII. CHECKING THE SUITABILITY OF THE 
ASSUMED MODEL 

When the model is correct, the standardized residuals 
given by 

= _ x r l ~  ) /((~ + 6 ~- r i  (gi :_u_ i ) ,  

i = 1 ,..., m are approximately distributed as N(0, 1) 
variables. 

We first verified that the skewness and kurtosis of the 
standardized residuals for each of the four methods of 
estimation lie within the 95 percent confidence 
intervals for these statistics. 

We also applied the Shapiro-Wilk test for testing the 
hypothesis that the standardized residuals are a 
random sample from the N(0, 1) distribution. This 
test accepted the null hypotheses for each of the 
estimation methods. 

VIII. A COMPARISON OF THE VARIANCE 
COMPONENT ESTIMATION METHODS 

The four estimation methods, when applied to the 
Alameda County data, gave the following estimates 

of ~_ and 1; 2 . 

RML ML FH QM 

1 1.6193 1.6305 1.6504 1.7131 

2 .5424 .5428 .5436 .5464 

Table C gives MSE estimates associated with the four 
EBLUP estimators. While RML has other 
advantages, RML consistently results in higher MSE 
than ML. 

TABLE A 

1994 UNEMPLOYMENT RATES 
Alameda County, CA (%) 
Weighted CPS: 9.37757 

Tract- 
Group CPS RML ML FH QM 

05 06.4 08.9 09.0 09.2 09.8 
10 13.5 08.4 08.3 08.0 06.9 
20 06.6 06.9 06.9 06.9 07.0 
30 09.3 16.1 16.3 16.6 17.6 
40 07.2 07.3 07.3 07.3 07.4 

RML for the County: 8.44504 

TABLE B 

1994 UNEMPLOYMENT RATES 
Alameda County, CA (%) 
Weighted CPS" 9.37757 

Tract- (MODIFIED) 
Group CPS RML ML FH QM 

05 
10 
20 
30 
40 

06.4 09.6 09.7 09.9 10.5 
13.5 09.3 09.2 08.9 07.7 
06.6 07.6 07.6 07.7 07.9 
09.3 16.7 16.9 17.2 18.1 
07.2 08.4 08.5 08.6 09.1 

.~ 2 .0414 .0386 .0338 .0209 

Table A shows the four sets of EBLUP estimators of 
unemployment rates along with the weighted CPS 
estimates, for five of the tract groups. 

Table B shows the modified EBLUP estimators of 
unemployment rates. An appropriately weighted sum 
of these estimates, for the forty tract groups, equals 
the CPS estimate of unemployment rate for the whole 
county. This latter rate is equal to 9.37757 percent. 

TABLE C 

1994 UNEMPLOYMENT RATES 
Alameda County, CA 
100xMSE 

Tract- Sample- 
Group Size RML ML FH QM 

05 26 .217 .210 .211 .176 
10 54 .154 .147 .144 .110 
20 51 .131 .127 .130 .115 
30 11 .465 .443 .424 .309 
40 253 .042 .041 .043 .045 
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