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1. Introduction 

In real world stratification applications, two scenarios 
are common. Often the survey variable of interest is not 
available prior to conducting the survey, leaving the 
statistician to stratify with an auxiliary variable. And 
secondly, many times data are skewed, suggesting that 
a certainty stratum is necessary. Singh (1971) suggested 
a modification to the Dalenius and Hodges (D&H) 
(1959) cum-~/f stratification rule when auxiliary data are 
used. Lavallte and Hidiroglou (L&H) (1988) proposed 
a method for determining stratification boundaries with 
a certainty stratum. This paper separately documents 
the effect of these two approaches. In addition, a 
modification to the L&H procedure when stratifying 
with auxiliary data is proposed and examined. As a 
result of this research, a generalized stratification 
program in SAS was developed. The code can be 
obtained from the authors. 

Section 2 provides additional details on (a) Singh's 
procedure, (b) the L&H algorithm, and (c) our 
modification of the L&H algorithm. Topics (a) and (c) 
postulate a stochastic model relating the survey variable 
to the auxiliary variable. In Section 2 we also discuss 
the estimation of parameters for such a model and the 
use of models in allocation. Sections 3 and 4 discuss 
the methodology and results of a simulation study that 
we performed involving skewed populations. Section 5 
presents our conclusions. The simulation study allowed 
us to address the following questions: 

How does the method of forming intervals for the 
auxiliary data affect the cum-~/f rule procedure? 

How does the method of determining stratum 
boundaries affect the total sample size resulting from a 
fixed-precision Neyman allocation? 

How does the method of determining initial stratum 
boundaries affect the L&H algorithm and modified L&H 
algorithm? 

What is the effect of model-assisted allocation on the 
expansion-estimator variance under a fixed-sample-size 
Neyman allocation? 

What is the effect of the number of strata on total 
sample size and expansion-estimator variance? 
2. Background 

2.1. Cum-~/f rule 
Cochran (1977) provides a detailed description of 

the cum-~/f rule of Dalenius and Hodges (1959), which 
constructs strata from the frequency distribution of the 
stratification variable. Cochran (1961) and Hess, Sethi, 

and Balakrishnan (1966) compare the performance of 
the cum-~/f rule with other methods of constructing 
strata. The latter authors report that "[t]here is some 
evidence that boundary construction by cum-~/f rule is 
sensitive to discontinuities or zero classes in the 
frequency distribution." They recommend introducing 
"class intervals of unequal width whenever classes with 
zero frequencies occur, the width of the class being such 
as to bridge the gap from one non-zero class to 
succeeding non-zero class." Hess, Sethi, and 
Balakrishnan find that this use of unequal intervals in 
the frequency distribution, along with the corresponding 
adjustment to the cum-~/f rule (see Cochran, 1977) , 
results in a lower expansion-estimator variance than 
when equal intervals are used. 

Cochran (1977) discusses the effect of the number of 
cum-~/f strata on the expansion-estimator variance when 
the stratification variable is used for Neyman allocation. 
He concludes that more than six strata produce very 
little additional variance reduction unless the correlation 
between the stratification variable and the survey 
variable exceeds 0.95. This conclusion, however, 
follows from the assumption that a regression model 
with homoscedastic errors relates the survey variable to 
the stratification variable. Hess, Sethi, Balakrishnan 
(1966) describe a population in which the correlation 
between the survey variable and the stratification 
variable is 0.91 and Cochran's conclusion appears not 
to hold. They attribute this to the presence of 
heteroscedasticity of the errors about the regression line. 

2.2. Singh's procedure 
Singh's procedure assumes there exists a model 

Yi = 2(x, ) + e , ,  Em(elx)=0, Vm(elx)= qb(X), 
i= 1 ..... N, where E m and V m denote the expectation and 
variance, respectively, under the assumed model. 
Let Va[.Q(,v)] denote the sample-designNvariance of the 

expansion estimator for M(y) -- 1_ ~y~  . Singh's 

procedure finds the stratum Nb6%ndaries that 
minimizes E,,,V,J.3~fy)] under a fixed-cost optimal 

allocation. It is a cum-3,/p(x) rule, where 
p(x)=q(x)f(x), with fix) being the frequency of units 
in the particular interval and q(x) = {~2(x) C'(x) + 
C2(x) [qb" (x)] 2 + 4 C2(x) # (x) [;~" (x)]2-2#(x) C(x)~" (x) 
C" (x)} / [qb(x)C(x)] 3/2, where C(x) is the survey-data 
collection "cost" for a unit having auxiliary data equal 
to x. If C(x) is constant, q(x) simplifies (disregarding 
multiplicative constant terms) to q(x) = {[#'(x)] 2 + 
4~(X)[~" (X)] 2} / [~(X)] 3/2. In the simulation study that we 
describe below, we used X(x)=a + ~x and ¢(x)=tZx2g. 
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2.3. L&H algorithm 
Sigman and Monsour (1995) review methods for 

constructing strata for economic surveys. One of these 
methods is the algorithm by Lavallde and Hidiroglou 
(1988), which constructs a certainty stratum and 
determines stratum boundaries and stratum sample sizes. 
for a power-allocated stratified sample of non-certainty 
sample units. Hidiroglou and Srinath (1993) present a 
more general form of the algorithm, which by assigning 
different values to operating parameters yields a power 
allocation, a Neyman allocation, or a combination of 
these allocations. We confine our discussion to the use 
of the L&H algorithm with Neyman allocation. 

Assume that one wants to construct L strata from 
stratification data x i, i =  1,2 ..... N, by using the x i to 
determine stratum boundaries b h , h=0,1 ..... L,. such that 
min{xi}= b o < b I < .  . .<bz_ / < b L = m a x  {x~} and 
bL_ ~ and b L are the boundaries of the certainty stratum. 
Let c denote the fixed coefficient of variation for 
estimating. From equation 2.2 of Hidiroglou and 
Srinath (1993) it follows that the needed sample size 
under fixed-precision Neyman allocation 
is n - NW z + NA :~/F where W h = proportion of the 

population belonging to stratum h 
L-1 

A ~ We(') (1) 
= ll'h 

h .1  

L-I 

F =  ~ ~ c v ) ] :  + ~ w : s ~ :  (2) 
h-I 

and Sh (y) = the standard deviation of the Yi belonging 
to stratum h. 

When constructing strata, however, one has only x~, 
i--1 ..... N, and not the y~, i= 1 ..... N. Thus the L&H 
algorithm replaces M(y) and Sh (y) with M(x) and Sh (x), 
respectively, and then finds the b h that minimize n by 
setting On/Obh=O for h= 1 .... ,L-1. The solution which 

produces the minimizing b h involves calculating the first 
and second stratum moments of the xi and does not 
involve the frequency distribution of the x~ as the Singh 
and D&H methods do. 

A number of papers describe applications of the L&H 
algorithm. Detlefsen and Veum (1991), who 
investigated the L&H algorithm for 3, 6, 9, and 12 
strata, observed that the algorithm's convergence was 
slow (often 50 to 100 iterations) or non-existent. They 
also found that different starting values of stratum 
boundaries for the same population resulted in different 
ending boundaries, and many times the boundaries 
differed substantially. Slanta and Krenzke (1994) 
carefully studied this latter problem and concluded that 
convergence of the algorithm should be determined on 
the basis of the Sample size instead of the boundary 
values. They found that the boundary values can vary 
greatly in the neighborhood of the minimum sample 
size, whereas the sample size varies slightly. 

2.4. Modified L&H algorithm 
We developed a model-assisted version of the L&H 

algorithm, which we call modified L&H by assuming 
there exists the following model: 

y ,=  ~+f~(x,÷Ido+d,x,÷d2xTe,), E~(eJx>0, V~(eJx)-l, (3) 

for i-1,2,.. . ,N. (Hidiroglou (1994) discusses a similar 
modification to the L&H algorithm for d~ = d 2 = 0.) 
Then, z , -  (y,-tx)/~ = x,+ Ido, d,x:d2x?er (4) 

The modified L&H algorithm replaces M(y), [S, (y) ]21 
and c in equations (1) and (2) with EmM(Z), Em[Sh(Z)] 2, 
and c ' ,  respectively, where 

(c') 2 = E m vd(_~l(z))/[E,,~(z)] 2 (5) 

and then finds the b h that minimize n by 
setting On/abh=O for h=  1 ..... L-1. From equation (4) 

it follows that Em[Sff)]2= [S~>]2+Mh(do+dlx+dzx2), where 

Mh( ) denotes the mean of values in stratum h, and 

E ~ ( z )  = M(x).  Since zi = (Y:~O/P, it follows that 

Vd(ff(Z)) = V~.a?t(V))/~ 2 = C 2(M(v))2/~ 2. Substituting this 

into equation (5) and simplifying yields 

(c'): = c :(~+ f~M(x)):/[ f~M(x)]:+c 2 f~ 2V [M(x)]/[ ~M(x)]2 

But Vd~l(x~O(Nl) .  Hence c'= c(a+~M(x))/[~M(x)]. 

A straight-forward but tedious derivation yields that 
each b h, h = 1, 2 ..... L-I, is the solution of the 

quadratic equation a'hb2+ ~'hbh + Y'h = O .  

The coefficients a,*, ~h*, and Vh* are in terms of  
Mh =Mh(x), Sh2=Em[Sh(~)] 2, A,  F, d o. it 1, and d 2, and for 
h = 1, 2 . . . . .  L-2 are 

a~= %(l+d 2) 

f3"h"2[A(Mh'Mh"')-F( Mh Sh Mh'l) ] ÷d'eh Sh 

"~h--F -A ~fh-"~21) + do6h 
Sh Sh, l 

where % =  F (1/S h - l/Sha ) , and for h = L-l, 

a~_ I -- ezq(l + d 2) 

~:-l"-2M'L-I(F/~L-I- A)÷ diaL_ 1 

Y'z-I = F -- - AMI_ I - F2/A + d o ez. i 
L-I 

where ¢Vl - F/SLq - A. Since M h, S h, A, and F depend 

on the b h, it is necessary to solve for the b h in an 
iterative fashion. 

2.5 Model-assisted allocation 
Let n h denote the sample size in stratum h. If the 

Sh cy) are known, then the Neyman allocation nhtr WhSh (y) 
can be calculated. A model-assisted Neyman allocation, 
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as discussed by Dayal (1985), is nan VC'h~/Em~hO')~. 

2.6. Parameter estimation 
If g is known then the model Yi = ~ + px; + 

6xi~e~, can be transformed to v i = etuli + p u2i + 6ei, 
where v i = yi/xi g, U l i ' - ' X i  "g and u2i = x / ~ .  Then a~ and 
/~ can be estimated via ordinary least squares and 62 is 
estimated by the mean sum of squares for error. 
Brewer (1963), Harvey (1976), and Knaub (1993) 
discuss ways to estimate g. Knaub observes that for 
economic data g is frequently close to 0.5. 
3. Methodology 

For our simulation study, we generated two sets of 
skewed populations, which we refer to as study 

populations. The model Yi = ot -k- t~X i + 6xigei, was 
used to generate 10,000 observations, where log x is 
distributed N(0,1), ei-N(0,1 ), ~ =7424, [3 = 17.7, g = . 5 ,  
6 =225. Using this data set and the model in equation 
(3), we solved for the parameters d0=0, d~= 161.59, 
and ~ =0. This process was repeated 10 times, creating 
10 populations, each containing a true survey variable 
of interest (y) and an auxiliary or stratification variable 
(x). Using these parameters the average correlation 
between x and y was high at .9979 with a standard 
deviation of the correlations of .0006. The process was 
repeated using the parameters, cc=7424, [3=17.7, 
g = . 5 ,  6 =2200,  d0=0, d l=  15448.95, and d2=0. Ten 
additional populations were generated having an average 
correlation of .8932 with a standard deviation of the 
correlations of .0330. This process created ten highly- 
correlated study populations and ten moderately- 
correlated study populations. 

In this document we compared four stratification 
procedures: D&H, Singh, L&H and our modified L&H 
procedure using Neyman allocation with a fixed 
coefficient of variation (CV) of 0.01. We also examined 
the effect of model-assisted allocation with a fixed- 
sample size. At minimum, we compared these 
procedures when assigning 5 or 10 strata. Paired t-tests 
were used to see if differences are significant at the 0.10 
level. The results are documented for the 10 high- 
correlated study populations and the 10 moderately- 
correlated study populations. 

To obtain estimated parameters needed for the Singh 
and L&H stratification methods and model-assisted 
allocation, additional populations, which we refer to as 
estimation populations, were generated following the 
same distribution as the study populations. The average 
correlation of the first set of 10 estimation populations 
was .9976 with a standard deviation of .0007. The 
average correlation of the second set of 10 estimation 
populations was .8922 with a standard deviation of 
.0308. Using the D&H cum ~/f(x) rule, 5 strata were 
created. Using Neyman allocation to meet a CV of 
0.01, a sample was drawn from each population. To 
find the parameter estimates, we assumed the sample 

data fit the model: Yi = O~ "]- t~X i dr 6xigei, where 
et-N(0,1). Although we attempted to use the plots 
discussed in the Knaub paper to estimate g, the plots 
generated were flat, and Knaub didn't  present specific 
criteria to use when plots were fiat. Assuming g=0 .5 ,  
we used the sample from each estimation population to 
estimate an a~, p, 62 for each corresponding study 
population using the methods described in Section 2.6. 
The parameters d0and d 2 were set to 0 and d~= 62/~32. 

Mean estimated parameters and their standard 
deviations are found in Tables l a and lb. 

Table la: Parameters and Standard Deviations for Populations 
with mean correlation = .9979 
Parameter Actual Mean of Est. Std. Dev. 
c~ 7424 7442.11 92.90 
f~ 17.7 17.74 0.06 
g .5 .5 0 

225 220.3 9.88 
d,, 0 0 0 
dl 161.59 154.65 14.26 
d 2 0 0 0 

with mean correlation = .8932 
Table lb: Parameter and Standard Deviations for Populations 

Parameter Actual Mean of Est. Std. Dev. 
7424 9322.12 315.36 
17.5 30.47 0.75 

g .5 .5 0 
2200 1635.06 28.51 

d,, 0 0 0 
d I 15448.95 2888.37 228.27 
de 0 0 0 

As discussed in the background section, the L&H 
methods use an iterative procedure. Due to time and 
resource limitations, we limited the number of iterations 
to 30. For those nonconverging runs, the boundaries at 
the 29th iteration were used to partition the observations 

into strata. 
4. Results 

4.1 Interval Class Creation 
Prior to stratification, the data had to be partitioned 

into interval classes. Initially we partitioned each 
population into 500 equal sized intervals based on x. 
Because the data were skewed, often the first stratum 
contained only one interval class. This was not a 
problem when 5 strata were requested, but with a large 
number of strata, the situation occurred where the first 
stratum contained over half of the observations and the 
remaining strata had varying numbers of observations. 
As a result, there was uneven allocation across the 
strata. To remedy this, instead of creating interval 
classes of equal sizes on x, we created 500 equal sized 
interval classes on the natural log of x. When we 
stratified using the x data, we adjusted our procedures 
by the method proposed in Cochran (1977) for unequal 
interval lengths. 

Table 2 shows the effect of interval classes on the 
D&H stratification with Neyman allocation to meet the 
0.01 CV requirement on the 10 populations with 
average correlation of .9979. As the number of strata 
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increase beyond 5, the total sample size using interval 
classes created on the log of x is significantly less than 
the total sample size using interval classes created on x. 
The stratum sample sizes were more equally distributed 
using the intervals created using the log of x. Because 
of this trend, all analysis presented in this paper used 
the interval classes created on the log of x. 

Table 2" Average Total Sample Size using strata created using 
500 equal sized intervals on the log of x vs. Average Total Sample 
Size from strata created using 500 equal intervals on x. 

Strata Interval Class log (x) Interval Class with x 
5 811.01 754.73 
10 440.91 533.05 
15 350.37 485.42 

Some preliminary work was done to find a "reasonable" 
number of intervals to use. When less than 500 
intervals were used, often, because the data were 
skewed, the first stratum contained only one interval, 
even when we used log(x) to partition the data. Using 
1,000 intervals produced similar results to using 500 
intervals, so we decided to use 500 intervals. 

4.2 Comparison of D&H, Singh, L&H and ML&H 
Stratification Procedures with fixed-precision Neyman 
Allocation 

Table 3 documents the effect of the D&H and Singh 
stratification methods on our populations for Neyman 
allocation. Table 3 also contains results from Neyman 
allocation using the L&H procedure and our modified 
L&H procedure. All allocations met the 0.01 CV 
requirement. Estimates for the actual parameters are 
used for Singh, L&H and modified L&H (ML&H) 
methods. See Table 1 for actual parameters. Strata 
were created using 500 equal sized intervals on the 
log(x). Initial boundaries are needed for both L&H and 
modified L&H procedures. To determine initial 
boundaries, we selected the method that proved best for 
each of the populations when comparing the D&H and 
S ingh methods. For the populations with average 
correlation of .9979, initial boundaries were found by 
the D&H stratification method. For the populations 
with average correlation of .8932, initial boundaries 
were found by the Singh stratification method. 

Table 3" Average Total Sample Sizes for four Stratification 
Procedures 

Strata 
5 
10 

Population with average correlation of .9979 

D&H ~ L&H 
811.01 1093.27  629.34 
440.91 5 1 9 . 7 5  413.60 

ML&,H 
629.78 
419.73 

Strata 
5 
10 

Population with average correlationof .8932 

D&H Sin_jn_ghh L&H ML&H 
2801.71 2615.91 2534.75 2501.75 
2370.42 2286.22 2314.66 2290.17 

For the highly-correlated populations with average 

correlation of .9979, the total sample size for Neyman 
allocation using D&H cum ,/f(x) stratification method 
was significantly smaller than the total sample size using 
the S ingh cum 3~/p(x) stratification boundaries. This 
difference between D&H and Singh was significant 
when both 5 strata and 10 strata were created. 
However, the opposite occurred for the moderately- 
correlated populations. When the correlation was .8932, 
significantly smaller total sample size occurred when the 
Singh method of stratification was used compared to the 
D&H stratification. This, too, was significant for both 
5 and 10 strata. 

For the highly-correlated populations, there was no 
significant difference in total sample size between L&H 
and modified L&H when either 5 or 10 strata were 
requested. For the moderately-correlated populations 
there was no significant difference in total sample size 
between L&H and modified L&H when 5 strata were 
requested, but there was a significant difference when 
10 strata were requested. When 10 strata were selected, 
significantly smaller total sample size occurred when the 
modified L&H method of stratification was used. 

These L&H procedures were compared to the D&H 
and Singh method. Since the required CV was small, 
all observations in the last stratum were selected when 
using both the D&H and S ingh methods, hence we 
could compare across all four methods. The D&H and 
Singh programs both ran much faster than either of the 
L&H iterative programs. Savings in total sample size 
would warrant using L&H or modified L&H over D&H 
or Singh stratification. In the highly-correlated 
populations the total sample size from Neyman 
allocation with L&H and modified L&H stratification 
boundaries was significantly smaller than the total 
sample size with both D&H and Singh stratification 
boundaries for both 5 and 10 strata. In the moderately- 
correlated populations the total sample size from 
Neyman allocation for L&H and modified L&H was 
significantly smaller than both D&H and Singh for 5 
strata. But for 10 strata, the total sample size from 
Neyman allocation with Singh boundaries was 
significantly smaller than with L&H boundaries, and 
there was no significant difference in total sample size 
between Singh and modified L&H boundaries. 

4.3 Effect of Initial Boundaries on L&H and ML&H 
To test the effect of initial boundaries on the L&H 

procedures, we compared the allocation needed with 
Singh initial bounds and either L&H or ML&H 
procedure to the corresponding allocation when D&H 
initial bounds were used instead. We did this for the 
moderately-correlated populations. Table 4 provides 
results when the boundaries differ. 
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Table 4: Effect of Initial Boundaries between L&H and ML&H 
on Total Sample Sizes from Neyman Allocation 

Initial Boundaries" D&H 
Strata L&H ML&H 
5 2545.78 2495.76 
10 2358.69 2294.03 

Initial Boundaries: Singh 
Strata L&H ML&H 
5 2534.75 2501.75 
10 2314.66 2290.17 

Unlike when the Singh boundaries were used, when 
D&H initial boundaries are used, there is significantly 
smaller total sample size with the modified L&H 
(ML&H) for both 5 and 10 strata compared to the total 
sample size with L&H stratification. The total sample 
size with D&H initial bounds and modified L&H 
stratification is not significantly different than the total 
sample size using Singh initial bounds and modified 
L&H stratification. The total sample size with D&H 
initial bounds and L&H stratification is significantly 
larger than the total sample size using Singh initial 
bounds and L&H stratification. This seems to imply 
that for the moderately-correlated populations the 
modified L&H procedure can compensate for non- 
optimum initial bounds. 

4.4 Effect of Model-Assisted Allocation on the 
Expansion-Estimator Variance 

Table 5 provides average CVs when model-assisted 
allocation with estimated parameters is used with the 
four different stratification procedures" D&H, Singh, 
L&H and modified L&H. The sample size was fixed 
for each of the two sets of populations. For the highly- 
correlated populations we fixed the sample at 811. This 
sample size was the average total sample size from 
Neyman allocation for the D&H procedure with 5 
strata. For the moderately-correlated population we 
fixed the sample at 2802. This sample size was the 
average total sample size from Neyman allocation for 
the D&H procedure with 5 strata. As in section 4.3, 
the L&H and modified L&H stratification procedures 
use initial boundaries of D&H or Singh. For the highly- 
correlated populations initial boundaries were found by 
the D&H stratification method. For the moderately- 
correlated populations initial boundaries were found by 
the S ingh stratification method. 

Table 5" Average CV using the Model-Assisted Allocation on 
D&H, Singh, L&H and ML&H Stratification Methods 

Population with correlation of .9979 and sample size of 811 

Strata D&tt Sin~h L&H ML&H 
5 .0100011 .0124100 .0080977 .0082000 
10 .0066900 .0074957 .0065214 .0065789 

Population with correlation of .8932 and sample size of 2802 

Strata 
5 
10 

D&H 
.0100267 
.0085798 

Singh 
.0098264 
.0084599 

L&H ML&H [ 
.0091849 .0084718 
.0085695 .00819.13. 

For the highly-correlated populations D&H 
stratification provided an estimate with significantly 
lower variance than Singh stratification. Modified L&H 
stratification provided an estimate with significantly 
lower variance than both D&H and S ingh stratification. 
And L&H stratification provided an estimate with the 
lowest variance of all the stratification methods. The 
same results apply when both 5 and 10 strata were 
requested. But for the moderately-correlated 
populations, slightly different results were found. 
When 5 strata were requested, the Singh stratification 
procedure provided an estimate with significantly lower 
variance than the D&H stratification. The L&H 
procedure provided an estimate with significantly lower 
variance than the D&H and Singh stratification. And 
the modified L&H procedure provided an estimate with 
the lowest variance of all the stratification methods. 
However, when the number of strata increased to 10, 
the L&H procedure provided no different results than 
the D&H procedure. The Singh procedure provided a 
significantly lower variance than the D&H and L&H 
procedure. And the modified L&H procedure would 
provided an estimate with the lowest variance. 

4.5 Effect of the Number of Strata on Total Sample 
Size 

As stated in the background section, Cochran stated 
that beyond six strata there is little reduction in variance 
unless the correlation i s  greater than .95. In the 
analysis presented in this document, we found continued 
decrease in sample size beyond six strata, even with the 
population with average correlation of .8932. Cochran 
assumed the model Yi = ot W flXi + (Sxieei, e i -N(0,1), 
and g=0 .  This is the model we used to generate our 
study populations except that g was greater than 0. 
Hess, Sethi, and Balakrishnan (1966), noted that with a 
population with correlation of .91, heteroscedasticity 
was a probable reason for Cochran's conclusion not to 
hold. A "g" greater than 0 causes heteroscedasticity 
about the regression line of x and y. 

To test the heteroscedasticity theory, we generated 10 
new populations. Except for 6 =90,000 and g=0 ,  the 
same parameters were used as in our populations with 
average correlation of .8932. Table 6 provides the total 
sample size from Neyman allocation for D&H 
stratification for the two sets of populations. The 
allocation meets a 0.01 CV for 5, 10, and 15 strata 
using the D&H stratification method. The populations 
with g=  .5 have an average correlation of .8932. The 
populations with g = 0  have an average correlation of 
.9013 between the x and y variables. 

Table 6: Average Total Sample Sizes from Neyman Alloca.tjon 
using D&H stratification with 500 equal sized intervals on the log 

Strata Populations where g= .5 populations were g=0 
5 2801.71 3110.20 
10 2370.42 3063.30 
15 2273.30 3047.57 
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The average percent decrease in total sample size when 
increasing the number of strata from 5 to 10 was 18 % 
for the population with g=0.5 and was 1.5 % for the 
population with g=0.  The average percent decrease in 
total sample size when increasing the number Of strata 
from 10 to 15 was 1.5 % for the population with g=0.5 
and only 0.5 % for the population with g=0.  
5. Conclusions 
- The method of forming interval classes effects the 
ultimate allocation. For skewed data, we found 
intervals based on the log of x improved our 
stratification. 
- For populations with high correlation between the 
survey variable of interest and the stratification variable, 
the S ingh and modified L&H stratification procedures 
do not produce more optimum stratum boundaries than 
the D&H and L&H procedures. When the correlation 
was lower, in our example the correlation was close to 
.9, there was definite advantages to using the Singh and 
modified L&H procedures over the D&H and L&H 
procedures. In fact, with a low correlation and a CV 
that guaranteed a certainty stratum, the S ingh procedure 
appeared to produce stratum boundaries that lead to 
significantly lower total sample size than those 
boundaries produced by the L&H procedure. 
- With a population with correlation around .9, we 
found that the modified L&H procedure could 
compensate for poor initial boundaries. 
- With a fixed-sample-size, model assisted allocation 
and a correlation close to 1, for 5 strata, the CV 
associated with either the L&H or modified L&H was 
approximately 20% lower than the CV associated with 
a D&H stratification. When the number of strata 
increase to 10, the savings was only 2%. The Singh 
procedure produced a higher CV than the D&H method 
under those circumstances. When the correlation 
between the survey variable and the stratification 
variable decreased to .9, for 5 strata, the CV associated 
with modified L&H was approximately 18 % lower than 
the CV associated with a D&H. When the number of 
strata increase to 10, the savings was approximately 
5 %. The CV associated with the L&H procedure for 5 
strata was approximately 9% lower than the CV 
associated with the D&H method, but when the number 
of strata increased to 10, there was no significant 
difference between the CVs. 
- For populations with correlation of .9 and 
heteroscedasticity between the survey variable and 
stratification variable, we found the total sample size 
continues to decrease beyond Cochran's six-strata rule. 
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