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1. INTRODUCTION 

It is a common practice for statistical agencies to 
conduct large scale surveys which are repeated over 
time and consist of overlapping panels. For example, 
the monthly Canadian Labour Force Survey (LFS) 
consists of six panels (or rotation groups) based on a 
multistage stratified duster design for the non- 
institutional population of age 15 or over. In LFS, 
each panel stays in the sample for six consecutive 
months, so that the month-to month overlap between 
samples is 5/6. The main characteristics or study 
variables of interest are monthly levels, month-to- 
month changes and quarterly averages for employment 
(E) and unemployment (U). In this paper, we will 
mainly be concerned with estimation of levels for 
broad (in contrast to small) areas. From these 
estimates, month-to-month changes and quarterly 
averages can of course be obtained. 

Since several study variables are measured on the 
same unit, the estimate of a variable is correlated with 
estimates of other variables. Furthermore, due to 
overlapping samples, the estimate of a variable is also 
correlated with estimates of the same variable , as 
well as other variables, over time. Clearly, the 
precision of the usual estimate of a variable can be 
improved, in general, by using estimates of other 
correlated variables. It is interesting to note that the 
provision of partial overlap is not only attractive from 
the view-point of saving field costs and reducing 
respondent burden, but also essential for obtaining 
more precise estimates using past information. If 
there is complete overlap or no overlap, no 
improvement can be made. Throughout this article, 
we follow the d-based (d for design) approach in 
which f'mite population parameters are assumed 
nonrandom. The alternative model-based approach 
involving modelling of random f'mite population 
parameters (as in the case of small area estimation) 
will not be considered here. Incidentally, in the 
model-based approach partial overlap is not 
necessarily required. 

The term "composite estimate"will be used in 
general to denote a linear combination of current and 
correlated past estimates adjusted for change. The 
prefix "univariate" will be used when current and past 
information on the same variable is used. The prefix 
"multivariate" will be used when current and past 

information about several variables is used. More 
specifically, the set-up can be as follows. Consider two 

occasions t / <t, for simplicity, and let 0y,,, and 0y, 
denote respectively the usual (full-sample) estimates 
of the finite population parameters (e.g. totals)Oy, t, 

and Oy, for variables y/  at t / and y at t;0y, is 
typically the generalized regression (GR) estimator 
which incorporates information about auxiliary 
variables (such as demographic) with known 

population totals. Also, let 0y,m and 0y,,,m, denote the 
corresponding estimates for the matched subsample; 

m signifies (backward) matching with respect to t / , 

and m / signifies (forward) matching with respect to t .  
Now, with two occasions, there are three estimates for 

Oy,. These are 0y,, 6yt, , and 0y,,, adjusted for change, 

i.e., Oy,,, + (Oytm - 0y,,,m,)" The problem of (univariate) 
composite estimation is to f'md a suitable linear 

combination of these three estimates. If z denotes 
another correlated variable at time t (e.g., z could be 
E and y could be U in the case of LFS), then the 
problem of (multivariate)composite estimation is to 
f'md a suitable linear combination of five estimates: 

Oy, , Ortm' Oy't' + ( Oy,, - Oy't'r,')' O,t + (0yr, - 0,t,) and 
+ - • 

The literature on composite estimation is quite 
rich and covers a period of over fifty years. For a 
review, see Binder and Hidiroglou (1988). For f'mite 
populations, an estimator termed K-Composite was 
proposed by Hansen, Hurvitz, and Madow (1953), and 
its properties were studied by Rao and Graham (1964) 
for general rotation schemes. Gurney and Daly 
(1965) proposed a more general estimator termed 
AK-Composite based on elementary or panel level 
estimates. In Section 2, we review K- and AK- 
Composite estimators as well as their limitations 
which explain why they are not commonly used. To 
get around some of these limitations, recently Fuller 
(1990) proposed an important idea of composite 
weighting (referred to in this paper as AKC, C for 
calibrated) which relates composite estimation to 
weight calibration in sampling (WCS). The AKC- 
Composite was studied by Lent, Miller, and CantweU 

420 



(1994). It will be seen in Section 2 that this method 
is still not satisfactory. 

In this paper, we propose a method termed MR- 
Composite which based on ,the modified regression 
methodology of Singh (1994). It is multivariate in 
nature and overcomes several limitations of existing 
methods. Like AKC, it also uses WCS for 
computation, but in a somewhat different manner, and 
is quite easy to implement. The MR methodology is 
based on the theory of generalized estimating 
functions which uses the concept of "working" 
covariance and provides a simple alternative to the 
model-assisted approach used in GR. MR extends 
GR to the general case of correlated auxiliary 
information from past data in a very natural way. 
Section 3 contains a review of MR, and Section 4 
contains the proposed method of MR-Composite. 
Empirical results on its performance using LFS data 
are given in Section 5. The f'mal Section 6 contains 
concluding remarks. 

2. REVIEW OF EXISTING METHODS 

All existing methods give rise to regression-type 
estimators, which are asymptotically optimal under 

suitable conditions. Only tWo time points t / and t 
will be considered in view of the recursive nature of 
all estimators. 

2.1 AK-Composite 
This is due to Gurney and Daly (1965). For 

given constants A, K (0 < A < K < 1, in general), it 
is given by 

) (Oy, - (2.1) 
yt 

yt y,,,) +K(Oy, t, +Oy~-O/,,,,,,) 

The K-Composite of Hansen, Hurvitz and Madow 
(1953) is a special case with A = 0. The optimal 
values of A and K, in the sense of minimum variance 
of the estimator, are in practice obtained by averaging 
estimated values using data over several time points 
under the assumption of stationarity. 

Note that the term A(0 7 - ^an 0y~,) in the expression 
(2.1) can also be viewed as reduction of the rotation 

group bias introduced by the term K(~ 7 - ^ ~  0y,~) in the 
K-Composite. Rotation group bias implies that 
individual panel means depend on time-in-sample, and 
therefore vary from rotation group to rotation group. 
It is known that the birth panel usually differs most 
from the others. 

2.1.1 Limitations of AK-Composite. 
These arc listed below. 

(a) The optimal choice of (A,K) depends on the study 
variable. This, in turn, leads to internal inconsistency 
with respect to the selected variables for composite 
estimation. This means that component level 
estimates do not add up to the aggregate level 
estimate, e.g., for LFS, estimates for E and U may not 
add up to that for the labour force. This problem 
could be resolved by using the convention that the 
estimate for an aggregate would be constructed by 
adding its components. However, the resulting 
estimate for the aggregate would not be AK- 
Composite. 
(b) Often the study variables are linearly dependent, 
e.g., an individual in LFS must have one of the three 
statuses: E, U, and not in the labour force (N). Any 
external constraint on the total LFS population count 
must therefore be satisfied by the three estimates. 
One could resolve this problem by arbitrarily leaving 
one variable out from the AK-Composite estimation 
and compute the corresponding estimate as a residual. 
However, this solution is not symmetric with respect 
to the choice of the left-over variable. Moreover, the 
resulting estimator will not be AK-Composite. 
(c) The estimate of (A,K) for each study variable is 
obtained from covariance matrices from past data 
under the assumption of stationarity. This assumption 
may not be reasonable. Moreover, this may be 
computationally tedious if there are many study 
variables and the design is complex. 
(d) AK-Composite is univariate in nature and thus 
may yield only marginal gains in efficiency for some 
variables. In principle, it can be made multivariate for 
further gains in efficiency. However, this will make 
computation of coefficients for the linear combination 
even harder and their estimates may not be stable due 
to insufficient degrees of freedom. 
(e) There is another type of internal inconsistency. 
For variables not originally planned for composite 
estimation, f'mding corresponding (A,K) will not only 
be cumbersome, it may not even be feasible to ensure 
that the resulting estimates remain internally 
consistent with the AK-Composite estimates for the 
planned variables. This is a rather serious limitation. 

In view of these limitations, AK-Composite is not 
commonly used. An important exception is the U.S. 
Current Population Survey which uses a compromise 
choice of (A,K) as (.2, .4) for the main three labour 
force variables, the choice being approximately 
optimal for estimates of unemployment level. 
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2.2 AKC-Composite 
The AK-Calibration composite estimation 

overcomes the serious limitation (e) of AK-Composite 
and is due to Fuller (1990). It was studied by Lent, 
Miller, and Cantwell (1994) in the context of CPS. It 
is based on the idea of estimation via WCS, and thus 
produces composite weights to be used for estimation 
of any other variable. It consists of two steps. First, 
for a few linearly independent key variables ( such as 
E and U for LFS at suitable levels of aggregation), 
the AK-Composite estimators are obtained. Second, 
the composite weights are obtained by using these 
estimates as additional auxiliary population totals in a 
calibration method such as regression or raking. For 
LFS, the usual auxiliary totals for GR computed via 
WCS correspond to demographic counts for domains 
defined by age, sex and region. Note that for the key 
variables used as attxiliary totals, the AKC-Composite 
will coincide with the AK-Composite by construction. 
For other variables, the AKC-Composite is not 
optimal but is expected to yield efficiency gains over 
the usual estimates because of correlation of these 
variables with the key variables. Also note that the 
limitation (e) of AK-Composite no longer exists 
because all the estimates are built from common 
building blocks. However, AKC-Composite still 
inherits all the other limitations (a) to (d) of AK. 

3. HEURISTIC MOTIVATION OF MR 

The AK-Composite is motivated from d-based 
linear models for elementary estimates. It is known 
that Godambe and Thompson's (1989) method of 
estimating function (MEF), and the generalized 
estimating function (GEF) when the true covariance 
matrix is replaced by a working covariance, provide 
general alternatives to linear modelling. We show 
that GEF gives insight into overcoming limitations of 
AK-Composite. For this purpose, a d-based GEF is 
needed for f'mite population parameters. This was 
introduced by Singh (1994) who used this to propose 
a modified regression (MR) method for linear f'mite 
population parameters. To motivate the proposed 
methodwe will review d-GEF via MR in the context 
of repeated surveys. 

The MR method uses pieces of information from 
the data in the form of d-based zero functions (i.e., 
functions which are zero in expectation). These 
functions depend, in general, on both data and 
parameters. However, they may be parameter-free 
provided they are correlated with other zero functions. 
Now for convenience, consider the case of MR for a 
single time point and only one parameter Oy,. Similar 

to the concept of elementary estimates in d-based 
linear models, consider zero functions based on 
Horvitz-Thompson (HT) estimates. For example, 
suppose for time t there are p-auxiliary variablesx t 
with known population totals and the study variable is 

y.  The zero function involving 0y, is ~ury, -0y, or 

~k~,)h~y~-Oy,, where h n  is the inverse of the 
selection probability for the unit k, and s(t) denotes 
the sample at t with size n,. This function will be 

denoted as ~,k~v<,)q~kth£, where ~b~=(lk~,)-h~l)yn, 

lk~,) is the indicator function and U(t) is the finite 
population at t. The other zero functions do not 
involve the parameter and correspond to auxiliary 

" H T  
variables. The function for the ith x-variable, 0xa - O a , 
will be denoted as ~k~v<t)@~h~ where 

~ka = (lk~s<,) -h~')x~.. 
The MR for O t based on data for single time t is 

given as a solution of the estimating equation 

Gt / r-f lgt=O where gt is the (p+l)-vector  

(Z q~h~, Z ~,h~,..., Z ~ , h ~ ) / , g  is a(p+l)x(p+l) 

working d-based covariance matrix of gt, and G t is the 

(p+ l )x l  matrix (-1,0,...,0)/. If r t is the true 
covariance matrix, then the estimating function, and 
hence the estimator, becomes optimal in a certain 

sense. However, with a working choice of rt ,  the 
resulting estimator becomes suboptimal, but robust in 
that it continues to be asymptotically design consistent. 
One possible choice of r t is 

r,- ! _ ,t~At~, ] (3.1) 

where the superscript "--" denotes only the part which 
involves the random variable lk~,) and is nonzero for 

the observed sample. Thus, 6t is the n,-vector of ~ -  

values, VI, t is a n,xp matrix whose ith column is the 

n t-vector of ~a-values, and A t is the nxn t matrix 

diag (hk, , l<k  <n,). With this choice of rt, 0 ~  in 
- -  - -  yt 

fact coincides with the usual ~6x and is given by 
yt  ~ 

The MR approach gives a general alternative 
formulation to the traditional model-assisted approach 
which gives rise to GR. Under MR, since the form of 
the estimating function is simple, it is easy to 
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incorporate more information via zero functions; this 
feature will be useful for multivariate composite 
estimation. The provision of working covariance 
matrix allows flexibility in dealing with complex ~- 
zero functions, e.g., in the case of attxifiary variables 
with known but random population totals. 
Furthermore, in MR, since the zero functions are 
constructed directly, they can be manipulated or 
transformed to suit the situation; this feature will be 
especially useful in dealing with correlated past 
information. To do the corresponding task with GR 
would require a suitable formulation of the 
superpopulation regression model which may be 
tedious. Now, to def'me MR for two time points 

t /and  t, consider the additional zero functions 
~GR ^GR "OR "OR ^OR 
,On - Oy,, Oy,t,m, - Oy,t, (Oy't' could be replaced by 

previous occasion's best estimator obtained 
recursively). More zero functions corresponding to 
other study variables, z, could also be def'med in a 
similar manner. All that is required now is to define 
a suitable working covariance matrix. In the next 
section, we show how to do this following the above 
motivation. 

4. MR-COMPOSITE: PROPOSED METHOD 

4.1 Description 
The proposed method departs from the 

traditional AK-Composite in several ways. We 
describe the method by explaining these departures. 

^MR 
For the recursive set-up, assume that 0,,, is given. 
4.1.1 Transformation of Zero Functions. It follows 
from the motivation for MR that GR can be easily 
extended to include additional zero functions (these 
are of two types: matched subsample minus full- 
sample estimates for the current and previous time 

points), if they can be transformed into a ~b-zero 

function, i.e., as O~-Ox, for a suitable choice of x. 
The zero function for the current time is relatively 

easy to express as a ~-zero function. We first 

transform it to ~trr _ ~ r  and then define ~-function as 
yOn yt 

[(c~)lk~(mt)-lk~s~t)lYta , where s(mt) is the matched 

subsample with respect to t / ,  and c~ is the ratio 
adjustment factor required to get population total 

estimate from the matched subsample. The factor c~ 

is simply ~_,k~s(t)hkt/~,k~s(,nt)hu; for LFS it is 
approximately 6/5. For this zero function, the 
corresponding known population total is naturally 
taken as zero. Now for the zero function 
corresponding to the previous time point, since 

s(mt) =s(m/ t / ) ,  information about y / from t / for the 
matched subsample can be augmented to the current 
data by micro-matching. For this purpose, some 
imputation (such as carrying the current y-value 
backward) may be needed for missing data due to 

nonresponse at t / and movers from t / to t .  We 
^GR ^MR 

then express the zero function Oy,,,m,-Oy, ,, as 

^~ ~ ~ ^ ~  adjusted for change, i.e., Oy,on-Oy,, where Oy,, is Oy, t, 
~ MR ^ GR ^ GR 

+ ( O y , t m - - O y , t , m , ) "  t h i s  is a n  u n b i a s e d  e s t i m a t e  o f  ytt: 

0,,, the current population total for the previous 
occasion's variable. Here we assume, in effect, that 

information about y/  was also collected at t from 

respondents in the matched portion. Next we regardy / 

at t as a new auxiliary variable with known (but 

random) population total 0"y,~t, which implies that the 

transformed zero function ~wr -y0~,, can be expressed y/tin 

as a ~-zero function. This suggests constructing MR- 
Composite as a GR-type estimator. 
4.1.2 Suboptimal Coefficients. In view of the above 
modification to the additional zero functions, the GR- 
type working covariance matrix can be used for 
def'ming MR-Composite. In particular, the 
coefficients in the linear combination for MR- 
Composite will vary with t ,  and can be obtained 
adaptively from the current and previous occasions' 
samples. These coefficients will, of course, be only 
suboptimal unlike the optimal ones used for AK- 
Composite. 
4.1.3 Multivariate in nature. The above GR- 
formulation of MR-Composite clearly suggests that it 
can be made multivariate quite easily. Inclusion of 
more zero functions corresponding to other study 
variables will not cause any new problems in f'mding 
coefficients of the linear combination. All the 
coefficients can be computed simultaneously in the 
usual manner. 
4.1.4 Subset of Auxiliary Variables. Traditionally, the 
additional auxiliary variables or zero functions come 
in pairs; each variable gives rise to two zero functions, 
one for the current time and other for the previous 
time point. However, from the efficiency perspective, 
it is better to have a control on the choice of 
predictors; too few may not yield enough gain, while 
too many may cause a loss in precision due to possible 
instability in estimating regression coefficients. For 
MR-Composite, it is easy to incorporate this control 
on predictors. 
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4.1.5 Computation by WCS. It is clear from the 
above GR-formulation of MR-Composite that the 
usual regression-WCS can be used for its 
computation. This is not only convenient in practice, 
but also useful for producing estimates for variables 
not used as additional auxiliary ones. This of 
departure of MR-Composite from AK-Composite is 
somewhat similar to that of AKC-Composite. 
However, unlike the two steps involved in AKC- 
Composite, the f'mal calibrated weights for MR- 
Composite are obtained directly. 

4.2 Explicit Formulas for MR-Composite. 
Suppose x denotes all the auxiliary variables and 

is partitioned into two subsets, x c1~ and x c2~, the first 
subset corresponds to the "old" auxiliary variables 
normally used in GR and the second subset 
corresponds to the "new" auxiliary variables under MR 

representing key study variables from t and t / . The 
MR-Composite can then be expressed as 

yt yt 

where 0~t includes both f'rxed (for old x) and random 

- and (for new x) population totals, i.e., 0~=(0 ten , ~n~ 

~J7 = (Yt/AtXt) (L/At Xt) -I, where A t = diag(hkt), 
x, = (x  c',, x 29. 

Alternatively, O~ y, can be expressed as 

= + \[Jt2.1) (Oxt(2)-  0xt(2))' where a.1 are the yt yt 

partial regression coefficients [ y / A t ( I - e X t ~ ) X t  ~2~1 x 

[Xt (2)' At(I-PXt('))Xtf2)] -' , and PXtCn is the projection 

operator XtC~ (Xt (1)t A Xt(1))-I Xt (1)t A t. This alternative 

expression of ~ is useful for direct comparison with 
the form of AK-Composite. 

4.3 Variance Estimation for MR-Composite. 
It follows from the Taylor linearization variance 

formula for the GEF estimator that for the estimating 

equation Gt I r t lg t - -0 ,  the asymptotic variance of 

0y, - 0y, has the form, B '  G t' r t  1 f'(gt) Ft ~ Gt (B q)/, 

where t?(gt) is a consistent estimate of the true 

covariance of gt, and B = G / r t  1G t. 

4.4 Theoretical Comparison with Existing Methods. 
It is easily seen that the limitations (a) to (d) of 

the AK-Composite, which were not overcome by 
AKC-Composite, are indeed overcome by MR- 

Composite. The price paid for this is the relaxation of 
the optimality criterion to that of suboptimality via the 
use of the working covariance matrix. The resulting 
loss in efficiency may be more than offset by the 
possible gain due to the addition of the multivariate 
aspect. With MR-Composite, all the estimates for 
linear functions (such as,. aggregates) of the selected 
study variables are indeed MR-Composite, and in the 
case of linearly dependent variables, the estimates are 
invariant with respect to the choice of the left over 
variable. These properties follow directly by viewing 
MR as a multivariate regression estimator. 

5. EMPIRICAL STUDY 

Using monthly LFS data for Ontario for the year 
1993, the MR-Composite was compared with AK- 
Composite for variables selected for composite 
estimation for both level and month-to-month 
changes. For a few other variables, it was compared 
with AKC-Composite. The evaluation measure used 
was gain in efficiency relative to GR averaged over 
the year, it was calculated in percent as a ratio of 
variances of GR and the alternative estimate minus 
one times 100. 

LFS currently uses GR. The population totals for 
auxiliary variables used for GR correspond to 30 (15x2 
age-sex groups), 10 census metropolitan areas, 11 
economic regions (they aggregate to the total 
population count), 8 urban centres, and the 6 rotation 
groups. For MR-Composite, only a subset of auxiliary 
variables corresponding to the key study variables for 
current and previous occasions was used. In particular, 
only three additional variables E, U, and N for the 
previous month were used. For these variables, 
macro-level information in terms of the full sample 
estimates from the previous month and micro-level 
information for the matched subsample were 
extracted. The full sample estimates were adjusted 
for change in the population from the previous to the 
current month. For simplicity, we used a 

^ "  (e/e' multiplicative adjustment as Oy,,, ) where P is 

the 15+ population for month t and P /  for month 

t / ,  instead of the additive adjustment 
^MR ^GR ^GR 
0y,,, + (0y,~,- 0y,,,,,) as mentioned in Section 4. 

For the AK-Composite, (A,K) values for E and 
U were selected as (.2,.4) and (.55,.55) respectively. 
These are averages of optimal values obtained by grid 
search for the period Aug-Dec,'92. The starting point 
for all recursive estimates for 1993 was taken as July, 
'92 allowing for a six month break-in period. 
Variances were computed using the jackknife 
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resampling method since this is currently in use for 
LFS. Pseudo-replicates for the previous month full 
sample estimate were used to account for the extra 
variability due to random population totals in 
composite estimation. 

Tables 1 and 2 show average gains in efficiency 
for AK-Composite and MR-Composite relative to GR. 
AKC-Composite was used for variables not used as 
auxiliary. These are labour force status by sex (M or 
F), by full-time (FT) or part-time (PT), and the two 
rates, unemployment rate and participation rate 
def'med respectively as U/ (E  + U) and (E + U)/P. It is 
seen that MR generally outperforms AKC for both 
level and change estimates. 

6. CONCLUDING REMARKS 

MR-Composite uses cross-fertilization of ideas from 
different areas of statistics, e.g., the theory of zero 
functions, MEF (or GEF) and its relation to 
regression, the idea of partial overlap in the d-based 
treatment of estimation from time series of survey 
estimates, and the methodology of GR and WCS in 
survey sampling. The GEF theory is seen to give a 
fresh perspective to the problem which is known to 
have a long history. Use of GEF, as an alternative to 
the well known model-assisted framework in survey 
sampling, provided the necessary ingredients for 
making departures from the tradition. Finally, in view 
of the promising results of the empirical study, MR- 
Composite is currently being considered for 
implementation in the production of LFS-based 
estimates. 

Table 1: Average Gain in Efficiency for Levels 
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Table 2: Average Gain in Efficiency for Change 

Variable MR AK (or AKC) 

E 19.47 7.74 
U 15.93 10.53 
N 11.82 4.04 

E,M 12.04 4.96 
E,F 8.96 4.34 
U,M 9.07 6.88 
U,F 5.22 3.88 
N,M 5.71 0.83 
N,F 7.46 3.79 

E, FT 12.93 4.56 
E, PT 2.22 1.58 

U-RATE 17.61 11.00 
P-RATE 11.61 4.01 

Variable MR AK (or AKC) 

E 16.56 12.85 
U 24.39 12.42 
N 4.88 2.89 

E,M 11.84 8.51 
E,F 1.95 3.96 

U,M 12.13 6.82 
U,F 8.12 5.01 
N,M 2.63 0.76 
N,F 0.55 2.06 

E, FT 7.4 5.78 
E, PT 2.08 2.18 
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