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1. INTRODUCTION 

When taking multiple measures of the same 
subjects over time, some subjects may be lost to 
follow-up. The effects of attrition can range from 
modest to considerable, depending on the length of 
time between data collections, the number of 
subsequent data collections, and characteristics of the 
subjects under study. If attrition is systematically 
related to outcomes of interest and if nonresponse 
adjustments are not made, bias may result. The 
internal validity of a study may be threatened, as 
observed differences may be due to differential 
nonresponse. Attrition may also effect the 
generalizability of a study's results: if the composition 
of the respondents varies from the original sample 
because of differential rates of loss for certain kinds of 
subjects, then the respondents may not reflect the target 
population of interest. 

In school-based substance use applications, 
attrition is usually positively correlated with substance 
use: those who are lost to follow-up are more likely to 
use target substances. Pirie et al. (1988) found that 
data which did not account for nonresponse showed 
considerably lower prevalence levels of daily smoking 
than data which included subjects who might otherwise 
have been lost. In school-based studies, the percentage 
of subjects lost to attrition may be large, depending on 
the location of data collection (e.g. urban centers may 
have higher rates of student transfers, absentees, or 
dropouts) and time from baseline to follow-up. In 
Pirie et al. (1988), only 78% of seventh graders 
surveyed at baseline were found in their original school 
districts five years later, and only 68% of the baseline 
sample provided responses to the follow-up survey. 

For this study we compare alternative approaches 
to correct for attrition using data from a school-based 
substance use prevention program, Project ALERT 
(Ellickson and Bell, 1990; Ellickson, Bell, and 
McGuigan, 1993). We assess the performance of three 
different methods that can reduce bias associated with 
nonresponse: tracking, weighting, and sample selection 
modeling. The first of these, tracking, is implemented 
as part of the data collection phase. Weighting and 
sample selection modeling, in contrast, are statistical 
modeling approaches that can be performed ex post.  

Modeling approaches could save substantial costs, but 

they require assumptions that may not be correct or 
testable. Then, this study addresses the questions: In 
school-based substance use research, are the costs of 
tracking avoidable? And, for this and similar 
applications, are the assumptions underlying modeling 
methods acceptable? 

2. BACKGROUND 

Pirie et al. (1989) provide an excellent overview 
of methods used to implement tracking, and the success 
rates of tracking in school-based prevention research. 
Methods include telephone searches, high school 
records, postal forwarding and record updates, personal 
contacts, and public record searches. Tracking requires 
considerable time and effort. While tracking may 
substantially reduce the percentage of subjects lost to 
follow-up, frequently multiple methods and multiple 
attempts at contact are required to achieve good 
coverage rates. For example, in the Waterloo Smoking 
Prevention Project, more than 80% of the subjects who 
were tracked required three or more sources in order to 
be located two and one-half years after the previous data 
collection (Pirie, et al., 1989). 

2.1 Overview of Alternative Methods to 
Correct for Attrition 

2.1.1 Tracking 
Where possible and affordable, successful tracking 

is the ideal solution to nonresponse. For example, if 
simple random sampling was employed at baseline and 
all cases are located through tracking, then the sample 
becomes self-weighting. Tracking, if completely 
successful, results in unbiased estimates. These 
estimates are also the most efficient as they are based 
on the largest attainable sample size and have no 
additional variation introduced. 

However the cost required for tracking can be 
considerably higher than the cost of the main follow-up 
data collection. In an illustrative example, Graham and 
Donaldson (1993) cite a ratio of 5 times the cost of the 
normal data collection; this ratio is consistent with 
estimates found for Project ALERT. While this ratio 
will differ across applications, tracking is nevertheless 
likely to be comparatively more resource intensive and 
thus more costly on a per-case basis. Further, it is 
then likely that tracking will result in less than 
complete coverage of all subjects lost to follow-up, and 
so the researcher may still be forced to rely upon 
additional approaches to adjust for missing 
observations. 
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2.1.2 Nonresponse Weights 
The first model-based estimation method to be 

considered is the use of nonresponse weights. We use 
inverse propensity score weighting, although other 
approaches, such as weighting cell adjustments can be 
taken (e.g. Little and Rubin, 1987; Kalton, 1983). We 
use a logistic model to estimate a subject's propensity 
to be present at the follow-up wave as a function of 
baseline variables measured for all subjects. The 
inverse of this predicted probability is used to calculate 
the sampling weights. In this way, nonresponse 
weights resemble sampling weights. 

For a dichotomous outcome y that indicates 
response at follow-up, and {x i }, a vector of baseline 

measures, the estimated propensity p(y=l I Xl...xi), is 

given by" 
eZ~ixi 

P = 1 + e r~ixi 

where ]E~iXi is obtained from the estimated coefficients 
and covariates in the logistic regression model. The 
weight associated with each observation is I/p, is 
inversely proportional to the propensity of a subject 
with a given set of characteristics, as defined by the x- 
i's, to be present at follow-up. Subjects with 
characteristics correlated with low likelihood of 
attrition--those with an estimated p near one--receive 
smaller weights, and subjects who are similar to those 
who were likely to drop out--those with a small p-- 
receive larger weights. Intuitively, the weights 
corresponding to those who should have been present 
for follow-up are redistributed to follow-up respondents 
in a way which reflects the characteristics of the 
original sample. To the degree this redistribution is 
successful, it minimizes the bias associated with 
attrition. 

This method assumes that, conditional on 
covariates known for both the respondents and 
nonrespondents, nonresponse is ignorable. Once we 
have adjusted for nonresponse based on the covariates 
used to generate nonresponse weights, the respondents 
are then assumed to be a random sample of respondents 
plus nonrespondents (Little and Rubin, 1987). 
Nonresponse weights may reduce bias. However, use 
of these weights adds an additional source of variation. 
Thus, weighting will increase the standard error of 
estimates. 

2.1.3 l-leckman Sample Selection Model 
The second model-based estimation method, the 

Heckman sample selection model (Heckman, 1979), 
tests nonignorable nonresponse: there may be 
unmeasured factors that determine the level of an 
outcome, given that the outcome is not observed. The 
sample selection method is often used as an approach 
to correct estimates in the presence of self-selection, 
including attrition (e.g. Leigh, Ward, and Fries, 1993; 

Stolzenberg and Relies, 1990). This analysis has two 
steps. First, a probit model estimates the probability 
of being present for follow-up. The results of this 
probit model are used to calculate an Inverse Mill's 
Ratio, a hazard term inversely related to the probability 
of being observed. This hazard term is then used as a 
continuous covariate in a subsequent Ordinary Least 
Squares (OLS) regression model to predict the outcome 
of interest. 

Typically one is concerned about "exclusion 
restrictions" between the independent variables in the 
probit model and in the OLS regression. That is to 
say, in the extreme case where the same predictors are 
used in both steps, one will find that the hazard term 
may be highly correlated with the predictors in the 
second step. This is because the hazard is a function 
of those same predictors from the probit model. To the 
degree that some of the predictors are shared by the two 
models, this introduces multicollinearity into the OLS 
model. Because our focus will be point estimation 
without covariates, our preferred model would not 
require covariates other than the hazard term in the OLS 
regression. However, this would assume that there is 
no information in the probit covariates that would also 
predict our target outcomes in the OLS regression. 
These model specification issues are discussed in 
greater detail below. 

Though there may appear to be some similarities 
across the weighting and sample selection methods, 
there are a number of distinctions between the two. 
First, the distributional forms of residual terms differ 
between the logistic and probit models. This difference 
is not particularly noteworthy, especially if the 
predicted probability does not fall close to one of the 
extreme tails (e.g. p < .10, p > .90). The second 
distinction is more interesting: this is in the way the 
predicted probability of response is integrated into the 
second estimation step. The weighting approach uses 
the predicted probability to redistribute weights across 
the nonmissing observations. The use of weights will 
increase the variance of estimates. In contrast, the 
sample selection method maintains the original 
weights associated with each observation, but uses the 
hazard function as a linear predictor of the outcome of 
interest. Lastly, as noted, weighting assumes 
nonresponse is ignorable, conditional on the covariates. 
Sample selection models do not make this assumption; 
rather, they are recommended as a test for nonignorable 
nonresponse (e.g. Rubin, 1987). 

The derivation of the sample selection method 
shows that this correction will result in unbiased 
estimates under the assumption of independent, 
identically distributed normal errors [i.i.d. 

N ~ ( 0 , o 2 ) ]  (Heckman, 1979). Also, one requires 
exclusion restrictions, noted above: ideally, the 
variables used to predict attrition are not a subset of the 
variables used to estimate the outcome variable in the 
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second step. The sample selection method is not 
particularly robust to deviations from these 
assumptions (Manning, Duan, and Rogers, 1987). 
Stolzenberg and Relies (1990) found that even when 
normality assumptions are met, the Heckman method 
often resulted in worse--more biased--estimates under 
cases of small samples and large percentage attrition. 

In summarizing the differences between the two 
statistical approaches, the weighting method should 
result in estimates that are less precise than estimates 
obtained by the sample selection method. Yet, the 
weighting method may prove to be more robust, and 
may result in less biased estimates than the sample 
selection method. For this reason we will address 
both the bias and efficiency of estimates resulting from 
each of these two methodological approaches, and will 
compare these with the estimates from the tracking 
approach. 

3. METHODS 

Project ALERT included a total of 6527 students 
at baseline (grade 7). At a three-year follow-up wave 
(grade 10), 62.6% of the original baseline sample was 
located through the main, school-based data collection, 
22.0% of the baseline sample was located through 
tracking, and 15.4% was missing. 

To compare the effects of attrition on sample 
estimates, we chose measures of lifetime use of three 
substances as outcome variables: cigarettes, alcohol, 
and marijuana. Each of these was measured using a 
twelve-point scale, ranging from zero (no use) to 
eleven (frequent). 

Predictors used for weighting and sample selection 
models include subject demographics (gender, ethnicity, 
parents' education), geographical location, school 
achievement, and substance use-related questions 
(exposure to substance use, attitudes towards substance 
use). 

Weights were developed using forward stepwise 
logistic regression, regressing presence/absence at 
follow-up on baseline information. The model results 
in approximately 12% of deviance (deviance = -2* 
loglikelihood) accounted for by these variables (Table 
1). The fitted model shows a statistically significant 
improvement over the null; the difference in deviances 
between the fitted model and the null model containing 
no covariates is statistically significant (- 
2*loglikelihood = 1021.104, 30 d.f., p<.0001). The 
resulting weights have a mean of 1.60, with a range 
from 1.05 to 15.87. 

Standard errors for weighted estimates are 
calculated using Huber's (1967) robust estimation 
method in the software package Stata. Sample 
selection models were also performed using Stata. 

4. RESULTS 

To validate the estimates obtained by each method, 
we reconstructed mean levels of cigarette, alcohol, and 
marijuana use variables at baseline, simulating the 
effects of attrition under each condition (Table 2). At 
the baseline data collection we have information for all 
study subjects ("Actual"). This is our "gold standard" 
since we know with certainty the actual responses for 
all subjects. Against this standard, we compare results 
obtained using the three proposed methods to adjust for 
nonresponse. 

The second column of Table 2 reports unweighted 
estimates for school-based respondents ("Respondents") 
This column simulates the effect of these subjects 
being missing at baseline with no other adjustment. 
These results show that unweighted estimates of 
substance use prevalence for initial respondents 
understates actual levels of use by 7% for alcohol, 23% 
for cigarettes, and 42% for marijuana. ([actual- 
estimate]/actual). 

The third column incorporates information from 
tracked subjects along with the school respondents. 
We see underreporting of 3% for alcohol, 10% for 
cigarettes, and 24% for marijuana--roughly half the 
level of underreporting seen in the unadjusted column. 
While these numbers are based on a twelve-point 
ordinal scale rather than on an interval metric, the 
magnitude of bias is similar when measures are 
prevalence rates rather than levels (data not shown). 

Weighting data from school-based respondents to 
correct for nonresponse bias, shown in column four, 
improves the estimates substantially. Differences 
between estimated levels and actual rates are only (+) 
0.3% for alcohol, (+) 0.2% for cigarettes, and (+) 2% 
for marijuana. These numbers show that nonresponse 
weights nearly eliminated the underreporting bias. As 
noted above, the standard errors for the weighted 
estimates are larger than those observed for the 
unweighted estimates for the respondents--i.e, the same 
sample sizes are used, and the increase in variance is 
due to weighting. 

As Table 2 shows, our initial sample selection 
results yielded poor estimates. Note the results for 
cigarettes and marijuana give implausible negative 
estimates, since our scales were bounded at zero. 
These results reflect the sensitivity of the sample 
selection model to the underlying assumption that, 
conditional on the hazard term estimated in the first 
equation, there is no other information which predicts 
substance use levels. These results indicate that the 
hazard term alone is insufficient to adjust for 
nonresponse bias, and that additional information is 
required to improve the model. The constraint here is 
exclusion restrictions--using the same covariates in the 
probit and OLS equations induces multicollinearity. 
While complete collinearity is not a likely risk (e.g. 
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Olsen, 1980), the coefficients for the selection term and 
for the other predictors become unstable as 
multicollinearity increases. Using a simple approach 
to stabilize the estimates obtained, we included one 
additional continuous covariate to the OLS regression 
model. This brought the estimates closer to the actual 
values, especially for cigarette use, although this 
method was still considerably less accurate than the 
weighting method. This example underscores the 
importance of model specification when using the 
sample selection method: while our goal was simple 
point estimation, the selection of covariates into each 
step of the two-step model must be carefully 
considered. 

Table 3 reports estimates for the same target 
substances, using data from the three-year follow-up. 
We do not have an objective criterion against which to 
assess accuracy of estimates, because "true" substance 
use levels unaffected by attrition are unknown. We 
observe the same rank ordering of estimates for alcohol 
and marijuana as was observed in the validation 
analyses: school-based respondents only show the 
lowest levels, followed by respondents plus tracked 
subjects, then by weighted means of respondents. 

5. DISCUSSION 

The magnitudes of differences between weighting 
and tracking are smaller in the three year follow-up 
results than observed in the validation results. This 
may be attributable to one of two causes: the correction 
provided by weighting may not be as strong in the 
three-year follow-up, or differences between respondents 
and nonrespondents may not be as large for these 
substances in the tenth grade as was observed in the 
seventh grade. This second explanation is plausible 
given the decrease in differences between the school- 
based respondents estimates and the respondents plus 
tracked estimates. At baseline, these groups differ by 
4.5%, 17% and 30% for cigarettes, alcohol, and 
marijuana, respectively. At follow-up these differences 
have decreased to 1%, 11% and 12%. 

School-based respondents use substances less 
frequently than nonrespondents, consistent with Pirie 
(1988). Consequently, estimates that do not take 
attrition into account seriously underestimate overall 
levels of substance use. Although use of data from 
tracked subjects decreases this bias, substantial bias 
remained when evaluated on baseline outcomes. 

One concern at the outset was the relative 
performance of weighting versus sample selection 
modeling with respect to bias and precision. The 
precision lost due to weighting is not appreciable here, 
and the sample selection model, as implemented, is not 
strictly appropriate as a sensitivity analysis for 
nonignorable nonresponse. Our application of the 
two-step sample selection model would be appropriate 

if the variables that predict nonresponse did not also 
predict of level of use. More traditional uses of the 
sample selection model are to predict wages: the first 
equation predicts entry into the workforce while the 
second predicts wage amounts (e.g. Maddala, 1985). 
In such applications it is plausible that these factors 
have different determinants; here, we know a priori 
that the nonresponse and substance use processes are 
related. 

These analyses provide insight into the relative 
performance of comparatively inexpensive corrections 
for subject nonresponse. As indicated at the outset of 
this study, nonrespondents can be difficult to track, and 
the resources required for this effort can be considerable. 
Our validation analyses show excellent agreement 
between weighted estimates under simulated attrition 
and the true values observed at baseline, and good 
adjustments at the three-year follow-up. While 
tracking has good face validity, it apparently would not 
have been an adequate substitute for statistical 
adjustment to correct for attrition. This may not be 
true in all applications. However, in large studies, the 
costs associated with a full-scale tracking effort may 
not be justified by the amount of information gained 
by such an investment. An alternative compromise 
might be to track a relatively small sample of 
nonrespondents, as suggested by Graham and 
Donaldson (1993). Then characteristics of these 
subjects may be used for modeling adjustments. 
Also, tracking would still be important if information 
is especially sparse for specific subgroups in the 
sample. Lastly, these results support the importance 
of evaluating the effects of assumptions underlying any 
approach to nonresponse adjustment. 
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Table 1" Assessing weighting logistic regression model fit 

Criterion 

AIC 
SC 
-2 LOG L 
Score 

Criteria 

Intercept 
Only 

8630.218 
8637.002 
8628.218 

for Assessing 

Intercept 
and 

Covariates 

7669.115 
7879.409 
7607o115 

Model Fit 

Chi-Square for Covariates 

1021.104 with 30 DF (p=0.0001) 
977.078 with 30 DF (p=0.0001) 

Table 2: Validating estimates against "gold standard" (actual baseline levels of use) 

Sample and Estimation Method 

Alcohol 

Cigarettes 

Marijuana 

Actual 
(N=6527) 

2.676 
(.0349) 
1.960 

(.0373) 
.783 

(.0263) 

Respondents 
(N=4087) 

2.489 
(.0425) 
1.501 

(.0402) 
.457 

(.0231) 

Respondents 
+ Tracked 
(N=5365) 

2.602 
(.0375) 
1.760 

(.0382) 
.593 

(.0247) 

Weighting 
(N=4087) 

2.684 
(.0537) 
1.964 

(.0656) 
.798 

(.0581) 

Sample 
Selection 

#1 
(N=6527) 

1.341 
(.0397) 
-.9385 
(.0823) 
-1.192 
( - - )  

Sample 
Selection 

#2 
(N=6527) 

2.487 
(.0130) 
1.887 

(.0219) 
0.808 

( .0238)  

Table 3: Comparing estimates at three-year follow-up wave 

Sample and Estimation Method 

Alcohol 
l 
Cigarettes 

Marijuana 

Actual 
(N=6527) 

n/a 

n/a 

n/a 

Respondent 
s 

(N=4087) 

5.146 
(.0541) 
2.979 

(.0592) 
1.950 

(.0498) 

Respondent 
s + Tracked 

(N=5365) 

5.194 
(.0463) 
3.299 

(.0539) 
2.184 

(.0450) 

Weighting 
(N=4087) 

5.299 
(.0604) 
3.259 

(.0722) 
2.270 

(.0645) 

Sample 
Selection 

#1 
(N=6527) 

4.313 
(.2584) 
1.160 

(.0526) 
-0.292 
( .0426)  

Sample 
Selection 

#2 
(N=6527) 

5.269 
(.0107) 
2.554 

(.0119) 
1.431 

(.0163) 
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