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1. INTRODUCTION 

It is well known that the usual survey estimates 
based only on respondents in the case of unit 
nonresponse or complete items in the case of item 
nonresponse may be biased. There exist various 
adjustment methods to reduce bias due to 
nonresponse, see reviews by Platek, Singh and 
Tremblay (1978), Chapman, Bailey and Kasprzyk 
(1986) and Little (1986). In this paper, we restrict 
ourselves to adjustment methods for unit nonresponse 
and consider the problem of nonresponse adjustment 
for longitudinal surveys by respondent reweighting. In 
particular, we address two issues. First is the general 
question of ensuring asymptotic design consistency 
(ADC) of the estimates after nonresponse adjustment; 
the estimates of interest are either based on one-wave 
respondents for cross-sectional estimation or two-wave 
respondents for gross-flow estimation or multi-wave 
respondents for transition histories. Second is the 
question of ensuring internal consistency of estimates 

based on m-wave respondents (m_>2) with those 

based on m/-wave respondents (l<_m/<_m-l). The 
second issue distinguishes the nonresponse problem 
for longitudinal surveys from that for cross-sectional 
surveys as this issue does not even arise for the latter 
case. The above issues are discussed in this paper in 
the context of only one- and two-wave respondents for 
convenience. Treatment of m-wave respondents is 
analogous. 

First consider one-wave respondent reweighting 
for nonresponse. The weight adjustment methods for 
nonresponse correspond to some models for the 
response mechanism involving response predictors as 
auxiliary variables. Denoting by ~k the probability of 
response for the kth responding unit, its weight is 

adjusted by a factor L = 1/~k where ~k is an estimate 

of ~k (the factor fk will also be termed as the f -  
weight.) The nonresponse model should include as 
many important predictors as possible. In addition, the 
following two properties for the method of model 
fitting seem desirable: 

(a) 

(b) 

the resulting adjustment factors fk are not less 
than 1; and 
the resulting estimates are ADC. 

Property (a) is desirable since ~k lies between 0 
and 1, under the model. Moreover, a nonresponse 
adjustment factor should not be less than 1 because 
the weights of nonrespondents are in effect being 
distributed over respondents. 

Now consider the case of two-wave respondent re- 

weighting for nonresponse. For the k th unit, let 

~bk(t-1), ~k(t) denote the probability of response for 

the waves t-1 and t ,  respectively, and ~k(t-l,t) 
denote the joint probability of response for both 
waves. These three response probabilities give rise to 
three types of adjustment factors: first for the 

respondent set for wave t - l ,  second for the 

respondent set for wave t ,  and third for the common 
respondent set for the two waves. These three types 
of adjustment factors lead to three sets of weights for 
expansion estimates involving the two waves. 
Therefore, an additional property seems desirable for 
the adjustment factors: 

(c*) Estimates for each wave based on the common 
or two-wave respondents are internally consistent, 
i.e., are the same as the estimates based on 
corresponding single-wave respondents after 
reweighting for nonresponse. 

Note that in the absence of nonresponse, the 
usual weights do have the property of internal 
consistency. Also note that since the number of two- 
wave respondents would usually be less than the 
number of one-wave respondents of each wave, the set 
of two-wave nonresponse adjusted weights would be 
different from each set of one-wave adjusted weights. 
Therefore, it may not be feasible to have the property 
(c*) satisfied for all the study variables. However, it 
may be feasible for a few selected variables deemed 
important. In this paper, the property (c*) will be 
replaced by a weaker property (c): 

(c) For selected study variables, estimates for each 
wave based on the two-wave adjusted weights 
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are internally consistent with the estimates based 
on single-wave adjusted weights. 

Currently there does not seem to exist a method 
of weight adjustment for nonresponse that satisfies all 
the properties (a)-(c). A method termed Generalized 
Weight Calibration in Sampling (GWCS) is proposed 
which satisfies (a)-(c). This method is based on the 
ideas of Weight Calibration in Sampling (WCS) of 
Deville and S~irndal (1992). Although both GWCS 
and WCS are concerned with weight adjustment, their 
motivations are different; the former is for bias reduc- 
tion, the latter is for variance reduction. The term 
generalized in GWCS is used to signify that it is not 
hinged on minimizing a distance function as is WCS. 
The idea behind GWCS may be useful, in general, for 
the problem of nonresponse adjustment for both 
cross-sectional and longitudinal surveys. 

In Section 2, commonly used methods of weight 
adjustment for nonresponse are reviewed, with emph- 
asis on the two-wave respondent weighting. This is 
useful for motivating the proposed GWCS method, 
which is presented in Section 3. For the commonly 
used logistic model for nonresponse, it is interesting 
to note that GWCS gives rise to a simple modification 
of the familiar raking-WCS. For all the methods, 
suitable conditions for ensuring the ADC property are 
discussed. In section 4, application of the GWCS is 
illustrated using data from the second round of the 
Labour Market Activity Survey (LMAS) -- a 
longitudinal annual survey conducted by Statistics 
Canada for the period 1988-1990. Finally, Section 5 
contains concluding remarks. 

2. REVIEW OF SAMPLING WEIGHT ADJUST- 
MENT METHODS FOR NONRESPONSE 

Consider a probability sample {Yk: kEs} from a 

finite population U and let ~r k denote the sample 

inclusion probability for the k th unit in U. Let n, N 
denote respectively the fixed sample and population 
sizes. The sampling (or design) weights are the 
inverse of the inclusion probabilities and will be 

denoted by {hk}. Let s R denote the subsample 

consisting of respondents and let fk as before be the 

inverse of the response probability (~k) for thek ,h 
unit in the population. It is assumed that there exists 
a superpopulation model for nonresponse which 

assigns the value of 1 meaning "responds" to thek ,h 

unit in the population with probability ~k, and the 

value of 0 meaning "does not respond" with probability 1 -~k- 

Under the design-cum-nonresponse model, the usual 

weighted estimator based on respondents, ~ y k h k  is 

biased for ~ ( : " ~ v Y k )  but the nonresponse 

adjusted estimator, ~ y ~ h k f  ~ is unbiased for ry 

where y denotes a study variable. Since the f -  
weights are usually unknown, they are estimated by 
fitting the nonresponse model to the available data on 
respondents and nonrespondents. Suppose the 

nonresponse model is given by ~k " ~(xk, X), for 

k eU, where x k is a p-vector of nonresponse pre- 

dictors (or auxiliary variables) and )~ is a p-vector of 

model parameters. To ensure that the estimated ~ 
is between 0 and 1, a logit model is often used. 
However, sometimes other models such as linear and 
log-linear are also used. 

The above framework is applicable to one-wave, 
two-wave, or multi-wave respondents. The response 

set s R will, in general, be non-increasing in size as the 
number of waves increases. 

For the two consecutive waves t-1 and t ,  

~k(t-l,t) is traditionally modelled in two stages; see, 
for example, Rizzo et al. (1994), Binder et al. (1994), 
and Folsom & Witt (1994). First, the unconditional 

probability of response to the first wave, ~b~(t-1) is 
modelled and then the conditional probability of 
response to the second wave (given response to the 

first wave) ~k(tlt-1) is modelled. The joint response 
probability is calculated using the relation 

~k(t-1)=~k(t-1)~k(tlt-1). We call this approach 
separate. In this approach, when fitting a model for 

~k(t[t-1), wave t-1 nonrespondents are discarded. 
Thus, it is implicitly assumed that the nonresponse 
pattern is monotone (i.e., second wave respondents 
are also first wave respondents). However, 
nonresponse pattern is rarely monotone in practice. 
An alternative is to model the joint probability 

~bk(t-l,t ) directly in one stage. This will be termed 
the combined approach. In the next sub-section, we 
consider methods of model fitting that are applicable 
to both approaches. 

2.1 Methods of Fitting Nonresponse Models 

There are two commonly used methods of model 
fitting: the method of pseudo maximum likelihood 
(PML) and the method of moments (MOM). It is 
assumed that the predictor information is available for 
each responding unit. However, for nonrespondents, 
it may be available at the unit level for some pre- 
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dictors and at the aggregate level (i.e., for the non- 
respondent population) for others. In this section, 
unit level information for nonrespondents for all the 
predictors is assumed to be available. For PML, 
suppose we use the Bernoulli distribution for the 

response variable r k (with values 1 or 0). Under the 

superpopulation model, the estimating equations for X 

are, for i -- 1, ... p,  

E~sht(cgCk/OAi)¢21 (1-¢k)-'(rk-¢~) = O, (2.1) 

where ~bk=¢~ (xk, X ). 
Now consider the method of moments. Denote 

by "E" the expectation operator under the design- 

cum-nonresponse model and let T i be the expansion 

estimate of rxi , i.e., ~ xkh k. We have for 

i= 1, ..., p, E ( ~ ,  x~hkf~ - Li)  -- 0 and therefore, 

the corresponding estimating equations for X are 

XlahkL---- L i  i = 1 .  p Ekes1 t ' .. , (2.2) 

where as before f~ is ¢21 (Xk, ~k). 

Remark 2.1: For the simplest model in which x- 
variables form MEE (mutually exclusive and exhaus- 
tive) categories, the two methods (2.1) and (2.2) 
coincide and give rise to the familiar weighting cell 
adjustment method; the cells correspond to the MEE 

categories. Suppose, for convenience, the x-variables 
themselves correspond to the MEE categories. Then 

for the i ,h category, J?k is given by 

L = L i  /Ekes  Xk?k -" Ekes(O hk / ~k,s,,,~ h~, where s(i) 
is the total sample in cell i and sR(i ) is the 

respondent sample in cell i .  In other words, fk is 

constant for cell i and is simply inverse of the 

observed response rate based on weights. Clearly, f~ 
so defined is always greater than unity. 

Remark 2.2: With the commonly used logistic 
regression model, we have 

fk = (1 +exp(x[ k )) / exp(x[ X) = 1 +exp( -x~ / k). (2.3) 

The estimating equations for the pseudo-likelihood 

method are given by, for i=1, ..., p, 

~sx~[r~-exp(x~X) / (1 + exp(x~ X))]h~=O. (2.4) 

For the method of moments, the estimating equations 

are ~ xkh k (1 + exp(-xk / X)) - ~kX~hk  or 

~ xkh k exp(-x~ X) = ~ _ ,  xkh ~. (2.5) 

The right hand side of (2.5) is the estimate of the 

total of xi-variable for the nonrespondent population. 
It can be obtained directly because unit level informa- 
tion for x-variables about non-respondents is assumed 

to be available. The p equations (2.5) can be solved 

for X using the raking method of weight calibration in 
sampling (raking-WCS). The above method for 
logistic model fitting was proposed by Folsom (1991) 
but motivated in a somewhat different manner. 

Remark2.3: Remark 2.2 suggests a connection 
between MOM for model fitting and WCS for calibra- 

tion estimation. If the model for fk matches with the 

form of g-weight in WCS, then the corresponding 
WCS algorithm can be used for MOM. For example, 

a linear model for f, leads to the regression-WCS and 

a log-linear model for f, leads to the raking-WCS. 

2.2 Asymptotic Design Consistency (ADC) 

The ADC property of the estimator T of 7- 
Y y 

means that the difference goes to zero in probability 

as n, N---~oo in the sense of Isaki and Fuller (1982). 
Both methods, PML and MOM, give rise to ADC 
estimates under the assumed nonresponse model 

because the difference X-X goes to zero in probabil- 
ity. However, to ensure ADC for PML, the sampling 

weights h~ in Equation (2.1) should not be omitted 
because the design, in general, may not be ignorable 
for the nonresponse model, see for example Pfeffer- 
mann (1993). In the case of MOM, the familiar WCS 
methods such as regression and raking may not lead 

to ADC estimates unless the g-weights correspond to 

the model for fk in view of Remark 2.3; see Fuller et 
al. (1994) for the use of regression-WCS in the 
presence of nonresponse. It should also be noted that 
enlarging the nonresponse model to include important 
predictors as they become available will not disturb 
ADC under the original model as long as the "true" 
model is believed to be nested in the current model. 
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2.3 Internal Consistency calibration equations: 

Suppose single-wave estimates for selected y- 
variables at t-1 and t are available. Now both existing 
methods (PML and MOM) have the limitation that 
internal consistency is not satisfied under both separ- 
ate and combined modelling approaches. One may 
perform calibration as an additional step, after the 
model is fitted such that the estimates become inter- 
nally consistent. However, the resulting estimates will 
no longer be ADC. In principle, it may be possible to 
use the constrained PML method to satisfy internal 
consistency, but this may be difficult. 

For MOM, observe that although the existing 
method relies on unit level predictor information 
about nonrespondents, for solving Equation (2.2), it is 
sufficient to have aggregate level information in the 

form of Ti's. Thus, for selected y-variables for which 
single wave estimates are available at t-1 and t, we 
could easily enlarge the nonresponse model to include 
these y-variables as predictors. The resulting esti- 
mates based on model fitting by MOM will be inter- 
nally consistent because single wave estimates are 
used as (calibration) controls. This is the motivation 
behind the GWCS method (a version of MOM) 
proposed in the next section. 

3. PROPOSED METHOD OF GENERALIZED WCS 

Consider the MOM of fitting a nonresponse 
model to two-wave data using the separate or 
combined approach. It follows from Remark 2.3 and 
Section 2.2 that a known WCS-method will give ADC 

estimates if the corresponding form of g-weights 

matches with the form of f-weights obtained under 

the nonresponse model. Now the g-function for WCS 
is based on the underlying distance function between 
old weights and new weights. Since the concept of 
distance function is secondary for the nonresponse 
problem, we can generalize the WCS method by 

choosing the g-function according to the nonresponse 

model, i.e., by setting gk equal to fk (inverse of the 

response probability) and then solving for the X- 
parameters from the usual calibration equations. 
Although it may not be easy in general to find the 
corresponding distance function, it is no longer 
important. In particular, there does not exist a known 
WCS-method which corresponds to the logistic model, 

i.e., for which the g-weights have the form 

g~ = 1 + exp(-x/X). 
We thus propose a generalized WCS method for 

nonresponse adjustment defined by the following 

~ Xkhkf k = ~,, i=l,...p. (3.1) 

where fk is a function of x k and X, as given earlier in 

Section 2, i.e., equal to (~(xk, X)) -1 and %. may be 

replaced by its estimate T i if necessary. The ~- 
function is governed by the underlying nonresponse 

model. The system (3.1) of p-equations will generally 
require an iterative method such as Newton-Raphson 

for solving for X if the solution exists. 
We can apply the above method for the logistic 

nonresponse model given by (2.3). The calibration 

equations are for i -- 1, ... p,  

o r  

~ , ~ ,  x~h k (1 + exp(-x~ k)) = rx, 

~-,k,s, x~hk exp(-x~ X) - rx, - ~-,k~, x~hk " (3.2) 

The right hand side of (3.2) is simply the deficiency 

for the i'h control total. If control totals are replaced 
by deficiencies in controls due to nonrespondents, 
then (3.2) simply reduces to the calibration equations 

for raking-WCS. Note that the f-weights for GWCS 

are obtained from the g-weights for raking-WCS after 
adding unity. It is interesting to note that the GWCS 
method, in spite of being motivated quite differently, 
turns out to be a natural generalization of the method 
of Folsom (1991) (given earlier by (2.5)) when only 
aggregate level information about nonrespondents for 

some or all of the x-variables is available. Clearly, 
the two methods coincide if calibration constraints are 
based on only unit level information about 
nonrespondents. 

Remark 3.1 (ADC) It follows from Section 2.2 that 
the proposed method ensures ADC of the resulting 
estimates. In addition, it can be used to enhance any 
nonresponse model (by including additional predictors 
for which only aggregate level information about 
nonrespondents is available) and thus reducing further 
the bias in estimates due to nonresponse, i.e., the 
estimates will get closer to being ADC. 

Remark 3.2 (Internal Consistency) It follows from 
Section 2.3 that the proposed method satisfies internal 
consistency for selected y-variables. Thus, GWCS 
meets all the three properties (a)-(c) as set out in the 
introduction. Note however that in practice only key 
y-variables should be used in calibration because use 
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Table 1: Differences between the existing methods and GWCS in Gross Flow Estimates. 

( Each pair of entries in the table indicates ( D r ,  ARDfxl00) .  ) 

Flow Categories for Work Duration 

(1989 ~ 1990) 

0 --+ 1-26 

0 --+ 27-48 

0 ~ 49-52 

1-26 ~ 0 

27-48 ~ 0 

49-52 ~ 0 

Existin~ Method 

Wei~htin~ cell PML Rakin~ 

(2789, 5.88) (2590, 5.46) (-964, 2.03) 

(1726, 5.75) (1792, 5.97) (-746, 2.49) 

(1959, 6.30) (1914, 6.16) (-1333, 4.29) 

(-7773, 6.90) (-7940, 7.05) (-224, 0.20) 

(-7082, 8.82) (-6595, 8.21) (-897, 1.12) 

(-8984, 9.89) (-8395, 9.24) (-1923, 2.12) 

of many predictors may lead to instability in ~,. 

4. APPLICATION TO THE LMAS DATA 

As an illustration, we apply the proposed GWCS 
method to the Statistics Canada's Labour Market 
Activity Survey (LMAS) data consisting of a three 
year panel, 1988-90. The population consists of 
residents of Ontario who are in the labour force in the 
year 1988 and suppose the parameters of interest are 
the gross flows corresponding to the number of people 
who experienced change in work duration from 1989 
to 1990. The variable "work duration" is in number of 
weeks, grouped into four categories: 0, 1-26, 27-48 and 
49-52. The nonresponse rate for 1989 and 1990 waves 
is respectively 7.6% and 2.4%. The nonresponse rate 
for both waves is 9.5%. Note that here the 
nonresponse pattern is not monotone. The possible 
predictors used for the nonresponse model are age in 
1988, work duration in 1989 and work duration in 
1990. The age variable has four categories: 0-24, 25- 
34, 35-54 and 55 +. 

The usual weighting cell method for nonresponse 
adjustment with age as predictor is used to obtain 
single-wave estimates for work duration in 1989 and 
1990. The GWCS method provides estimates of gross 
flows for the variable work duration in the form of a 
4 by 4 table such that the margins coincide with the 
single-wave estimates, i.e., internal consistency is 
preserved. 

It would be of interest to compare the gross flow 
estimates obtained under GWCS and some existing 
methods. Three existing methods are applied to the 
same data set. These are: 1) the conventional 
weighting cell method under the separate approach; 2) 
the PML method with a logistic regression again 
under the separate approach; and 3) the naive raking 

method under the combined approach. Suppose, the 
possible predictor variables are age, work duration in 
1989 and in 1990. The first two methods use age as 
predictor for the first stage, and age and work 
duration in 1989 for the second stage. The naive 
raking method uses work duration for 1989 and 1990 
as predictors. For the proposed GWCS method, the 
combined approach with predictors as age and work 
duration for 1989 and 1990 is used. 

The naive raking method is chosen because it is 
widely used and it does preserve internal consistency. 
Note that it corresponds to a log-linear model for 
nonresponse. The other two existing methods 
correspond to logit models for nonresponse: the 
weighting cell method to a saturated model and PML 
to an additive model. Apart from the difference in 
models, fitting procedures are also different. Given 
the set of possible predictors, the two existing 
methods (other than raking) do use all the available 
predictors except for the work duration in 1990, as it 
is unknown for nonrespondents at the unit level. The 
GWCS does use the additional predictor because it 
only needs information at the aggregate level for 
nonrespondents. 

The gross flow estimates by the four methods are 
compared. Define measures of difference and 
absolute relative difference with respect to the GWCS 

M_ M A R D  oM= [D ,M/y,~ [, where method as D U =Yij -Yiff and 

y~  is the estimate of the (i, j ) th cell in the 4 by 4 
gross flow table produced by the proposed method 

and y ~  is the estimate produced by an existing 

method M. In terms of the stock (or margin) 
estimates, there is little difference between the 
methods; results are not shown here. Except for the 
cell category "0", the ARD is at most 1.5%; for "0", the 
ARD is between 1.1% and 2.7%. However, for flow 
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estimates, the difference could be appreciable 
although most of the ARDs (not shown here) are well 
below 3%. In particular, for flows representing 
transitions from employment to unemployment and 
vice-versa, there are significant differences, especially 
for the weighting cell and the PML methods. The 

values of the corresponding D M'S and ARD U's are q iy 

listed in Table 1. These differences indicate that the 
nonresponse model should be carefully chosen when 
estimating gross flows. Since the "true" nonresponse 
model is rarely known in practice, choice of an 
adjustment procedure should be based on a principled 
approach. In light of the discussion in the 
introduction about the desirable properties, we 
recommend the use of GWCS for estimating gross 
flows. 

5. SUMMARY AND CONCLUDING REMARKS 

We discussed an interesting finding that for 
longitudinal surveys, the commonly used methods for 
respondent reweighting for nonresponse do not 
preserve the internal consistency property for 
estimation of gross flows. To overcome this problem, 
we proposed a method of generalized weight 
calibration in sampling for nonresponse adjustment for 
multi-wave longitudinal surveys. Its properties are 
summarized below: 

o It is easy to implement in practice. 
o It does not require monotone nonresponse 

pattern. 
o It ensures the weight adjustment factor _> 1, which 

is clearly desirable. 
o It produces design-consistent estimates when the 

underlying nonresponse model holds. 
o It preserves internal consistency, i.e., it maintains 

additivity with respect to the margins which are 
the single-wave estimates. 

o It allows for enhancing the nonresponse model by 
adding important predictors which may have only 
aggregate level information about nonrespondents; 
this phenomenon arises naturally in the context of 
longitudinal surveys. 

Finally, we remark that the proposed method's 
capability of being able to use predictors with only 
aggregate level information about nonrespondents may 
have implications, in general, for enhancing the 
nonresponse adjustment for both cross-sectional and 
longitudinal surveys. 
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