
VARIANCE ESTIMATION IN THE PRESENCE OF IMPUTED DATA 
FOR THE GENERALIZED ESTIMATION SYSTEM 

Hyunshik Lee and Eric Rancourt, Statistics Canada, Carl-Erik S~irndal, Universit6 de Montr6al 
Eric Rancourt, Statistics Canada, 11-I, R.H. Coats Bldg, Ottawa, ON, Canada, K1A 0T6 

Key Words: Domain, Jackknife technique, Model- 
assisted approach, Multiple Imputation, Single 
Imputation. 

I. Introduction 

The Generalized Estimation System (GES) is a 
micro-computer estimation package for survey data that 
has been developed at Statistics Canada. It is designed 
to produce point estimates and the associated variance 
estimates for domain totals, sizes, means and ratios. 
Two options are available for estimation of the 
variance: the model-assisted theory with the Taylor 
linearization technique and the jackknife technique. 
The system can handle a variety of sample designs and 
types of auxiliary information. It has become an 
important tool in many surveys conducted at Statistics 
Canada. 

Missing data is a common problem in sample 
surveys and imputation is frequently used to fill in 
substitute values for the missing data. At present 
however, GES does not provide a proper variance 
estimation when the data contain imputed values. It 
treats imputed values as if they were real observations. 
It is well known that this can cause severe under- 
estimation of the true variance. To address this 
problem, Rubin (1987) proposed the multiple 
imputation method. This procedure requires multiply- 
imputed values for each missing value, resulting in 
multiple completed data sets. The advantage of this 
method is that the standard variance formula for 100% 
response can be used. So a variance estimation package 
such as GES could be used to compute estimates for 
each of the completed data sets. The results would then 
be combined outside of GES as proposed by Rubin 
(1978, 1987). Note that some simple extra 
programming would have to be carried out by the user. 
However, multiple imputation has not been used at 
Statistics Canada so far, in contrast to single imputation 
which is extensively used. Therefore, provision of 
proper variance estimates for singly-imputed data sets 
is necessary. In response to this need, there has been a 
considerable amount of research done recently. It 
includes S~ndal (1990), Rao (1990), Lee, Rancourt and 
S~xndal (1991, 1994), Rao and Shao (1992), Deville 
and Samdal (1991, 1994), Rancourt, Lee and Samdal 
(1993), Rancourt, Sarndal and Lee (1994), Kovar and 
Chen (1994), Rao and Sitter (1995). These papers focus 

on estimation at the population level while GES is 
designed to produce estimates for arbitrary domains. 
Therefore, there is a need to adapt the techniques for 
variance estimation with imputed data to the problem of 
domain estimation and this is the new feature of the 
paper. 

The purpose of this paper is to summarize the 
requirements for GES for proper variance estimation in 
the case of single value imputation using the mean, hot- 
deck, ratio or nearest neighbour method. These 
imputation methods are the most frequently used at 
Statistics Canada. In Sections 3 and 4, we consider two 
techniques for variance estimation of singly-imputed 
data: the model-assisted approach and the jackknife 
technique. Both of these options are currently available 
in GES. In section 5, the implementation aspects are 
presented and in section 6 we give a summary of the 
areas where work remains to be done. 

2. Notation and Assumptions 

Let U =  {1,...,k,...,N}be the index set of the 

population. Simple random sampling without 
replacement is used to draw a sample s of size n from 
U. The set of respondents, denoted by r, is of size m, 
and the set of nonrespondents, denoted by o, is of size l. 
Then we have s = r w o .  The variable of interest is 
denoted by y. We are interested in the estimation of the 
population total Yu - ~ u  Yk (or more generally the total 

for a specified domain). The nonresponse mechanism 
that generates missing data is assumed to be uniform. 

If unit k ~ o, then the missing value Yk is imputed 

and its imputed value is denoted by 33 k . The data set 

after imputation is given by {Y.k " k ~ s} where 

{~ k i f k ~ r  
Y.k = 

k i f k ~ o .  

The usual simple expansion estimator for the population 
total, Yu is: 

N 
~'.~ = N z . , . y . k  = - - ( Z r y k  + Z o ~ k  ). 

H n 

Now consider a domain Ua. Its intersections with s ,  r 

and o are denoted by s a = U  a r t s ,  r a = U d n r  and 

o a = U a n o ,  and their respective sizes are denoted by 

na, m a and l a . Let us def'me 
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Yk(d)=(ok  if k ~ U  d 
otherwise. 

Then the domain total 

Yu(d) = ~ v  Yk(d) 
is estimated using the completed data set by 

Y..,.(d) = N ~ , , . y . k ( d )  = N---{~ryk(d)+ ~o)3k(d)} 
/7 n 

where 

Y.k if k ~s a 
Y'k(d)= 0 i f k ~ s - s  a. 

The total mean square error of l~..,(d) is def'med as 

VToT(d) = EpEq(~'.s(d)- Y~l(d)) 2 , 

where E p and Eq are the expectation operators with 

respect to the sampling design p and the response 
mechanism q, respectively. 

The estimator for the case of 100% response is 

y,.(d):(N//n)X.,.yk(d ). Using it, the total error of 

Yo,(d) can be decomposed as 

f,(d)- f . , ( d ) -  f , (d)  

Note that )'s( d) - Yu( d) is the sampling error and 

}9°.,.(d) - f'~.(d) is the imputation error. 

We then obtain 

VToT(d ) -- VS~Vl (d) + VIMp(d) + 2VMIx (d) 
where 

I/SAM(d ) = E p { } Z s ( d )  - YU ( d ) }  2 

VIMp(d ) = E p E q { Y o . , . ( d ) -  }~s(d)} 2 

Vs,x(d ) = EpEq {(}9.L,.(d ) - ~,.(d))(Ys(d)- Yu(d))} . 

Subsets of the population that are used for specific 
imputation procedures will be termed "imputation 
groups". In this paper, we assume that imputation groups 
coincide with strata. Point and variance estimations are 
discussed in this context. This means that we focus on the 
estimation problem for a single stratum which plays the 
role of the population defined at the beginning of this 
section. 

We consider four imputation methods: respondent 
mean, hot-deck, ratio and nearest neighbour imputation. 
For ratio and nearest neighbour imputation, we assume 

that an auxiliary variable, x ,  such that x k > 0, Vk ~ s is 

available for the whole sample but not necessarily for all 

units in U. The imputed values )3 k for the four methods 

are as follows: 

Respondent mean (RM) imputation 
1 

)~k = Yr = - - Z r  Yk" m 

Hot-Deck (HD) imputation 

f;k = Yg(k)  

where Ygtk) is the y-value given by the donor unit, 

g(k) ~ r, drawn at random (with replacement) from the 

m respondent units. 

Ratio (RA) imputation 
= 

where Br = ~r  Yk / Z r  Xk " 

Nearest neighbour (NN) imputation 

fek = Yg(k) 

where Yg(k) is the y-value given by the donor unit g(k) 

such that min ]Xg - Xkl occurs for g = g(k). If this 
g~r ! 

yields more than one unit, a donor is randomly selected 
among them. 

Both NN and HD require f'lnding a donor among 
the respondents g s r .  However, a fundamental 

difference exists between the two methods. While the HD 
method randomly draws donors, the NN method uses an 
auxiliary variable to select donors by the minimum 
distance criterion. 

3. Methods Based on the Model-Assisted Approach 

The survey statistician who uses imputation for 
missing data appeals (unconsciously, perhaps) to one or 
more model assumptions. More specifically, the imputed 
values are assumed, on the average, to be good 
substitutes for the missing values. That is, in expectation 

the difference between the true, unobserved value Yk 

and the imputed value 331, is assumed to be zero. The 

statistician uses these assumptions implicitly or explicitly 
in the model-assisted approach to obtain variance 
estimators. These assumptions deal with the response 
mechanism and/or the relationship between the variable 
of interest y and the auxiliary variable x used to impute 

missing y values. We can distinguish three model 

components: 
1. The response mechanism; 
2. The regression relationship; 
3. The variance structure for the regression. 
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In the following, the response mechanism is assumed to 
be uniform, and the model (denoted by ~ ) is stated as 

~: Yk = [SXk +ek ;  E~,(ek)=0; E~(e2 ) = °2xk; and 

E~(Ekek,) = 0 for k ,  k'. 

The objective is to obtain an estimator of VToT(d) 

for Yo.,.(d) by constructing estimators of the components 

VSA M (d), VIM P (d), and VMI x (d). In the model-assisted 

approach, the variance components I~SA M (d), VtMp (d), 

and I~MI x (d) satisfy 

E~(VsAM ( d ) -  VSAM ( d ) ) =  g~(ViMp(d ) - VIMp(d)) 

= E~ (I)MIX (d) - VMIx(d)) = O. 
^ 

In particular, VSAM(d) is constructed as the sum of two 

terms, the first of which is the "ordinary formula", 

l)ol m (d), computed on the completed data set, 

IT, ORD(d ) = N2 1- f S2y.s(d ) 
n 

with Sy2..,.(d) = nl-~l£ . , . {y . , (d)- (£ . , .y . , (d) /n)}  2. 

The ordinary formula is already available in GES 
and gives correct results for 100% response. However, 
when imputed values are present in the data set, 

^ 

VoR D(d) underestimates V s , ( d )  for some of the 

imputation methods. The second term, a correction term 
^ 

denoted by VDIF(d ) becomes necessary. The estimated 

sampling variance is then 
^ ^ ^ 

VSA M (d) = FOR D (d) + VDIF(d). 
^ 

It follows that the correction term VDI F should be 

constructed to satisfy 

N2(1-  f )  {S2s(d) S 2 E~, { / , ~ D I F ( d ) }  = E~, - y°s(d)}. 
n 

We now present the I~DIF(d ), I~nvm(d ), and 
^ 

VMIx(d) components for each of the four types of 

imputation methods considered. 

RM imputation 

For RM imputation, the model assumed is model 

with x k =1 for all units. The components of the 

variance estimator are: 

I, gDIF(d)  = N 2 ( 1 - f  ) ld62 
1,12 

v~(g) = 7 1 a  + 6 2 

~ i x ( d ) =  N2(1-- f ) l d f  m~dm --1~~2 
n 2 

wi th82  m - 1  2 2 = 1 = ~ S y  r and Sy r m 1 ~k~r(yk fir)2 
m -- 

HD imputation 
For HD imputation, the model is the same as for 

RM imputation, but the components of the variance 
estimator are different: 

^ 

VDIF(d) = 0 

N2 ( ~  2)~y 2 
l) lMe(d) = --~-I  d + 

^ N2(1-f)ld(m__~dm_l)~y2 
VMIX (d) = n 2 

with ~2 m - 1  2 = Sy r . m 

RA imputation 

For RA imputation, model ~ is assumed. The 

components of the variance estimator are: 

VDIF(d)-" N 2 ( l - f ) 2  {ZoXk(d)> 2 
/7 

N 2 ~~-]oxk(d)w1}~y2 
¢IMp ( d ) = -~2- { Z° X k ( d ) Zr X k 

" N2(1- f )  {~oXk(d)~~rXk(d)_l}~2 
VMIX (d)  = l,/2 ZrXk 

2/Zr Xk and e, - y ,  11rX * . with 62 = ~ r e ,  

Note that RM imputation is a special case of RA 

imputation when x k = 1 for all k. 

NN imputation 
The same model as for RA imputation is assumed 

and the components of the variance estimator are: 
^ 

VDIF(d) = 0 

+ + 

m l a 

^ N a ( 1 - f )  ld{~rXk(d)  ~-'~oxk(d)}~2 
VMIX (d) = n 2 ~ - la 

with 6 2 = ~re2 /~rXk  and e k - Yk - B~xk . 
Note that HD imputation is a special case of NN 

imputation when x k = 1 for all k. 

4. Methods Based on the Jackknife Technique 

We first explain the procedure for estimation of the 

population total Yu. We then adapt it to estimation of the 

domain total I)u (d). 
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The principle of the jackknife technique is to 
recalculate the estimator after deleting a unit from the 
sample. The variance between the recomputed estimates 
is used to obtain an estimate of the variance of the 
estimator calculated using the complete sample. After the 
deletion of unit j, the estimator of the whole population 

total ( Yts ) is given by 

I~(;/)=.. N Zk¢j~.Yok 
n-1  

where the superscript j denotes that unit j was deleted. 
This is performed for all units j ss .  The jackknife 

variance estimator is 

1, 9 = n - I  Zj~.(}9(j) - los)2. 
For data sets containing imputed values, this 

estimator does not take the imputation into account. Rao 
and Shao (1992) proposed a jackknife variance estimator 
that corrects the estimator by adjusting the imputed 
values when the deleted unit is in the response set. For 
some imputation methods, the adjusted values are the 
reimputed values based on the reduced response set after 
deletion of the jth unit. If the jth unit deleted is a 
nonrespondent, the imputed values are unchanged. The 
data set after adjusting the imputed values is given by 

Yk if k ~ r 

, (aS) Yk + a(k j) if k ~ o and j ~r  .)'°k : 

.Vk i f k s o  and j s o  

where , ('j) is the adjusted imputed value and a (]) is ) ' °k  

called the adjustment. The jackknife variance estimator is 
then given by 

VJACK -- H - - I  Z j ~ , . ( f ( a . . j )  f ( a ) ) 2  
H 

where fo(~j) = ~ N  Zk,i~,.'J'.k(aJ) and ~y) = _1 ~ i~,' f(sa.j). 
' n - 1  • ' n 

This estimator works well when the f'mite population 

(fpc), 1 - f  with f=n/ /N is negligible. correction 

However, when the fpc is nonnegligible, the jackknife 
variance estimator overestimates the true variance and its 
bias can be substantial (Rancourt, Lee and S~rndal, 
1993). A direct application of the fpc to the jackknife 
estimator would overcorrect, thereby underestimating the 
true variance. Only the sampling variance component 
needs to be corrected. A proper correction can be 
obtained by first decomposing the total variance into two 
components, sampling variance and other (mostly 
imputation) variance. The fpc should be applied only to 
the sampling variance component. However, the 
jackknife variance estimator does not readily yields these 
components. Lee, Rancourt and S~imdal (1995) proposed 
the following fpc-corrected jackknife variance estimator 

^ i  ^ ^ 2  

VJAC K "- VjACK -- NSy U 
"2 where Syts is an unbiased estimator of the population 

variance Sy2v. Since the response mechanism is uniform 

"2 2 by assumption, we can use Sy v = Syr which is the 

respondent variance. A simple expression for the fpc- 
corrected jackknife variance estimator is then given by 

VJACK -- VJACK -- NS2r " 

This adjustment yields almost unbiased estimates of the 
variance. (For a more detailed discussion, see Lee, 
Rancourt and Sfimdal, 1995). 

The adjustment values a~ j) used in our calculation 
^ 

of VjACK depend on the particular imputation method. 

Note that adjustments are needed only for j ~ r ,  k s o. 

The adjustment for RM and HD is found in Rao (1991), 
Rao and Sitter (1992), the one for RA imputation in Rao 
(1991), Rao and Sitter (1995), and the one for NN 
imputation (which agrees with the RA adjustment) is 
found in Kovar and Chen (1994). 

RM imputation 
The adjustment for RM imputation is given by 

a(k i) = Y~i) - Yr where 

.~/) __ 1 

m - 1 ~k~.i~r Y.k" 

The adjusted imputed value is then 

Yk + a~ "j) = Yr + ( Y ~ ' J ) - Y r ) =  Y~'J)" 
Note that the same value would be obtained by RM 
imputation based on the reduced response set r - {j}. 

HD imputation 
The adjustment for HD imputation is the same as 

the one used for RM imputation. The adjusted imputed 
value is given by 

Yk + a~ j) = Yg(k) + (fi~.J) _ fir)" 

RA imoutation 
A 

The adjustment for RA imputation is 

a(k ./) =(Y~J) Y r t x  k. The adjustedimputedvalue is 
x~/) Xr 

Yk + a~ / )=  y~ Xk + Xk = Xk" 
Xr ~ ~ r  

Note that the same value would be obtained by RA 
imputation based on the reduced response set r - {j}. 
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NN imputation 
As mentioned earlier, the same adjustment as for 

RA imputation is used here and thus, we have 

= + ' 

Now consider jackknife variance estimation for the 

estimator ])o~.(d) of the domain total Yu(d). Define the 

completed data set after imputation with unitj deleted as: 

y!~/)(d)=f  y(aj) ifk ~d  
0 °k ifk ~d. 

The jackknife variance estimator for I)o.~.(d) is then 

given by 

~'~JACK (d) = VJACK ( d ) -  Ni~w (d) 

where I~JAcK(d) is computed using ~'.k'(~J)td)~ and 

Sy2 v (d) is an unbiased estimator for Sy2v (d). 

5. Implementation in GES 

The results given in this paper can be implemented 
within the GES general framework without involving 
heavy reprogramming. For the model-assisted approach, 

the terms 1~ DIF(d), I~IM P(d) and I~ Mix(d) have to be 
added in GES to the ordinary formula currently used. For 
the jackknife technique, adjusted imputed values have to 
be calculated when the jth unit is deleted from the 
respondent set. Note that the adjusted imputed values are 
to be used only in variance estimation. 

If the multiple imputation technique were used, no 
changes or no additions to GES would be needed. The 
current GES could be used several times and then, point 
and variance estimates would then be calculated outside 
of GES. 

For both the model-assisted approach and the 
jackknife technique, identification of the imputed values 
and the specification of the imputation method(s) (via 
imputation flags) are required to identify the proper 
variance formula specified in this paper. 

We have assumed that imputation groups coincide 
with the strata. Hence there is no need for specifying the 
imputation groups. However, the imputation groups need 
not coincide with strata. 

It is desirable that the future GES be able to provide 
separate variance estimates for the sampling and the 
imputation components. This can be achieved 
straitforwardly with the model-assisted approach and the 
multiple imputation technique. For the jackknife 
technique, one can include the correction given in 
Section 4 and calculate the two components as follows: 

^ N2(1-  f )  "2 
VSAM (d) = Syu(d ) 

n 
^ N 2 

~rIMp( d)  = VjAcK (d )  - ~ S2u(  d).  
n 

In the above decomposition, the MIX term (which could 

be nonzero) is included in l ~ ( d ) .  

6. Future Work 

In this paper, we have described suitable methods 
for variance estimation in the presence of imputation. It 
was assumed that imputation groups coincided with strata 
and the response mechanism was uniform. We have only 
dealt with the simple expansion estimator. It represents, 
however, the first step towards the goal of proper 
variance estimation in estimation packages such as GES. 

GES has been built upon the Generalized 
Regression Estimator (GREG) theory. An important 
feature of GES is that it can incorporate auxiliary 
information in estimation. Extension of the variance 
estimation methods described in this paper to the 
Generalized Regression Estimator is one of the next 
priorities for research. 

The next hurdle to overcome is the case of more 
general imputation groups than those considered in this 
paper. This is important since in reality imputation 
groups often cut across the stratum boundaries. For the 
case where some imputation groups are composed of 
collapsed strata, conservative variance estimates could be 
obtained using the collapsed strata as design strata. 

Only four imputation methods have been 
considered. Variance formulae will have to be derived 
for other methods. Further work is also needed for cases 
when more than one imputation method is used within 
the same data set. 

Violations of assumptions on the model for 
imputation and/or on the uniform response mechanism 
will have some effects on the validity of the methods 
presented in this paper. Lee, Rancourt and S~.rndal 
(1994) studied robust aspect of some variance estimation 
procedures under several scenarios of violated 
assumptions of the imputation model and the response 
mechanism. They found that some variance estimation 
procedures can be seriously affected under some 
conditions. More research is needed in this area. Also, 
there has been little done so far to evaluate the robustness 
of the jackknife variance estimator for data sets with 
imputed values. 

Finally, it is important to realize that domain 
estimation can be seriously biased, especially when RM 
or HD imputation is used even under a uniform response 
mechanism. 
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