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Abstract One way of handling survey nonresponse is to 
impute data for each nonrespondent. When estimating 
sampling variances, however, treating the imputed data 
as a complete set frequently leads to underestimates of 
the true sampling variance. Techniques have been 
recently developed to yield valid variance estimates in 
the presence of imputed data for some estimators and 
sample designs. 

Economic surveys frequently deal with highly skewed 
populations and employ high sampling rates, including 
selection with certainty for large units. It is also common 
for economic surveys to have administrative or historical 
data available for use in imputation. This paper 
describes a Monte Carlo study of variance estimation on 
skewed populations with high sampling fractions in some 
strata. We examine a variety of imputation techniques 
and patterns of nonresponse. We extend the Rao-Shao 
technique to finite populations and nearest neighbor 
imputation, and compare the resulting estimators to the 
true variance. 

1. INTRODUCTION 
Economic surveys and censuses conducted by the U.S. 
Census Bureau frequently employ imputation to supply 
missing values. Recently, King and Kornbau (1994) 
surveyed statistical practices in the Economic Area of 
the Census Bureau. They found imputation in 
widespread use for treatment of missing data. Hot deck, 
mean, and ratio imputation are among the frequently 
employed methods, as well as procedures that produce 
an estimate from an external source or adjust a previous 
value. With the exception of a few special studies, 
variance estimates have not attempted to reflect the 
effect of imputation on the reliability of the estimates. 

This paper attempts to examine variance estimation for 
imputed data sets in an economic context. In general, 
economic surveys and censuses confront populations that 
are quite skewed, with relatively few members of the 
population contributing a substantial fraction of the 
overall total. The sample designs are typically stratified 
by estimated size and other characteristics, with typically 
the largest units included with certainty. Recent 
advances in variance estimation for imputed data, such 
as the Rao-Shao (1992) results for hot-deck imputation, 
are not immediately applicable to such survey and census 

designs. 
In an economic setting, the statistical agency 

frequently has past data or administrative data helpful for 
making imputations for missing data. Often, several 
variations on an imputation method may be applied in 
the same survey to exploit whatever external information 
may be available. 

Lee, Rancourt, and SLrndal (1994) recently compared 
variance estimators for ratio and nearest neighbor 
imputation in a finite population context. Each of the 
estimators was an anaJytic expression. We propose to 
examine properties of replication-based variance 
estimators in this paper. Section 2 describes the creation 
of an artificial population modeled to have many of the 
characteristics of an economic population. By randomly 
generating the observations, we have created a 
population that we may share with other researchers 
without risk of disclosure of confidential data. In section 
3 we describe an extension of the Rao-Shao (1992) 
variance estimator for hot deck imputation and ratio 
imputation (Rao and Sitter 1995) to ratio imputation for 
finite populations, including when some observations are 
sampled with certainty but possibly subject to 
nonresponse. Section 4 describes a Monte Carlo study 
of the performance of the variance estimator on the 
population under a variety of nonresponse conditions. 

2. AN ARTIFICIAL ECONOMIC POPULATION 
Our goal was to have a randomly generated population 
that mimicked the behavior of economic data. The 
majority of economic surveys begin with a frame that 
includes information that is well correlated with at least 
some of the variables of interest. In absence of response 
or historical information, the frame information can be 
used to impute response values. Payroll and receipts are 
typical: payroll is known administratively and receipts 
is the variable of interest. Using the payroll variable, a 
ratio estimate may be made, a nearest neighbor's value 
may be used, or a hot deck class created to obtain an 
imputation for receipts. We chose as our starting point 
economic census data containing payroll and receipts and 
randomly generated a similar population. 

We focused first on generating an artificial payroll 
population. A brief survey of 1992 census industries 
was conducted; the distribution of payroll appeared to be 
lognormal or a mixture of lognormals in almost all 
cases. The best of these, whose departure from the 
normal under the log transformation was not significant 
(p >0.15 for the Kolmogorov D statistic), was the basis 
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of our x population. We fit the transformed data to 
obtain parameters for a random normal population 
(# =5.41 o = 1.93), then transformed the artificial 
population back. 

We then modeled the relationship in the Census data 
between x (payroll) and y (receipts). The data is 
heteroscedastic, which in Knaub (1993) is modeled as: 

y = a ÷ 13x ÷ xYe 

Unforttmately it also exhibits more or less constant error 
in the initial segment (by payroll) of the data. This is not 
captured in the heteroscedastic model. To account for 
this and because of its amenable character we used an 
exponential form for the x-dependent component of the 
error term" 

y = a + lax + YoeVlX~e 

Roughly, ~0 describes the variability when x is small, v l 
and g control the onset and magnitude of x's influence on 
the variance. Application of our model to the census 
data under a reweighting scheme converged nicely to 
e=861.04,  ~=15.5842, v0=0.091, ~=0 .008329  with 
g=0 .05 .  The studentized residuals show a gamma- 
like distribution and we have incorporated that into our 
model. To obtain the artificial y population, we applied 
the model to the xs already generated, with random 
gamma errors. 

A population of 1500 was then stratified on x by the 
Lavall6e and Hidiroglou method (Lavall6e and 
Hidiroglou 1988), using a Census Bureau stratification 
package (Sweet and Sigman 1995). This stratification 
consisted of four noncertainty and one certainty strata. 
The target CV was 0.05 and the resulting sampling 
fractions for the noncertainty were 0.0632, 0.1689, 
0.2732, and 0.6364, with a fifth certainty stratum. The 
sample sizes were 51, 64, 53, 63, and 21~ in the five 
strata, respectively. 

3. EXTENDING THE RAO-SHAO VARIANCE 
E S T I M A T O R  TO FINITE POPULATIONS 

We follow the notation of Lee, Rancourt, and S/irndal 
(1994) and Rancourt, S~irndal, and Lee (1994) closely. 
Let Y-v- - (1 /N)~ v Yk be the mean of the finite 
population U = { 1, . . . ,k . . . . .  N}. Suppose that a simple 
random sample, s, of size n is drawn without 
replacement from U to estimate Y-t:. Let r denote the set 
of m respondents and s - r the set of n - m 
nonrespondents in the sample. An auxiliary variable, x, 

is observed for all sample cases. For each 
nonrespondent, k e s - r ,  an imputation, y. k, is made. 
The imputations are then included in the estimation of 
the overall mean or total as if they had been observed. 

We assume that response is unconfounded with the 
missing information. In other words, we consider 
different alternative relationships between the probability 
of nonresponse and the auxiliary variable, x, but do not 
consider the probability of nonresponse to depend on y 
given x. 

Ratio imputation exploits a linear relationship between Y t 
and xk through: 

Y.k = Yk'  i l k  ~ r 
(1) 

= ~ x  k, i l k  ~ s -  r 

where I] -- ( ~ r  Yk) / ( ~ r  Xk) and resulting estimate 

Y.sRAr = ( 1 / n )  ~ ,  Y . t  = xs" (2) 
k~s  

where x-~ --(l/n)~-,s Xk, Y-r = ( 1 / m ) ~ - , r  Yk' and 

x~ -- ( 1 / m ) ~ r  xk" 
Consider first variance estimation for sampling from 

an infinite population, or one with negligible sampling 
fraction. A naive variance estimator for the variance of 
(2), based on the jackknife, is given by: 

n-I 
vj(1) -- ~ (~-(- k)  - ~-)~ (3)  

n kes 

where 

y ( -  k) ~ 1 (ny  - Y.k) (4) 
( n - l )  

represents the mean of y computed by omitting 
observation k. Thus, this estimator treats imputed values 
as if they were observed, and may appropriately be 
called "naive" for doing so. Rao and Shao (1992) 
modified (3) and (4) in the context of hot deck 
imputation to correct the resulting understatement of the 
variance. The modification of (3) and (4) appropriate 
for ratio imputation (Rao and Sitter 1995)is: 

n-1 a(_ v, o ~E (~- k ) -  ~-)' (5) 
l'l k ~s 

where (1) 
y a ( - k )  = mY-r- Yk ÷ E xj ~ ( -k )  

j e s - r  

if k e r (6) 

( l ] 
= ~ .k i f k e s - r  

andwhere ~(-k) -- L ( - k ) l x r ( - k )  -- ( m Y r - Y t )  l ( m x r - x t ) .  

In other words, if k e s - r, then (6) is computed in the 
same way as (4), by omitting the imputed value for k. 
If k e r, then Yk is omitted and the imputed values are 
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adjusted to reflect yk's influence on the imputed values. 
Sampling without replacement in the absence of 

nonresponse requires that the variance estimator (3) be 
multiplied by the factor (N-n)/N. The extension of the 
Rao-Shao variance estimator to be discussed here begins 
by incorporating this factor into (5). With this 
adjustment, the variance estimator omits components of 
variance; the extended variance estimator incorporates 
two additional sets of replicate values to account for 
these components. 

First, under a model with E~(yk l x k) = [~ x k, 
Cov~ (Yj, Yk [ Xj, X k) = 0, forj ~k, the incorporation of (N- 
n)/N into (5) results in an effective underestimation of 
Var~ (~) ,  which in turn underestimates its contribution to 
the variance of the prediction of E~ (YklX k) by 1~ x k . 

Secondly, the extension must account for additional 
error in predicting the true Yk, k e s - r by E~ (yk I Xk). 
One approach is to identify two nearest neighbors, 
nnl(k) and nn2(k), on the basis of their x values, with 
reported values for y. 

One proposed extension is: 

. n - I  N - n  k~Es [~--a(_k), ~"]2 
vll -- n N 

n-1 1 E E 
n Nn ker j e s - r  

[xj(13(-k)- I~)] 2 (7) 

+ " ~. Ynn2(k) I 1 Ynn1(k) Xk _ ~ Xk 

2 Nn k ~s-r Xnnl(k) Xnn2(k) 

Note that the last term in (7) reflects an adjustment for 
differences between XnnX(k) and X~k). Because both XnnX(k) 
a n d  Xnn2(k) should consequently be close to xk, the 
difference inside the braces could be estimated by Ynnl(k) - 
Ynn2(k) instead. 

We note that the added terms to the variance estimate 
make the following assumptions: 1) the variance in the 
estimated ratio coefficient assumes that the observed x 
and y in the finite population are sampled from a 
superpopulation; 2) the variance estimate based on 
nearest neighbors assumes that the ratio model is 
conditionally correct in expectation. In other words, the 
second assumption does not allow for conditional lack of 
fit of the regression line through the origin. 

Fay (1995a) shows a close connection between (7) and 
an estimator studied by Rao and Sitter (1995) 

( 1  1 )  5 ( ~ - s ) (  1 -  I~ 1 )  
v ,  . . . .  s L ,  : - - -  n -N Xr n N - S x e r  

(8) 

+ -~r m N 

~ S ) s  "" E s  (Xk-Xs)2 / (r t -1) 'SLr  = E r  ekXk/(m- 1) 

and S:r = E r e: I (m- 1) with ek= Yk- ~ xk" 
Estimator (8) suggests a second replication method, 

different in the last term from (7): 

V/2 = "-nN 
n-1 I 2 

Nn k~, ,~,- ,  [x j (~ ( -k ) -1~) ]  (9) I ]2 
I ~ Y~nlCk) Xk _ ~Xk 

Nn k -r Xnnlfk) 

The preceding formulas describe the situation for a 
single stratum, but the methods are readily extended to 
multiple strata by including weights and summing the 
variance contribution from each stratum. 

4. MONTE CARLO RESULTS 
Monte Carlo samples of 5000 draws were performed for 
each assumption about response. Each Monte Carlo 
draw consisted of an independent stratified simple 
random sample drawn without replacement with the 
sampling rates specified in Section 2. File preparations 
and most estimators were done in SAS, and the extended 
Rao-Shao estimator was calculated using the Census 
Bureau's variance package VPLX (Fay 1995b). The 
platform for all processing was a DEC 3000 Model 
300LX workstation. 

Five different assumptions about response were 
employed: 

1) 
2) 
3) 

Uniform response rate of 80 %. 
Uniform response rate of 70%. 
90% response in the certainty, 68.2% in 
noncertainty ( 70% overall rate) 

4) Probability of response is approximately 
1 - x -°.~s -(70% overall rate) 

5) Probability of response uniform within 
stratum at 60.0%, 78.4%, 83.8%, 87.9% 
and 91.6 % for strata 1 through 5 respectively. 
(This pattern takes the stratum level response 
rates generated by pattern 4) and applies them 
uniformly to their respective strata). 

Alternative 3) was selected on the basis that it is 
common practice at the Census Bureau to direct 
followup resources to the largest units in the sample. 
Thus, response rates typically are highest in certainty 
strata as a result of effort expended. In addition, the 
smallest units in the population often are the most prone 
to nonresponse, hence, alternatives 4) and 5) examine 
whether a further dependence of response on x affects 
the performance of the variance estimators. 

Table 1 reports the results for strata 3-5 and the total. 
The naive variance estimator consistently understates the 
actual uncertainty. By comparison, the results obtained 
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for estimators (7), (8) and (9) are highly encouraging. 
The results for strata 1-2 (not shown) and 3 are 
consistently satisfactory. We note that in these strata 
most of the variance estimate derives from the original 
component of the Rao-Shao variance estimator, that is, 
the first terms on the right hand side of (7) and (9). 

In strata 4 and 5, the variance estimators depend more 
on the extensions to finite population sampling. In 
stratum 5 the first terms of (7) and (9) vanish, as do the 
first two terms of (8). Estimator (7) appears to 
underestimate the variance in stratum 4 and overestimate 
in 5. Our current interpretation is that the ratio model is 
not met adequately in stratum 5, leading (7) to 
underestimate. Estimator (9) does somewhat better in 
stratum 4 but overestimates in 5. In these two strata (8) 
is generally the best of the three variance estimators. 

For estimating the totals across strata, which is the 
primary analytic interest, we note that the overall results 
are quite good for all three estimators. Figures 1 and 2 
display some of the results for variance estimators, 
including results for strata 1 and 2 omitted from Table 1. 
Figures 3 and 4 display coverages of 95 % confidence 

intervals based on a normal approximation. Intervals 
based on the naive variance estimator are consistently 
inadequate. Coverage of the individual strata is 
moderately good, but differences among estimators 
appear particularly for the certainty stratum. Coverage 
for the overall total is consistently good over the range 
of response assumptions studied. 

Although the Monte Carlo studies identified some 
differences in performance among the estimators, each 
did quite well within the context of the simulated 
economic survey under the various assumptions of 
unconfounded response. Fay (1995a) reports further 
studies of these and other estimators applied to the 
populations studied by Lee, Rancourt, and S~irndal, 
C.E. (1994). 

These results suggest new topics for research, 
including how followup effort to reduce nonresponse 
might be optimally directed to improve accuracy and 
whether assumptions about nonresponse should be 
considered in the design phase, when forming sampling 
strata. 

1 This article reports results of research undertaken by 
staff members of the Census Bureau. The views 
expressed are attributable to the authors and do not 

necessarily reflect those of the Census Bureau. Our 
thanks to Richard Sigman for his ideas on modeling and 
Mary Ann Cochran for editorial assistance. 
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Table 1. True and Estimated Variances.( × 10 n) for Strata 3-5 and Total. 

Stratum 3 n / N  = .27 

Naive True J 1 J2 Rao-Sitter 

70% .557 1.252 1.234 1.232 1.228 

80% .633 1.056 1.045 1.044 1.043 

90%/68.2% .544 1.260 1.287 1.282 1'277 

x .2s .665 .955 .964 .962 .964 

Strat. ave. .662 .975 .990 .990 .990 

S t r eam 4 n / N  = .64 

70 % .334 1.027 1.149 1.109 1.036 

80 % .371 .804 .858 .827 .782 

90 %/68.2 % .327 1.089 1.226 1.188 1.085 

x -25 ,401 .610 .643 .624 .612 

Strat. ave. .398 .648 .682 .657 .630 

Stratum5 n / N  = 1 .00  

70% - .574 .491 .668 .566 

80% - .303 .253 .366 .314 

90%/68.2 % - .138 • 105 .159 • 138 

x "2s - .099 .077 .111 .098 

Stratum ave. - .113 .085 .129 .113 

All strata 

70 % 2.402 5.923 5.974 6.106 5.878 

80 % 2.697 4.864 4.823 4.902 4.781 

90%/68.2% 2.359 5.730 5.829 5.839 5.657 

x "2s 2.679 4.530 4.547 4.559 4.511 

Strat. ave. 2.580 5.050 4.943 4.959 4.850 
i 

Note: All variance estimators except the naive estimator performed uniformly well in strata 1-2, similar to stratum 
3 shown here. 
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Variance Estimates by Stratum 

(70% uniform response) 
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Figure 1. Comparison of true variance with four variance 
estimators by sampling stratum. 

Figure 2. Comparison of true variance with four variance 
estimators for each of the response patterns. 

Coverage of 95 % CI by Stratum 

(70% uniform reslmme) 
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Figure 3. Coverages of 95% confidence intervals based 
on the normal approximation for four variance estimators. 

Note: In stratum 5 the naive estimate of variance is 0, 
and confidence intervals were not computed. The 
coverage of the naive estimate for the total is .775. 

Figure 4. Coverage of 95% confidence intervals based on 
the normal approximation for four variance estimators for 
the estimated total across strata. 
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